
An Efficient Implementation of the AKS

Polynomial-Time Primality Proving Algorithm

Chris Rotella

May 6, 2005

Contents

1 History of Primality Testing 3
1.1 Description of the problem . 3
1.2 Previous prime testing algorithms 3

2 The AKS Algorithm 5
2.1 The motivating idea . 5
2.2 Presentation of the algorithm . 6

3 Running Time Analysis 9
3.1 Background . 9
3.2 The main theorem . 9

4 The Implementation 12
4.1 Description of implementation details 12
4.2 Bignum library . 12

4.2.1 Why GMP? . 12
4.2.2 Description of GMP features used 12

4.3 Polynomial library . 13
4.3.1 Header file . 14
4.3.2 Constructors . 14
4.3.3 getCoef . 15
4.3.4 isEqual . 16
4.3.5 setCoef . 16
4.3.6 compact . 16
4.3.7 clear . 17
4.3.8 Destructor . 17
4.3.9 mpz pX mod mult . 18
4.3.10 mpz pX mod power . 19

4.4 Sieve . 20
4.4.1 Header file . 20
4.4.2 Constructor . 21
4.4.3 isPrime . 21
4.4.4 Destructor . 22
4.4.5 Implementation notes . 22

1

4.5 The completed implementation 22
4.6 Overall implementation notes . 24

5 Empirical Results 25
5.1 Description of testing environment 25
5.2 Density of the polynomials . 25
5.3 Timing results . 25

5.3.1 Breakdown . 27
5.3.2 Lower bound on maximal a? 27
5.3.3 Comparisons . 28

5.4 Profiler results . 28
5.4.1 GMP polynomials . 28
5.4.2 unsigned int polynomials 28

6 Conclusions 32
6.1 Improvements to AKS and future work 32
6.2 Conclusions . 32

A Acknowledgments 34

2

Chapter 1

History of Primality Testing

1.1 Description of the problem

A prime number is a natural number n that is divisible only by 1 and itself.
Prime numbers are the building blocks of the natural numbers since any natural
can be uniquely expressed as a product of prime numbers. Numbers that are
not prime are called composite.

It is natural to ask, given a positive integer n, is n prime or composite? This
question may be formalized in the definition of PRIMES: the decision problem
of determining whether or not a given integer n is prime. Thus, an algorithm
that tests integers for primality solves PRIMES.

1.2 Previous prime testing algorithms

Since primes are central to number theory, they have been the subject of much
attention throughout history.

The Sieve of Eratosthenes was one of the first explicit algorithms. It produces
a table of numbers that indicates whether each number in the table is prime or
composite.

Pratt [9] proved that PRIMES is in NP, meaning that given n and some
certificate c, n’s primality can be verified in polynomial time using c.

Miller [7] showed that PRIMES in P if the Extended Riemann Hypothesis
(ERH) is true. In short, PRIMES’s membership in P requires that finding a
certificate for a number’s primality can be done in polynomial time. However,
Miller’s argument assumed the Extended Riemann Hypothesis, which is one of
the major outstanding problems in mathematics. The Hypothesis is concerned
the the zeroes of the Riemann zeta function, and has deep theoretical connec-
tions to the density of the primes.

Rabin [10] randomized Miller’s approach, thereby eliminating the depen-
dency on ERH, to create an efficient primality test now called Rabin-Miller [2].
While it has a chance of returning positively for a composite, the probability of

3

error can be made arbitrarily small. Rabin-Miller is very efficient and is used
in many applications, including GMP [3].

In 2003, Agarwal, Kayal, and Saxena [1] made their “PRIMES is in P” paper
available. They provided a deterministic, polynomial-time primality proving
algorithm. They received world-wide press coverage for their finding.

4

Chapter 2

The AKS Algorithm

2.1 The motivating idea

The AKS Algorithm was motivated by the following lemma [2]:

Lemma 1. Let n ≥ 2, and let a < n be an integer that is relatively prime to n.
Then

n is a prime number ⇔ (X + a)n = Xn + a (mod n).

Proof. All calculations are done in Zn[X]. (⇒) We have

(X + a)n = Xn +
∑

0<i<n

(
n

i

)
aiXn−i + an (2.1)

by the Binomial Theorem. For 0 < i < n,
(
n
i

)
≡ 0 (mod n). All of the binomial

coefficients are thus 0 in Eq. 2.1. Hence,

(X + a)n = Xn + an. (2.2)

By Fermat’s Little Theorem, an = a in Zn. Thus, (X + a)n = Xn + a.
(⇐) Assume that n is composite. Choose p < n and s ≥ 1 such that p is

a prime factor of n and pn divides n, but ps+1 doesn’t. By Eq. 2.1, the term
Xn−p has the coefficient(

n

p

)
· ap =

n(n− 1)(n− 2) · · · (n− p + 1)
p!

· ap. (2.3)

n is divisible by ps, and the other factors are all relatively prime to p. Therefore,
the numerator is divisible by ps but not ps+1. The denominator is trivially
divisible by p. Also, because a and n are relatively prime, ap is not divisible
by p. Thus, we have that

(
n
p

)
· ap is not divisible by ps, and by extension, not

divisible by n. Therefore,
(
n
p

)
· ap 6≡ 0 (mod n). Therefore, it is not possible for

(X + a)n to be equal to Xn + a.

