
Authentication and Access Control in Multi-agent Systems

Pongsin Poosankam
School of Computer Science
Carnegie Mellon University
ppoosank@andrew.cmu.edu

Advisor: Prof. David Garlan
School of Computer Science
Carnegie Mellon University

garlan@cs.cmu.edu

Abstract

 In a multi-agent system dedicated to personal task
management, information and resources within the
system are usually sensitive and should be accessible by
a limited set of people. Some unique properties of such
systems raise new engineering challenges for the design
and implementation of security and access control
mechanisms: interpretations of information by different
agents may have different levels of granularity and
information can flow through nodes belonging to
different entities. We propose two design principles for
determining when and how access control is enforced:
(1) perform access control as early as possible; and (2)
define policies controlling access at the information
level. In this research, we focus on the RADAR Project
as an example of such multi-agent systems. RADAR
(Reflective Agents with Distributed Adaptive
Reasoning) is a software-based cognitive personal
assistant that helps people manage their routine tasks
such as answering emails, scheduling meetings, and
updating websites. In order to complete the tasks,
agents in RADAR communicate with each other to
obtain task-related information. In this paper, we
describe how we apply the proposed design principles
by implementing two levels of information access
control policies in RADAR. The policies are
configurable and can be applied efficiently in any
multi-agent systems.

1. Introduction

 Agents are entities in the environment, including
humans, applications, and services. A multi-agent
system, such as CMU’s RADAR project, is a
distributed system that consists of more than one agent
where the agents communicate and collaborate to
complete their tasks. Tasks are well-defined, repeatable
computer-supported activities that a user carries out
over time. In most cases, an agent cannot solve a task
alone and needs to communicate with other agents to
complete the task.

 Nodes in a multi-agent system are administered by
different entities. Without any access restriction, an
entity in the system would be able to access other
entities’ data regardless of how confidential the data is.
On the other hand, as some tasks require collaborative
actions from different entities, the system’s capability
in solving such tasks will be lessened if entities cannot
access other entities’ data at all. As a result, an access
control mechanism is required for the system to achieve
its highest capability and privacy protection.

 Let us demonstrate the unique engineering challenges
for access control in multi-agent system with an
example scenario. Figure 1 shows how users can
request a meeting with other users in a multi-agent
system. We call an entity that creates, manages, and
updates user’s tasks Task Manager, and entities that
perform tasks Specialists. Calendar Specialists manage
users’ calendars and perform related tasks such as
‘create new meetings’ or ‘find schedules.’ In the
process of creating a meeting, Bob’s calendar is
accessed and modified on behalf of Alice.

 Based on Figure 1, we identify the following
challenges for performing access control in multi-agent
system:

Alice
Alice’s

Calendar
Specialist
(CA-A)

Alice’s Task
Manager
(TM-A)

Bob’s
Calendar
Specialist
(CA-B)

Bob

Bob’s Task
Manager
(TM-B)

task1 = “Create a
meeting with Bob”

Figure 1: Scheduling a meeting. When Alice wants to create
a meeting with Bob, her request is sent to her calendar
specialist (CA-A). Then, it makes another request to add the
meeting to Bob’s calendar. If successful, the meeting with
be added to Alice’s calendar.

task1
task2 = “Put
meeting in Bob’s
calendar”

task2

task2

Alice’s
Calendar

Bob’s
Calendar

• Tasks in multi-agent system, like task2, can be
derived from other tasks, like task1. The initiators
of these tasks can also be different entities: they
can be users like Alice, task managers, or
specialists. Although task2 is a sub-task of task1,
their contents are different. This may lead to
different access control decision.

• Because entities in multi-agent system are

specialized on different kind of tasks, they interpret
tasks at different levels of granularity. B’s calendar
specialist (CA-B) interprets task2 as “a request to
add a meeting to Bob’s calendar if possible.”
Whereas, B’s task manager (TM-B) interprets it as
“a calendar-related task that should be forwarded to
CA-B.” As a result, access control performed by
different entities, even with the same set of
policies, will give different results.