5

This congruence leads to the following algorithm:
Algorithm 2.1 Naive AKS
1 if (in Zn[X]) (X + 1)n = Xn + 1 then
2 return ”prime”
3 return ”composite”

Clearly, Algorithm 2.1 is simple, but is intractable for even modest n, because
the number of arithmetic operations is, at best, O(n).1

Perhaps the congruence can be salvaged if the number of terms in the poly-
nomial can be reduced. If we compute in Zn[X], modulo Xr − 1, where r is
a “useful” prime. The number of terms in the resulting polynomial will be
O(n mod r). Computing modulo Xr − 1 is very simple: All exponents greater
than r are replaced by n mod r.

The following definition is simply one of convenience. Call r is a “useful”
prime if it has the following properties:

1. GCD(n, r) = 1

2. r − 1 has a prime factor q such that

• q ≤ 4
√

r log n

• n(r−1)/q 6= 1 mod r

Since the restrictions of equality was relaxed, testing with one value of a
is no longer sufficient. However, there is still a polynomial bound number of
values of a that must be checked.

2.2 Presentation of the algorithm

Algorithm 2.2 The AKS Algorithm
1 if (n = ab for some a, b ≥ 2) then return ”composite”
2 r = 2
3 while (r < n) do
4 if (r divides n) then return ”composite”
5 if (r is a prime number) then
6 if (ni mod r 6= 1 for all i, 1 ≤ i ≤ 4dlog ne2) then
7 break
8 r = r + 1
9 if (r = n) then return ”prime”
10 for a from 1 to 2d

√
re · dlog ne do

11 if (in Zn[X]) (X + a)n mod (Xr − 1) 6= Xn mod r + a then
12 return ”composite”
13 return ”prime”

The algorithm is broken into two main sections, the witness search in lines
2-9, and the polynomial check in lines 10-12.

Not all primes need to go the polynomial section to be declared prime. Based
on empirical evididence, at line 9, r = n for all prime n, n < 347.

1See Section 3.1

6

The time spent checking the polynomials is controlled by r, since the size of
the polynomials and the number of multiplications needed to compute them, is
bounded by it. Figure 2.1 shows the values of r for 347 ≤ n ≤ 10000.

A polynomial upper bound on r is needed to ensure that AKS runs in poly-
nomial time. Since ρ(n) > ordρ(n)(n) > (logn)2. Thus, it is not possible for
AKS to use less than O (̃(log n)4) bit operations [4]. The empirical evidence in
Figure 2.1 suggests that the lower bound is higher. While a proof of this con-
jecture is beyond the scope of this work, it does point to a problem of AKS. As
will be discussed below, the time spent multiplying the polynomial dominates
the witness search. Thus, the overall running time is controlled by r.

7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

rh
o(

n)

n

Figure 2.1: The values of ρ(n) and its lower bound (log n)2, for 347 ≤ n ≤ 10000.

 900

 910

 920

 930

 940

 950

 960

 970

 980

 990

 1000

 18000 20000 22000 24000 26000 28000 30000 32000

rh
o(

n)

n

Figure 2.2: The values of ρ(n) for 16384 ≤ n ≤ 32768.

8

Chapter 3

Running Time Analysis

3.1 Background

We begin with the definition of ”Big-Oh” notation:

Definition 1. f(n) ∈ O(g(n)) if there exists n0 and some constant c such that
for all n ≥ n0, f(n) ≤ c · g(n).

If f(n) ∈ O(g(n)) we say that “g is Big-Oh of f .” Informally, we can view
g as an upper bound for f , for sufficiently large n. Note that constants are
ignored in Big-Oh notation; n and n + 10000 are both O(n).

In the analysis of algorithms, polynomial time means that as the input grows,
the algorithm takes a a number of computational steps that is polynomial in the
size of the input. Since the input to AKS is a binary number n, the size of it’s
input is logarithmic in n, its length in bits. More formally, we must show that
the AKS algorithm takes O((log n)c) computational steps for some constant c.
These proofs are based on those in [2].

3.2 The main theorem

Theorem 1. Algorithm 2.2 runs in polynomial time.

Proof. All numbers used in the execution are bounded by n2, and thus have bit
length bounded by 2 log n. Naively, all arithmetic operations can be completed
in O((log n)2) bit operations. We will concern ourselves with the number of
arithmetic operations needed.

The perfect power test on line 1 requires O((log n)2 log log n) arithmetic
operations, using the standard algorithm.

Lines 3-8 form the search for the smallest witness r. Let ρ(n) be the maximal
r for which the loop is executed for a given input n. Assume ρ(n) = O((log n)c),
for some constant c. One division is required to test whether r divides n. This
takes O(ρ(n)) operations overall. In line 5, we must test r for primality. To this

9

end, we build a table of prime numbers up to 2dlog re using a modified version
of the Sieve of Eratosthenes. When r reaches 2i + 1, for some i, the table is
doubled in size. This requires O(i · 2i) steps. Since∑

1≤i≤dlog(ρ(n))e

i · 2i ≤ log(ρ(n)) · 2log(ρ(n))+2 + 2 = O(log(ρ(n)) · ρ(n)),

the total number of arithmetic operations for maintaining and updating the
table is O(log(ρ(n)) · ρ(n)). The inner loop of the witness test is line 6. Here,
ni mod r is calculated for i = 1, 2, . . . , 4dlog ne2. The number dlog ne can be
calculated in O(log n) steps. The number of multiplications this time modulo r
is O((log n)2) for one r. Thus, O((log n)2 · ρ(n)) for all r.

If a suitable r is found, the break statement on line 7 is used, and lines
10-12 are now executed. These lines represent the polynomial check portion of
the algorithm. Trivially, d

√
re may be computed in time O(r). Now, for all

a, 1 ≤ a ≤ 2d
√

re · dlog ne, we compute the coefficients of (X + a)n mod (Xr −
1) and compare them to those of Xn mod r + a. Calculating (X + a)n mod
(Xr − 1) in Zn[X]/(Xr − 1) takes O(log n) ring multiplications. As discussed
above, multiplication is this ring is simple, and amounts to a multiplication of
polynomials of degree at most r−1 in the ring Zn[X] and a polynomial addition,
with the coefficients modulo n. Naively, this takes O(r2) multiplications and
additions of elements in Zn. Thus, for all a, the number of arithmetic operations
is bounded by

O(
√

ρ(n)(log n) · ρ(n)2 log n) = O(ρ(n)5/2(log n)2) (3.1)

All that remains is a proof of the following lemma.

It is clear then that lines 10-12 dominate the running time of the algorithm,
regardless of the actual value of ρ(n).

We will use the following two propositions without proof [2].

Proposition 1.
∏

p≤2n p > 2n, for all n ≥ 2, where the product extends over
all primes p ≤ 2n.

Proposition 2. If p1, . . . , pr are distinct prime numbers that all divide n, then
p1 · · · pr divides n.

Lemma 2. For all n ≥ 2, there exists a prime number r ≤ 20dlog ne5 such that
r divides n or r does not divide n and ordr(n) > 4dlog ne2.

Proof. This assertion is trivially true for small n, so assume n ≥ 4. Let

Π =
∏

1≤i≤4L2

(ni − 1),

where L = dlog ne.
Then,

Π < n1+2+···+4L2
= n8L4+2L2

< 2(log n)·10L4
≤ 210L5

.

10

By Proposition 1, we have ∏
r≤20L5,r prime

r > 210L5
> Π.

By Proposition 2, this means that there is some prime number r ≤ 20L5

that does not divide Π, and thus does not divide any one of the factors ni − 1,
1 ≤ i ≤ 4L2. Now if r divides n, we are done, since n is not prime. Otherwise,
ordr(n) is larger than 4dlog ne2, since ni 6≡ 1 (mod r) for 1 ≤ i ≤ 4L2.

Therefore, ρ(n) = O((log n)5), and Algorithm 2.2 takes O((log n)14.5) arith-
metic operations. Using more sophisticated algorithms and analysis, the bound
can be reduced to O (̃(log n)6.5). Further, if the Sophie Germain Prime conjec-
ture is assumed, the bound can be reduced to O (̃(log n)5).

Bernstein postulates that it may be possible to improve AKS by a factor of
two million [4].

11

Chapter 4

The Implementation

4.1 Description of implementation details

Two implementations were completed, both are functionally equivalent (up to
machine limitations). One uses GMP bignums for its integers, the other uses
unsigned ints. Only the code for the GMP version is presented. See the next
section for a description of GMP.

All code was written in C++, however most of GMP is written in C. See [8],
[11], and [5].

4.2 Bignum library

A thorough implementation of AKS needs to be able to handle very large in-
tegers, including those larger than current 32-bit machines can represent with
basic datatypes such as unsigned int. Our implementation uses the GNU
Multiple Precision Arithmetic Library, or GMP.

4.2.1 Why GMP?

GMP was chosen for this project because it is feature-rich, efficient, and free.
It is currently used in commercial applications such as Mathematica.

A custom bignum library was not feasible due to time constraints. Also, we
couldn’t hope to match the performance of GMP, as many of its functions are
hand-crafted in assembly.

4.2.2 Description of GMP features used

Since C++ is used for the implementation, the GMP C++ wrapper class,
mpz class, was used as the actual bignums. Overloaded operators are used
extensively. However, not all GMP functions are written in C++, so the un-

12

derlying mpz t struct must be extracted from the mpz class object with the
function get mpz t.

GMP functions used:

• int mpz perfect power p(mpz t op)

Returns non-zero if op is a perfect power.

• size t mpz sizeinbase(mpz t op, int base)

Returns the number of digits of op in base base. This function is used to
calculate logarithms, since GMP has no such functions.

• int mpz divisible p(mpz t n, mpz t d)

Returns non-zero if n is divisible by d.

• void mpz powm(mpz t rop, mpz t base, mpz t exp, mpz t mod)

Sets rop to baseexp mod mod.

• void mpz sqrt(mpz t rop, mpz t op)

Sets rop to b√opc.

• unsigned long mpz get ui(mpz t op)

Returns the value of op as an unsigned long.

• int mpz tstbit(mpz t op, unsigned long int bit index)

Returns the value of bit bit index of op.

• void mpz setbit(mpz t rop, unsigned long int bit index)

Sets the value of bit bit index in rop to 1.

For more information see [3].

4.3 Polynomial library

The custom polynomial library designed for this implementation is described
below.

The term “Library” is a misnomer. The functionality needed is highly spe-
cific to AKS. Aside from data structure manipulation, the only two functions
need are powering and modular multiplication. Since we are computing in the
ring Zn[X]/(Xr − 1), the multiplication method is not general. This function
is described in detail in Section 4.3.9.