• The agents in the system can be administrated by

different users. Thus access control needs to ensure
that the tasks and other information flow only
through agents authorized to access them.

 In the rest of this paper, we elaborate on how these
challenges affect the design of an access control
architecture deployed in a multi-agent system. In
section 2, we discuss the access control requirements of
information available in a multi-agent system. In
section 3, we present two design principles for such
architecture. In section 4, we introduce RADAR as a
multi-agent system that deploys the architecture. In
section 5-7, we present the design of our access control
mechanisms. In section 8, we discuss our experience
gained in designing and implementing the access
control mechanisms. In section 9, we discuss related
work. We propose the future work and conclude the
paper in Section 10 and 11.

2. Access Control Requirements

 In addition to the engineering challenges discussed
above, the access control infrastructure also needs to
offer flexible ways for granting users and entities access
to information and resources. Moreover, the
performance drawback introduced by the access control
enforcement should be minimal. The access control
requirements for multi-agent system are the following:

• User must be able to specify access control policies

on his or her information and resources managed
by any specialists based on the task initiator, the
task type (scheduling, direct access to information,
etc.) and other constraints such as time and

location. For example, Bob may give Alice an
access to his calendar managed by any of his
calendar specialists (Bob may have multiple
calendar specialists). He may allow Alice to
schedule a meeting with him (Alice as a task
initiator) in his office (location constraint) at least
two days in advance (time constraint).

• User must be able to configure the access control

policies in the future. The access control policies
should be easy to edit. The changes should take
effect immediately.

• The performance drawback introduced from access

control enforcement should be minimal. Obviously
unauthorized request should be dropped before a
costly operation is performed.

3. Access Control Design Principles

 Based on the engineering challenges discussed in
Section 1 and the access control requirements in
Section 2, we propose two design principles for
determining when and how access control is enforced in
a multi-agent system:

3.1 Perform Access Control Early
 This principle suggests that access control policies
should be enforced as soon as possible without altering
the access decision. Performing access control early in
the process gives multi-agent system an opportunity to
improve its performance. For example, if one of Bob’s
policies is allowing no one other than his colleagues to
interact with him via the multi-agent system and Alice
is not in his colleague list, her meeting request will
obviously be denied. If this design principle is applied,
the request should be denied before it reaches Bob’s
calendar specialist as the policy can be enforced earlier.
As a result, useless operation can be ignored, thus
improving the overall system performance.

3.2 Users Define Policies at Information Level

 This principle suggests that users should be able to
issue policies control access to information and
resources at the information level instead of issuing
them at the level of individual agents. Policies at
information level includes policies that are based on
nature of information and resources and also the types
of task requests (scheduling, direct access to
information, etc.). This principle is based on the
observation that a multi-agent system consists of many
specialists and multiple of them may work on the same
kind of tasks or manage the same type of information

and resources. For example, Bob may have two
calendar specialists, CA-B1 and CA-B2 with the same
functionality. He should be able to issue a policy such
as “Alice can access my weekday calendar” instead of
“Alice can access my weekday calendar on specialist
CA-B1 by submitting a request via her task manager.”
He should also be able to issue policies based on the
type of requests (tasks). The policy “Alice can do
anything with my calendar but not my e-mail” will
allow any calendar tasks but deny other types of tasks.

4. RADAR

 In this research, we focus on the CMU’s RADAR
project as an example of multi-agent system. RADAR
(Reflective Agents with Distributed Adaptive
Reasoning) is a research project to build a software-
based cognitive personal assistant that helps people
manage their routine tasks such as answering emails,
scheduling meetings, allocating resources, maintaining
websites, and accessing different kinds of information
directly.

4.1 Concept of Operation

 Tasks in RADAR are well-defined, repeatable
computer-supported activities that a user carries out
over time. They may be interleaved with other tasks.
Although they exhibit certain regularities, tasks are
carried out differently for different people, and even for
the same person, differently in different contexts [10].