13

4.3.1 Header file

1 class mpz_pX {
2 private:
3 mpz_class **coef; /* Array of coefficients */
4 unsigned int degree;
5

6 public:
7 mpz_pX(); /* constructors */
8 mpz_pX(unsigned int initial_length);
9 mpz_pX(const mpz_pX&);

10

11 friend ostream& operator<<(ostream&, const mpz_pX&);
12 mpz_pX& operator=(const mpz_pX&);
13

14 void setCoef(mpz_class new_coef, unsigned int i);
15 inline mpz_class getCoef(unsigned int i) const;
16

17 inline unsigned int getDegree() const {return degree;};
18

19 int isEqual(mpz_pX p);
20

21 void clear();
22 void compact();
23

24 ~mpz_pX(); /* destructor */
25 };
26

27 void mpz_pX_mod_mult(mpz_pX& rop, const mpz_pX x,
28 const mpz_pX y, mpz_class mod,
29 unsigned int polymod);
30

31 void mpz_pX_mod_power(mpz_pX &rop, const mpz_pX& x,
32 mpz_class power, mpz_class mult_mod,
33 unsigned int polymod);

Polynomials are represented as an array of mpz class pointers.

4.3.2 Constructors

1 mpz_pX::mpz_pX() {
2 degree = 0;
3 coef = (mpz_class**)calloc(1,sizeof(mpz_class*));
4 coef[0] = new mpz_class(0);
5 }

The default constructor initializes an array of length 1 and inserts a single

14

zero element.

1 mpz_pX::mpz_pX(unsigned int initial_length) {
2 degree = initial_length;
3 coef = (mpz_class **)calloc(1,sizeof(mpz_class*)*
4 (initial_length+1));
5

6 unsigned int i;
7 for(i=0; i<=degree; i++) {
8 coef[i] = new mpz_class(0);
9 }

10 }

This constructor is utilized when we wish to allocated a known amount of
space for a future polynomial.

1 mpz_pX::mpz_pX(const mpz_pX& o) {
2 degree = o.getDegree();
3

4 coef = (mpz_class**)calloc(1,sizeof(mpz_class*)*(degree+1));
5

6 unsigned int i;
7 for(i=0; i<=degree; i++) {
8 coef[i] = new mpz_class(o.getCoef(i));
9 }

10 }

The copy constructor constructs a new polynomial by deep copying o.

4.3.3 getCoef

1 inline mpz_class mpz_pX::getCoef(unsigned int i) const {
2 static mpz_class zero(0);
3 if(i > degree)
4 return zero;
5 return *(coef[i]);
6 }

getCoef returns the ith coefficient of the polynomial. If i is greater than the
degree, an mpz class object representing 0 is returned. This object is declared
static so that every invocation of getCoef does not result in a malloc. We don’t
need to worry about memory aliasing, since the coefficients returned are always
copied before being placed in another polynomial. Because this function is part
of the main computational loop, it is inlined for speed.

15

4.3.4 isEqual

1 int mpz_pX::isEqual(mpz_pX o) {
2 if(o.getDegree() != degree)
3 return 0;
4 unsigned int i;
5 for(i=0; i<=degree; i++)
6 if(o.getCoef(i) != *coef[i])
7 return 0;
8

9 return 1;
10 }

Returns 1 if and only if o has the same coefficients as the polynomial this
function was called on. It Assumes that compact has been called on both
polynomials, ensuring that the test on Line 2 does not return false negatives.

4.3.5 setCoef

1 void mpz_pX::setCoef(mpz_class new_coef, unsigned int i) {
2 if(i < 0)
3 fprintf(stderr, "coef is less than 0\n");
4

5 if(i > degree) {
6

7 unsigned int j;
8 coef = (mpz_class **)realloc(coef, sizeof(mpz_class*)*(i+1));
9 for(j=degree+1; j<i; j++)

10 coef[j] = new mpz_class(0);
11 coef[i] = new mpz_class(new_coef);
12 degree = i;
13 }
14 else {
15 delete coef[i];
16 coef[i] = new mpz_class(new_coef);
17 }
18 }

setCoef sets the ith coefficient to new coef. If i is greater than the current
degree, the degree is set to i and a new array is allocated. Zeroes are inserted
where necessary, and a copy of new coef is put in the proper place.

If i is less than or equal to the current degree, the old coefficient is removed
and deallocated, and new coef is copied and placed into the array.

4.3.6 compact

1 void mpz_pX::compact() {

16

2 unsigned int i;
3 static mpz_class zero = 0;
4 for(i=degree; i>0; i--) {
5 if (*(coef[i]) != zero)
6 break;
7 delete coef[i];
8 }
9 if(degree != i) {

10 coef = (mpz_class **)realloc(coef,
11 sizeof(mpz_class*)*(degree+1),
12 sizeof(mpz_class*)*(i+1));
13 degree = i;
14 }
15 }

In the course of manipulating the polynomials, the non-zero element of high-
est degree may be less than degree. This function searches the array for the
first non-zero element, starting from degree. If the degree of that element is
less than degree, the array is reduced in size and the degree is set to the actual
degree.

4.3.7 clear

1 void mpz_pX::clear() {
2 unsigned int i;
3 for(i=0; i<=degree; i++) {
4 delete coef[i];
5 }
6

7 coef = (mpz_class **)realloc(coef, sizeof(mpz_class*));
8 degree = 0;
9 coef[0] = new mpz_class(0);

10 }

All coefficients are deallocated, and the array is resized to hold one object,
which is initialized to zero. The polynomial is in the same state as it was after
it was constructed.

4.3.8 Destructor

1 mpz_pX::~mpz_pX() {
2 unsigned int i;
3 for(i=0; i<=degree; i++) {
4 delete coef[i];
5 }
6 free(coef);
7 }

17

All coefficients are deallocated, as is the array.

4.3.9 mpz pX mod mult

1 void mpz_pX_mod_mult(mpz_pX& rop, const mpz_pX _x,
2 const mpz_pX _y, mpz_class mod,
3 unsigned int polymod) {
4 mpz_pX x = _x;
5 mpz_pX y = _y;
6

7 rop.clear();
8

9 unsigned int xdeg = x.getDegree();
10 unsigned int ydeg = y.getDegree();
11 unsigned int maxdeg = xdeg < ydeg ? ydeg : xdeg;
12

13 unsigned int k;
14 for(k=0; k<polymod; k++) {
15 mpz_class sum = 0;
16 unsigned int i;
17 for(i=0; i<=k; i++) {
18 sum += x.getCoef(i)*(y.getCoef(k-i)+
19 y.getCoef(k+polymod-i));
20 }
21 for(i=k+1; i<=k+polymod; i++) {
22 sum += x.getCoef(i)*y.getCoef(k+polymod-i);
23 }
24

25 rop.setCoef(sum % mod, k);
26

27 if(k>maxdeg && sum==0)
28 break;
29 }
30

31 rop.compact();
32 }

To eliminate the possibility of memory aliasing, the arguments x and y are
deep copied to local variables x and y respectively using the copy constructor.

The loops in Lines 17-22 are the inner loops of the implementation. Due
to the heavy dependence on getCoef, it was declared inline to reduce the
overhead of repeated function calls.

As mentioned above, this is not a general modular multiplication function.
Special properties of the polynomials and modulus are exploited for efficiency
of implementation. For instance, we know that both x and y will have degree
at most r−1, and that the intermediate result will be of degree less than 2r−1

18

z1 z2 · · · zr−1

+ + · · · +
zr zr+1 · · · z2r−2

= = · · · =
rop1 rop2 · · · ropr−1

Figure 4.1: A graphical view of the operation performed by mpz pX mod mult.
z is the intermediate product of x and y.

as well. Since we are computing in Zn[X]/(Xr − 1), all coefficients of the form
aix

r+j are added to the coefficient akxj . Conceptually, the polynomial is split
in half then added together. See Figure 4.1 for a graphical view.

To reduce the number of intermediate bignum objects, only a single integer
mod is performed, on Line 25. In the unsigned int version of the code, mod
operations are carried out at each sum to ensure that there is no overflow.

Because the number of calls to getCoef accounts for a large percentage of the
real-world time (see Section 5.4), the loops on Lines 17-23 are modified. We pull
the term y.getCoef(k+polymod-i) out of the second loop, saving O(polymod2)
calls to x.getCoef(i) on Line 21 of the unmodified version, shown below.

17 for(i=0; i<=k; i++) {
18 sum += x.getCoef(i)*y.getCoef(k-i);
19 }
20 for(i=0; i<=(k+polymod); i++) {
21 sum += x.getCoef(i)*y.getCoef(k+polymod-i);
22 }

This change shows greater effect on the unsigned int version of the code,
since the change in the GMP version introduces more overhead in the form of
mallocing intermediate products.

The goal of the test on Line 27 is to save time by exiting the loop early.
In the early stages of the exponentiation, the intermediate products will have
many fewer terms than polymod. Thus, the main loops will be computing zero
terms for k greater than maxdeg (the larger of deg(x) and deg(y)).

4.3.10 mpz pX mod power

1 void mpz_pX_mod_power(mpz_pX &rop, const mpz_pX& x,
2 mpz_class power, mpz_class mult_mod,
3 unsigned int poly_mod) {
4

5 rop.clear();
6 rop.setCoef(1,0);
7

8 unsigned int i = mpz_sizeinbase(power.get_mpz_t(),2);

19

9 for(; i >=0; i--) {
10 mpz_pX_mod_mult(rop, rop, rop, mult_mod, poly_mod);
11

12 if(mpz_tstbit(power.get_mpz_t(),i)) {
13 mpz_pX_mod_mult(rop, rop, x, mult_mod, poly_mod);
14 }
15 if(i==0)
16 break;
17 }
18 rop.compact();
19 }

The argument x is raised to the powerth power using fast exponentiation.
All computations are carried out in Zn[X]/(Xr − 1) by using mpz pX mod mult
as the multiplication function.

The GMP function mpz sizeinbase is used to calculate the logarithm of
power.

4.4 Sieve

Line 5 of Algorithm 2.2 requires that the current witness candidate r be tested
for primality itself. A slightly modified version of the Sieve of Eratosthenes was
implemented for this test.

In the course of testing n, a table is built up as each r is tested for primality.
The table is initialized to a size of 2. If an r is tested that is greater than the
size of the table, the table is doubled and marked according to the Sieve of
Eratosthenes.