 The RADAR project is concerned with assisting
users in their computing tasks by exploiting deep
knowledge about how they carry out tasks. As a result,
RADAR can automate many of the things that users
would otherwise have to handle manually. The context
for this assistance is a computing environment similar
to today’s computing platforms and applications, but
augmented with special system components, called
specialists, whose responsibility is to act on behalf of
users to simplify and streamline user tasks. An example
of specialist is one that helps a user manage his
calendar, scheduling meeting, handling room
reservations, dealing with scheduling conflicts, etc [10].
Different specialists are designed to perform different
tasks. Currently, we have four specialists working (i.e.
email, calendar, allocation, and web specialists).
Nevertheless, RADAR architecture is designed to be
extensible and new specialists can be added at any time.

 A Personal RADAR Space is a collection of task
specialists that acts like a good secretary for a user. A
RADAR space contains a Task Manager that all
specialists in the RADAR space connect to. Task
Manager is a special component working as a mediator
in a RADAR space. It provides central policy
management, serves as an observer of the system, and
dispatches tasks to appropriate specialists.

 Figure 2 illustrates Personal RADAR Space
architecture.

KB

RADAR
Task

Manager

FILE

DB

RADAR
Console

Level 3:
Knowledge

Level 2:
Structure

Level 1:
Raw Data

Specialists
<Space

Planning,
Webmaster,
Calendar,

…>

Applications
<Outlook,
Explorer,
Word, …>

Figure 2: Personal RADAR Space Architecture Overview

4.2 Task’s Life Cycle

 In RADAR, tasks are owned by the user of the
RADAR space, but its lifecycle is controlled by the
Task Manager. Specialists can request a change in the
task state, although the request may be denied if the
Task Manager does not authorize it.

 A task is created when the Task Manager accepts the
task creation request. The request can be done in many
different ways:
• A user manually makes a request through the user

interface of legacy applications or RADAR
applications.

• A specialist requests a task creation as a subtask of
another task.

Depending on the nature of the task, the Task Manager
may decide to assign it to a specialist, extract more
information from it, or forward it to another RADAR
space, etc.

4.3 Access Control in RADAR

 As one of multi-agent systems, a personal RADAR
space requires collaboration between its specialists in
order to complete complicate tasks. Specialists should
be able to forward its task to other specialists when
needed. However, without any restriction, RADAR
specialist would be able to assign malicious tasks to
other specialists. In addition, RADAR user would be
able to access, via inter-personal RADAR space
communication, other users’ information and resources
regardless of how confidential they are. As a result, an
access control mechanism is required for RADAR to
achieve its highest capability and privacy protection.

4.4 Information/Resource Access Scenario

 Figure 3 illustrates a scenario that requires access
control in RADAR: User A requests to schedule a
meeting with User B. A problem arises when User B
does not want User A to access his or her calendar. In
such a case, access control enforcement needs to be
done at some point in B’s RADAR space in order to
preserve B’s privacy.

5. RADAR Authentication

 In this section, we describe the importance and
design of RADAR authentication (login) mechanism.
RADAR authentication is a login-logout process
required for all RADAR users before and after each use
of their Personal RADAR Space. Each RADAR user
has his or her unique username to be used at time of
authentication. Usernames are also used to distinguish
RADAR users from one another.

5.1 Role of Authentication in Access Control

 When a user or specialists belonging to the user try to
access some information or resource, RADAR consults
with access control policies to determine whether the
user is authorized to access the information/resources or
not. Access control enforcement would not work if a
user could trick the system and pretend to be other users
with privileges. As a result, in order to prevent identity
forgery, user authentication must be done before
running access control mechanisms.