4.4.1 Header file

1 class sieve {
2 private:
3 mpz_t table;
4 unsigned int size;
5

6 public:
7 sieve(); /* constructor */
8 int isPrime(mpz_class r);
9 ~sieve(); /* destructor */

10 };

The only data structure needed is an arbitrarily long bit field. If bit i is set
to 1, i is composite, otherwise it is prime. Since GMP bignums are essentially
bit fields, and they are of arbitrary length, the table is stored as a single mpz t
struct. A variable size, declared as an unsigned int, is used to denote the
highest number in the current table.

20

4.4.2 Constructor

1 sieve::sieve() {
2 mpz_init(table);
3 size = 2;
4 }

The constructor initializes table and sets the size to 2. This indicates that
1 and 2 are prime, since neither are marked. While 1 is not prime in reality, it
is marked as such for computation convenience. Doing so has no impact on the
output of the sieve, only on the simplicity of the following code.

4.4.3 isPrime

1 int sieve::isPrime(mpz_class r) {
2 unsigned int rul = mpz_get_ui(r.get_mpz_t());
3

4 if(size >= rul) { /* just a lookup */
5 return !mpz_tstbit(table,rul);
6 }
7 else {
8 unsigned int oldsize = size;
9 size *= 2;

10

11 unsigned int i;
12 for(i=2; i<=size; i++) {
13 if(!mpz_tstbit(table,i)) {
14 unsigned int j;
15 for(j=i*2; j<=size; j+=i) {
16 mpz_setbit(table,j);
17 }
18 }
19 }
20 return !mpz_tstbit(table,rul);
21 }
22 }

The argument r has type mpz class. This is for convenience since the main
algorithm uses mpz class objects for its integers. The table is indexed using
unsigned ints, so Line 2 converts r appropriately.

Lines 4-6 deal with the case that rul is less than the size of the table. Since
the table is stored with the composite numbers marked, the logical not of bit
rul is returned.

The remaining lines build up the table as needed. For every unmarked bit
i, we mark the jth number as composite, starting from 2i, where j is some
multiple of i.

21

4.4.4 Destructor

1 sieve::~sieve() {
2 mpz_clear(table);
3 }

The destructor simply frees the memory occupied by the table.

4.4.5 Implementation notes

Since the table is indexed by unsigned ints, the maximum number of elements
that can be stored is 232, or over 4 billion. However, the r is logarithmic in n,
meaning this implementation will work for any practical value of n.

4.5 The completed implementation

The function aks is a complete primality test. It is presented below.

1 int aks(mpz_class n) {
2 if(mpz_perfect_power_p(n.get_mpz_t())) {
3 return 0;
4 }
5

6 sieve s;
7

8 mpz_class r = 2;
9 mpz_class logn = mpz_sizeinbase(n.get_mpz_t(),2);

10 mpz_class limit = logn * logn;
11 limit *= 4;
12

13 /* Witness search */
14 while(r<n) {
15 if(mpz_divisible_p(n.get_mpz_t(), r.get_mpz_t())) {
16 return 0;
17 }
18

19 int failed = 0;
20

21 if(s.isPrime(r)) {
22 mpz_class i = 1;
23

24 for(; i<=limit; i++) {
25 mpz_class res = 0;
26 mpz_powm(res.get_mpz_t(), n.get_mpz_t(),
27 i.get_mpz_t(), r.get_mpz_t());
28 if(res == 1) {

22

29 failed = 1;
30 break;
31 }
32

33 }
34 if(!failed)
35 break;
36 }
37 r++;
38 }
39 if (r == n) {
40 return 1;
41 }
42

43 /* Polynomial check */
44 unsigned int a;
45 mpz_class sqrtr;
46 //actually the floor, add one later to get the ceil
47 mpz_sqrt(sqrtr.get_mpz_t(), r.get_mpz_t());
48 mpz_class polylimit = 2 * (sqrtr+1) * logn;
49

50 unsigned int intr = mpz_get_ui(r.get_mpz_t());
51

52 for(a=1; a<=polylimit; a++) {
53 mpz_class final_size = n % r;
54 mpz_pX compare(mpz_get_ui(final_size.get_mpz_t()));
55 compare.setCoef(1, mpz_get_ui(final_size.get_mpz_t()));
56 compare.setCoef(a, 0);
57 mpz_pX res(intr);
58 mpz_pX base(1);
59 base.setCoef(a,0);
60 base.setCoef(1,1);
61

62 mpz_pX_mod_power(res, base, n, n, intr);
63

64 if(!res.isEqual(compare)) {
65 return 0;
66 }
67 }
68 return 1;
69 }

Line 2 performs the perfect power test, returning 0 if n is a perfect power
and, thus, not prime.

The upper bound for i on Line 6 of Algorithm 2.2 is computed on Lines
9-11. Lines 24-33 actually implement that statement in the pseudo-code. If

23

the current value of r fails the test, we break and move on to the next r. If
exponentiation yielded no values equal to 1, we break out of the witness search
since we have found our AKS witness.

Once a suitable witness has be found, we begin the polynomial check portion
of the algorithm. Again, we must compute the limit for the main loop. This is
done on Lines 44-48.

Lines 53-50 construct the various objects needed to compute (X + a)n and
compare it to Xn mod r + a. Line 62 computes (X + a)n. If the result does not
equal Xn mod r + a, n is not prime and 0 is returned. If all values of a pass the
test, n is prime and 1 is returned.

4.6 Overall implementation notes

Both implementations are complete, and no false positives or negatives were
found in testing.

The unsigned int version will fail if the intermediate products of the poly-
nomial multiplication become greater than 232. The modulus is taken for every
intermediate product, to delay this effect. Even so, overflow may occur for
2n2 > 232, or n > 215.5 with the version above. If the inner loops are rear-
ranged to the naive version presented in Section 4.3.9, the effect may begin at
n2 > 232, or n > 216.

The two implementations have the limitation that r must be a machine-sized
number. This is due to both the polynomials and the sieve using unsigned ints
as indicies. Neither of these problems are easily fixed. While a linked-list imple-
mentation of the polynomials would remove the explicit limitation, one would
still have to store r coefficients somehow, since the degree of the polynomial
reaches r for even modest n (see Section 5.2). Having that many allocated ob-
jects is sure to exploit some bug in the operating system, and available memory
will be an issue. A linked-list implementation will be slower than the current
version also. Similary, the sieve would have to be re-architected to remove the
limitation. Again, any change to this effect will have a large impact on the
running time. Luckily, since r is logarithmic in n, this cataclysmic n must be
very large for its witness to exceed 232.

24

Chapter 5

Empirical Results

5.1 Description of testing environment

All code was written in C++ and compiled with g++ 3.3 (Apple Computer, Inc.
build 1666), the GNU Complier Collection’s C++ compiler.

The test system is a Power Macintosh G5 with dual 2.0 GHz processors and
1.5 GB of RAM.

The flags used to configure GMP were --prefix=/usr/local --enable-cxx
--enable-mpfr --disable-shared. The compiler flag used to build GMP was
-O3.

Code written for this project was compiled with the flag -O6. The al-
gorithms used for comparison were also compiled in this manner, except for
mpz probab prime p, as it is a part of GMP.

5.2 Density of the polynomials

When representing polynomials, the choice of the data structure used should be
driven by the number of non-zero elements and the desire to balance memory
usage and execution speed.

Because speed is of chief concern for this implementation, arrays are used to
store the coefficients, as explained above. Figure 5.1 shows the average density
of the polynomials during the exponentiation. Figure 5.2 shows the average
maximum density of the polynomials during exponentiation.

5.3 Timing results

To be of practical use to those interested prime-proving algorithms, AKS must
perform competitively to current state-of-the-art methods.

25

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
en

si
ty

n

Figure 5.1: The average density of the polynomials in testing n from primality.
Density is calculated as average number of non-zero coefficients divided by r.

 0.9985

 0.999

 0.9995

 1

 1.0005

 1.001

 1.0015

 0 2000 4000 6000 8000 10000

M
ax

im
um

 D
en

si
ty

n

Figure 5.2: The average maxium density of the polynomials in testing n from
primality. Density is calculated as average number of non-zero coefficients di-
vided by r.

26

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 500 1000 1500 2000 2500 3000 3500 4000

F
ra

ct
io

n
of

 T
ot

al
 T

im
e

S
pe

nt
 in

 W
itn

es
s

S
ea

rc
h

n

Figure 5.3: The amount of time spent in the witness search divided by the total
time for prime n, 347 ≤ n ≤ 4096.

5.3.1 Breakdown

As discussed in Section 3.2, asymptotically, the number of steps needed for the
witness search is dominated by the number needed for the polynomial exponen-
tiation.

This is evident in the empirical evidence. Figure 5.3 shows the fraction of
the time that is spent during the witness test portion of the algorithm for the
unsigned int version of the code. For nearly all prime n ≥ 347, the amount
of time spent searching for r is less than one-half of one percent. For all prime
n < 347, the witness search is superset of trial division, stopping at n instead
of
√

n.

5.3.2 Lower bound on maximal a?

Given the AKS algorithm, it is natural to ask, what is the smallest a for which
a composite n fails the polynomial check? Currently, the answer is unknown:
we have yet to detect a composite n that passes the witness test. That number
may be as large as 400 million, to ensure to that n < 20dlog ne5.

This interesting result combined with the Figure 5.3 suggests that AKS may
be viewed as a relatively fast compositeness test for small n.

27

5.3.3 Comparisons

We compared the AKS implementation against the naive algorithm, the sieve
described in Section 4.4, and the GMP function mpz probab prime p, which
preforms trial divisions and then the Rabin-Miller test. The naive algorithm of
trial divisions up to

√
n is also included.

Litt [6] was able to calculate the first 1,716,050,469 primes in just under one
hour and thirty minutes, finding over 300,000 primes per second. He imple-
mented his prime finder with a sieve, using sophisticated paging techniques in
conjunction with memory-saving bit arrays.

For consistency, only times for primes are plotted. See Figures 5.4-5.7.

GMP polynomials

The version of the code that used GMP polynomials was significantly slower
than the unsigned int version. See Figure 5.8.

5.4 Profiler results

To help improve and measure our implementation’s efficiency, the code was
profiled with Apple Computer’s Shark tool.

5.4.1 GMP polynomials

As discussed in Section 5.3.3, the GMP version of the polynomials is very slow.
The profiler shows that over thirty percent of the time is spent initializing
mpz class objects, and that over twenty percent of the time used is in malloc
and seventeen percent is in free. It was this observation that lead to the
creation of the unsigned int version.

A speedup could be realized if a custom memory allocated was written. For
instance, all integers used in the execution are bounded by n2, and all polynomial
arrays are bounded by r. We conjecture that a custom allocator is necessary to
make the GMP version tractable for even n > 1000.