1. User A requests to schedule a meeting
with User B

2. A request is forwarded to A’s Task
Manager (TM-A)

3. TM-A creates a new task that contains 2
subtasks: schedule a meeting for User A
and schedule a meeting for User B. Call
the latter one T

4. A’s Task Manager (TM-A) forwards task
T to B’s Task Manager (TM-B)

5. B’s Task Manager searches for a
specialist to work on T

6. TM-B assigns T to its Calendar
Specialist

7. The meeting is added to B’s calendar

Figure 3: Information/Resource Access Scenario. The diagram illustrates the task flow when a user’s request involves
accessing another user’s resource. A problem arises when User B does not want User A to access his or her calendar. In
that case, access control needs to be done at some point in order to protect User B’s privacy.

Radar
Task

Manager
(TM-A)

Radar
Console

A’s Radar Space B’s Radar Space

Radar
Task

Manager
(TM-B)

Calendar
Specialist

User A User B

1

2

3
4

5

6

7

 In addition to user identity assurance, RADAR
authentication module also provides a basis for
applying message encryption-decryption within a
RADAR space. By performing mutual-authentication
between two entities in a RADAR space, both entities
obtain each other’s credentials (e.g., public keys) used
to encrypt and decrypt communications between the
pair of entities based on a supported encryption
mechanism (e.g., public-private keys encryption).

5.2 Choices of Authentication Mechanisms

• Simple Username and Password. By using this

authentication mechanism, RADAR server will
keep a list of its users along with their usernames
and their encrypted passwords. When users login,
the server verifies whether their usernames and
passwords match with those stored. This
mechanism is unfavorable because an attacker can
sniff users’ passwords at the time of authentication.

• Kerberos with GSS-API. This was our choice in

the early implementation. Kerberos is a highly
secure authentication mechanism in which users’
passwords, even the encrypted ones, are not sent
out to the RADAR server. With this authentication
mechanism, RADAR username and password will
be Kerberos username and password which are not
stored in the RADAR server. To perform
authentication using Kerberos, RADAR user and
the RADAR server need to know nothing about
each other, but both must trust a third party. This
third party is called an authentication server (AS).
In addition to Kerberos, GSS-API (Generic
Security Service API) provides an interface for
accessing Kerberos. Although Kerberos is very
secure, Kerberos infrastructure including the AS is
required to use it. As a result, this mechanism is
preferred in the environment with existing
Kerberos infrastructure. On the other hand, setting
up an AS requires a lot of configuration and it is
not recommended for small RADAR systems such
as ones running on a local machine.

• SASL. We use SASL (Simple Authentication and

Security Layer protocol) as our current
authentication mechanism. It defines how
authentication data is exchanged between a
RADAR client’s machine and the RADAR server.
In addition, it is an interface of different
authentication mechanisms such as Kerberos and

simple username/password authentication. There
are a number of standard SASL mechanisms for
various levels of security and deployment
scenarios. These range from no security (e.g.,
anonymous authentication) to high security (e.g.,
Kerberos) and levels in between. RADAR
authentication module currently supports four
SASL mechanisms including anonymous
authentication and Kerberos5. The choice of
mechanism is decided at time of authentication and
it can be changed by the RADAR administrator.
SASL is flexible and can be used in any computing
environments.

6. RADAR Access Control

 By observing the sample information/resource access
scenario in Section 4, we found that a user’s
information/resources access control mechanism must
be placed in his or her personal RADAR space in order
to ensure policy enforcements. If the mechanism is
placed somewhere else, the user and his or her agents
will have no control over it. An attacker can then easily
alter the policies and attain more privileges in the user’s
information and resources.

6.1 Choices of Enforcements

 For designing RADAR access control mechanism,
we propose two levels of access control enforcements:

• Coarse-grained Access Control in RADAR Task

Manager. We propose to implement a mechanism
that accepts a general access control policies which
can be applied to any tasks and any specialists.
Although, unlike specialists, the Task Manager
cannot interpret content of tasks in detail, it knows
basic properties of tasks such as task initiator, task
receiver, and type of task. As a result, it can
perform access control based on the relationship
between the task initiator and the task receiver. The
policies will be in the form: “Specialist A on behalf
of user X can submit a task of type T to specialist B
working for user Y” where A, X, T, B, and Y may be
replace by “any.” Although this kind of policies
cannot be performed alone because it is too coarse-
grained and insufficient, it helps reduce specialists’
burden and improve the system performance in the
cases of obviously unauthorized access.

• Fine-grained Access Control in specialists. We

propose to implement a mechanism that enforces
highly detailed access control policies which may
be applied to some specific types of tasks and to
some specific specialists. This kind of policies can
be enforced in specialists because they are
specialized to perform specific kinds of tasks and
to understand the tasks’ specific details. The
policies will be in the form: “Specialist A on behalf
of user X can <read/write> information D
belonging to specialist B working for user Y based
on constraint C” where A, X, D, B, Y, and C may be
replaced with “any.” Although this kind of policies
is fine-grained and sufficient, enforcing it alone
may lead to large performance drawback, as all
tasks are forwarded to appropriate specialists and
are interpreted in detail before really being
enforced.

6.2 Combination of Two-Level Enforcements

 We decided to implement two levels of access
controls discussed above; a coarse-grained one in Task
Manager and a fine-grained one in specialists. Although
the fine-grained policy enforcement alone is sufficient,
we place the coarse-grained policy enforcement in
order to improve the performance.

 Figure 4 illustrates the same scenario in figure 3 with
two levels of access control policies being enforced.
When a task reaches the Task Manager, it determines
which specialists are responsible for the task. Based on
the knowledge of responsible specialists, the task
initiator, and task type, the Task Manager performs
access control on the policies of the form: “Specialist A
on behalf of user X can submit a task of type T to

specialist B working for user Y” where A, X, T, B, and Y
may be replace by “any.”

 If the task violates the policies on the Task Manager,
a refuse message will be replied to the task initiator.
Otherwise, the task will be forwarded to the appropriate
specialists. The specialist can extract the task content in
detail. It can also perform information access control on
any information needed in order to complete the task.
The access control policies at this level will be in the
form: “Specialist A on behalf of user X can
<read/write> information D belonging to specialist B
working for user Y based on constraint C” where A, X,
D, B, Y, and C may be replaced with “any.”

7. Implementation

 Similar to other components of RADAR, its
authentication module has been implemented in JAVA.
RADAR authentication module consists of two parts:
Login Interface and Administrative Interface. RADAR
access control module will consist of three parts:
coarse-grained access control in Task Manager, a
framework for fine-grained access control in specialists,
and the interface of user-defined policies.

7.1 RADAR Login Interface

 A login user interface (Figure 5b) verifies users’
usernames and passwords and obtain users’ pending
tasks and their personal preferences from the database.
We implement a login user interface to RADAR on top
of SASL mechanism. In order to give a user more
convenience, the login interface is compatible with
existing authentication tools such as KClient and Leash.
For example, after a user log-in using Leash, he or she

1. User A requests to schedule a meeting
with User B

2. A request is forwarded to A’s Task
Manager (TM-A)

3. TM-A creates a new task that contains 2
subtasks: schedule a meeting for User A
and schedule a meeting for User B. Call
the latter one T

4. A’s Task Manager (TM-A) forwards task
T to B’s Task Manager (TM-B)

5. B’s Task Manager (TM-B) searches for
a specialist to work on T

6. TM-B performs coarse-grained access
control on T

7. If allow, T is forwarded to the Calendar
Specialist

8. The Calendar Specialist performs fine-
grained access control based on
detailed content of T

9. May request a confirmation from User B

Radar
Task

Manager
(TM-A)

Radar
Console

A’s Radar Space B’s Radar Space

Radar
Task

Manager
(TM-B)

Calendar
Specialist

User A User B

1

2

3
4

5 6

7

8

9

Figure 4: Two levels of access control enforcement. (6) and (8) are when Task Manager and specialist enforce policies.

can use the obtained Kerberos ticket for logging in to
RADAR without reentering his or her username and
password again.