5.4.2 unsigned int polynomials

The profiler shows that over 98.7 percent of the execution time is spent in
mpz pX mod mult, and that less than one percent is spent in memory-management
functions.

The inlined function getCoef is the major bottleneck. Shark reported that
85.9 percent of the samples were taken testing if the requesting coefficient is
greater than the current degree.

We attempted to realize a speedup by allocating arrays of size 2r and initial-
izing all coefficients to zero. Thus, degree is no longer the size of the array, but
rather the actual degree of the polynomial. The check is then no longer needed
in getCoef, we can simply return the requested coefficient. If that coefficient

28

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

 5e-06

 5.5e-06

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 T
im

e
(s

ec
)

n

Figure 5.4: The time needed to test n for primality in seconds using the naive
algorithm. The outliers are artifacts of CPU scheduling. The reported time is
the average over 10 trials.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 T
im

e
(s

ec
)

n

Figure 5.5: The time needed to test n for primality in seconds using the sieve.
The outliers are artifacts of CPU scheduling. The reported time is the average
over 2 trials.

29

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 T
im

e
(s

ec
)

n

Figure 5.6: The time needed to test n for primality in seconds using
mpz probab prime p. The reported time is the average over 10 trials.

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 T
im

e
(s

ec
)

n

Figure 5.7: The time needed to test n for primality in seconds using AKS with
unsigned ints. The reported time is the average over 2 trials.

30

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000

T
im

e
(s

ec
)

n

Figure 5.8: The time needed to test n for primality in seconds using AKS with
GMP bignums.

has degree larger than degree, zero is returned by the nature of the initializa-
tion. In practice, this method showed no speedup. Instead, it showed a small
decrease in performance.

31

Chapter 6

Conclusions

6.1 Improvements to AKS and future work

After [1] was released, many researchers began to search for improvements in
the running time.

Lenstra and Pomerance were able to modify AKS to achieve a bound of
O (̃(log n)6) bit operations, which is the theoretical lower bound of AKS [4].

Cheng provided a test based on AKS and the work of others that has run-
ning time O((log n)4+o(1)). [4] calls this the AKS-Berrizbeitia-Cheng-Bernstein-
Mihailescu-Avanzi test.

Work is underway to modify AKS by removing polynomials completely using
linear recurrence sequences [4]. This research is likely to provide a significant
real-world speedup.

6.2 Conclusions

In its original version, the algorithm of Agarwal, Kayal, and Saxena is too slow
to be of practical use. The hidden constant factors and the actual asymptotic
bounds conspire to make the algorithm intractable for even modest inputs.

The terms “polynomial time” or “exponential time” should be used carefully
when assessing the actual performance of an algorithm. As we have shown, in
the realm of asymptotic analysis and Complexity Theory, AKS is superior to
older algorithms such as trial division or Rabin-Miller. Since they are either not
polynomial time or not deterministic. However, in using these algorithms for
actual primality-proving, it is clear that AKS is not superior.

For the inputs tested here, AKS was several orders of magnitude slower than
other algorithms. The difference is so great, that for n large enough that the
asymptotics begin to factor, AKS would likely use a large amount of memory.
At these n, it may be necessary to re-architect the implementation, which would
render it even slower.

32

At least in its original form, the AKS algorithm, while it is elegant and
relatively simple, should be viewed as an algorithmic curiosity rather than an
algorithm to be used for actual primality proving.

33

Appendix A

Acknowledgments

First, I’d like to thank my thesis advisor Klaus Sutner. Without his patience,
guidance, and humor, this project would not have been possible.

I’d like to thank Mark Stehlik for his understanding of initial stumbles and
for his years of unparralelled academic advising.

Thanks to Manindra Agrawal, Neeraj Kayal and Nitin Saxena for their beau-
tiful algorithm.

Finally, I’d like to thank my friends and family for putting up with me all
these years.

34

References

[1] Agrawal, M., Kayal, N., and Saxena, N. PRIMES is in P. Preprint,
available at http://www.cse.iitk.ac.in/news/primality v3.pdf, 2003.

[2] Gietzfelbinger, M. Primality Testing in Polynomial Time: From Ran-
domized Algorithms to ”PRIMES is in P”. Lecture Notes in Computer
Science. Springer, 2004.

[3] Granlund, T. GNU MP: The GNU Multiple Precision Arithmetic
Library. Available at http://www.swox.com/gmp/gmp-man-4.1.4.pdf,
2004.

[4] Granville, A. It is easy to determine whether a given integer is prime.
Bull. Amer. Math. Soc. 42 (2005), 3–38.

[5] Kernighan, B. W., and Ritchie, D. M. The C Programming Language,
2nd ed. Prentice Hall PTR, 1998.

[6] Litt, S. Fun with prime numbers. Available at
http://www.troubleshooters.com/codecorn/primenumbers/
primenumbers.htm, 2004.

[7] Miller, G. Riemann’s hypothesis and test for primality. J. Comput. Syst.
Sci. 13 (1976), 300–317.

[8] Pohl, I. C++ Distilled. Addison-Wesley, 1997.

[9] Pratt, V. Every prime has a succinct certificate. SIAM J. Comput. 4
(1975), 214–220.

[10] Rabin, M. Probabilistic algorithm for testing primality. J. Number Theory
12 (1980), 128–138.

[11] Stroustrup, B. The C++ Programming Language. Addison-Wesley,
1997.

35