 When launched, RADAR login interface establishes
an RMI connection with the RADAR Task Manager
and obtains the name of SASL mechanism to be used
for authentication process. Possible SASL mechanisms
are:
- CRAM-MD5: Support a hashed username/password

authentication
- DIGEST-MD5: Support HTTP digest authentication
- GSS-API: Support GSS-API Kerberos5 auth.
- NONE: No authentication is required

 RADAR Login application will display a GUI to
collect username and password from a user. It will then
perform SASL mutual authentication process with the
RADAR Task Manager server to verify that the given
username and password are correct and that the user is
authorized to access his or her personal RADAR space
at the time. If the user is authorized, a RADAR console
will be created for the user. RADAR console and Task
Manager will communicate with each other using
SASL-established secure JMS connection. The user can
use RADAR console to manage his or her personal
RADAR space until logging out.

7.2 RADAR Administrative Interface

 RADAR Administrative Interface (Figure 5a) is an
interface for user account management. RADAR
Administrator can use this tool to register new RADAR
users, revoke users, and update their information. This
tool is also used to specify SASL access control
mechanisms to be applied in user authentication
process.

7.3 An Interface for User-Defined Policies

 As stated in an access control requirement in Section
2 and in a design principle in Section 3.2, we propose
an interface for user to define access control policies
that can be converted to the two-level access control
policies explained in Section 6.2. The interface will be
in the form of “wizard” tool that consists of five steps
or more:

1. Specify the task initiators to apply policy
2. Specify the task type to apply the policy
3. Give the specific information to apply the policy
4. Give constraints based on the task type
5. Specify a receiver specialist to apply policy

Each step in the wizard can be skipped which will mean
“any.” For example, skipping the step 2 means “any
type of task will apply the policy.” When the wizard is
completed, the user-defined policies will be converted
to coarse-grained and fine-grained policies and will be
added to the Task Manager and the applied specialists,
respectively.

8. Discussion

 In section 3.2, we argue that enforcing access control
policies early will improve the overall performance of a
multi-agent system. Although this argument sounds
reasonable, it is not always correct. In the case that
earlier enforcement steps yield significantly more
expensive operations, applying our design principle to
a system will lead to a performance drawback.
However, in most multi-agent system architectures,
interpretation of received information (including tasks
and requests) usually grows larger in its granularity as
the information flows. As a result, our design principle
is valid in most cases, including in RADAR.

 By implementing access control upon receiving tasks
in Task Manager and specialists, we ensure that the
access control enforcement is done as early as possible.
Although we perform redundant policy checking
(because only fine-grained policies are sufficient
already, the coarse-grained policies are then redundant),
we only check the grant of access at most twice: first in
the Task Manager and later in one of the specialists.
Moreover, the access control in Task Manager is
relatively simpler and can be done in more efficient
way than the ones in specialists. As a result, the
performance drawback from redundant policy checking
on the Task Manager is small. Conversely, performance
gain, resulting from replacing expensive policy
checking in specialists with the cheaper one in the Task
Manager, is comparatively large. As a result, in the

Figure 5: Snapshot of RADAR
Authentication Module: (a, top) RADAR

Administrative Interface, (b, bottom)
RADAR Login Interface

system with a considerable rate of unauthorized
requests, its overall performance will be improved if
applying our design principle. On the other hand, if the
system has a negligible rate of policy violation, its
overall performance will be worsened.

 During the refinement of our access control design,
we found our design principles to be contradicted with
each other. Namely, to follow the first principle:
“perform access control early,” we need to place an
enforcement mechanism in the Task Manager;
however, the second principle: “users define policy at
information level” prevents us from placing an
enforcement mechanism in the Task Manager because
the Task Manager does not have enough knowledge of
information that is related to the task it received. At the
end, we introduce a wizard tool to resolve the problem.
By using the tool, user can specify policies at
information level and they will also be automatically
converted to policies that are enforceable by the Task
Manager.

9. Related Work

 Urs Hengartner and Peter Steenkiste also proposed to
define policies controlling access to people location at
information level [3]. In their project, information flows
through multiple nodes from its source to the
destination. Unlike in RADAR, the source and the
destination usually have at most two nodes in between
(in the case that information flows from one specialist
to another specialist via two Task Managers) [2]. The
information in their scope may also changes its
granularity before reaching the destination.

 Another related work introduces a human trust
management model and framework that facilitates the
construction of trust-aware mobile systems and
applications [1]. The model support: reasoning about
trust, dissemination of trust information in the network,
and derivation of new trust relationship from previously
formed ones. Each node in the system has a set of
credentials that are used to prove its trustworthiness to
other nodes. In other words, this work attempts to
create a trust computing environment in mobile system
with cognitive trust relationship. Although this work
does not directly related to our current work, some of
its goals are similar to those of our future work
discussed in the next section. Namely, it attempts to
construct a cognitively secure computing environment.

10. Future Work

 The implementation of RADAR Access Control
Module will be continued in May 2005. Coarse-grained
access control enforcement will be placed in Task
Manager and a framework for specialists’ fine-grained
access control enforcement will be available for
specialist developers. Wizard tool for user to define
access control policies will be implemented based on
the proposal in Section 7.3.

 In addition to application-based RADAR login and
access control modules, we planned to implement web-
based version of the modules as well. They will be done
using JSP under CMU infrastructure. Another possible
future work is to extend our work to deploy cognitive
learning as one of RADAR’s overall goals.

11. Conclusions

 In this paper, we examined engineering challenges
and access control requirements for information and
resources available in a multi-agent system. We then
presented two design principles that we applied in our
access control mechanism design for CMU’s RADAR
project. The mechanism consists of two parts: coarse-
grained and fine-grained access control enforcements.
As a basis for access control policy enforcement, we
implemented an authentication module on top of SASL.
Currently, we are implementing the interface for users
to define access control policies on their personal
information and resources.

Acknowledgements

 We would like to thank Dr. David Garlan, the advisor
for this research, and Dr. Bradley Schmerl, a systems
scientist working on the task manager architecture and
backend implementation, for their ideas, support, and
comments on the project.

 We would also like to thank Mark Stehlik for
organizing the CS Senior Thesis program, as well as for
all of his advices concerning this project.

References

[1] L. Capra. Engineering Human Trust in Mobile

System Collaborations. SIGSOFT FSE, pages 107-
116, Oct 2004.

[2] U. Hengartner and P. Steenkiste. Access Control to
Information in Pervasive Computing
Environments. In Proceedings of 9th Workshop on

Hot Topics in Operation Systems (HotOS IX),
Lihue, HI, pages 157-162, May 2003.

[3] U. Hengartner and P. Steenkiste. Implementing
Access Control to People Location Information. In
Proceedings of 9th Symposium on Access Control
Models and Technologies (SACMAT 2004),
Yorktown Heights, NY, June 2004, pages 11-20,
June 2004.

[4] U. Hengartner and P. Steenkiste. Exploiting
Hierarchical Identity-Based Encryption for Access
Control to Pervasive Computing Information.
Technical Report CMU-CS-04-172, October 2004.

[5] J. Kohl. The Kerberos Network Authentication
Service (V5). RFC 1510. September 1993.

[6] J. H. Lee and A. Prakash. Malleable Shared
Workspaces to Support Multiple Usage Paradigms.
Technical Report CSE-TR-370-98, 1998.

[7] J. Linn. The Kerberos Version 5 GSS-API
Mechanism. RFC 1964. June 1996.

[8] A. C. Long, C. Moskowitz, and G. Ganger. A
Prototype User Interface for Coarse-Grained
Desktop Access Control. Technical Report CMU-
CS-03-200, November 2003.

[9] J. Myers. Simple Authentication and Security
Layer (SASL). RFC 2222, October 1997.

[10] Radar Architecture Group. The Radar System
Architecture, November 2004.

[11] Y. Wang and D. Garlan. TaskPort: A Task
Management Interface in an Intelligent Cognitive
Assistant System, May 2004.

