
BeatLib: A general-purpose beat detection library

Mark T. Tomczak (mtomczak@andrew.cmu.edu)
Advisor: Professor Roger Dannenberg (rbd@andrew.cmu.edu)

April 29, 2005

1 Problem and Significance

For most modern music, the concept of the beat
or rhythm is important to both the understand-
ing and description of the music. An algorithm
for determining the beat of a song is useful
for automatic music interpretation and analysis,
classification, interactive music systems, and mu-
sic visualization. Several algorithms have been
devised for locating the beat of a song in real-
time1. These algorithms have varying effective-
ness on different types of music (heavy percus-
sion, light percussion), different tempos, and dif-
ferent time signatures (3/4, 4/4).

In general, the algorithms devised to date tend
to look for nearly periodic peaks of a particu-
lar feature. However, human listeners probably
form an impression of the beat by combining in-
formation of several types, including note onsets,
drum beats and patterns, and harmonic changes.
We hypothesize that beat detection could be im-
proved by considering and combining informa-
tion about multiple facets of the song. The first
step towards such a goal is the construction of
a library of two or more beat detectors with a
common interface. Such a system would allow
for comparison of the efficacy of the algorithms
in the same context and would also serve as a
structure that higher-level systems could use to
combine the information from the detectors to

synthesize an overall “concept” of the music in-
put. This capability would improve the overall
accuracy of the system.

We are constructing a common beat detection
library for the purpose of implementing multi-
ple beat detectors against a common interface.
This library will allow for the creation of high-
level monitors that can aggregate the informa-
tion from multiple detectors to generate a more
faithful beat tracking response than the individ-
ual detectors operating independently.

2 Definition of Beat

Before we could begin detecting the beat, we
must first define the concept of a musical beat.
Musical beat is a conceptual framework around
which the sounds (“notes”) in a piece of music
are arranged. It is a periodic division of time
into distinct and equally-sized units that orga-
nize and constrain the musical components. It
is important to observe that the phenomenon
of musical beat is complex yet strangely univer-
sal. Scheirer observes the curious fact that the
human ability to perceive musical beat seems
to stem not from formal training, but rather
from some innate faculty of our acoustic senses.
“Nearly every listener, whether skilled or not ac-
cording to traditional criteria, can find the beat

1Goto, Scheirer

1



in a piece of music and clap her hands or tap her
feet to it” (Scheirer 81). It is for this reason that
the beat-detection problem is sometimes referred
to as the “foot-tapping” or “clapping” problem.
The concept of musical beat appears to be a
nearly universal perceptual facet of the human
auditory system.

From a theoretical standpoint, we can define the
beat of a section of music (from time T0 to T1) in
terms of two values. The first is the period (ex-
pressed in units of time), a constant value denot-
ing the distance between beats. The period can
be considered the amount of time between claps
if a human listener were following the beat of a
piece of music. The second value is the phase,
which relates the beat to an arbitrary reference
point. We can express the phase as the time of
the first beat. Thus, given a specific phase φ and
period T , we could expect a beat to occur at each
time nT + φ, where n is an integer.

It should be noted that if we have a pulse signal
generator that generates pulses at times nT ′ +φ,
we could satisfy the beat expectation described
using any value of T ′ satisfying the criterion
T ′ = 1

mT , where m is an integer. For exam-
ple, if we increase the frequency of the genera-
tor by a factor of 4, the generator still gener-
ates a pulse on every beat (in addition to three
pulses between each beat). This aliasing ef-
fect gives musical structure an inherent hierarchy
within beats (which is captured in the Western
musical scale in the hierarchy of notes: quar-
ter, half, whole, eighth, etc.). This aliasing ef-
fect can prove challenging for many beat detec-
tion algorithms, which may flip rapidly between
fractionally-related values for the period. An-
other challenge for beat detection systems is the
ability of the musical composer to vary the pe-
riod over the course of a piece of music. While
frequent and uncontrolled tempo variance cre-
ates noise, a human listener can generally adapt
rapidly to a lengthening or shortening of the pe-
riod of a piece of music. A beat detector must
allow for such flexibility even after a “lock” has
been achieved on the beat, or else be unable to

mimic a human listener. Many beat detection
architectures must be finely tuned between the
rigidity needed to avoid period-flipping and the
flexibility needed to account for beat variance
mid-song.

3 Related work

3.1 Beat Detectors

Multiple beat detection projects have been
brought to fruition over the past decade, with
varying degrees of success. A variety of tech-
niques and design philosophies have been used.

Masataka Goto’s detector [1] utilized a combina-
tion of chord-change detection, energy analysis,
and drum pattern-matching (low and high fre-
quency) to achieve accurate tracking. Assuming
a musical structure in 4/4 time, Goto’s detector
breaks down musical structure at the quarter-
note, half-note, and measure level. The detec-
tor was able to achieve a correct beat analysis
at the quarter-note level on 35 out of 40 songs
without heavy drum components (set A), and
39 out of 45 songs with heavy drum components
(set B). On average, the system took 10.99 sec-
onds to achieve an accurate beat lock on set A
at the quarter-note level, and 13.87 seconds to
achieve a similar lock on set B. While this de-
tector performed well, it relies on a 4/4 mea-
sure structure to derive higher-level construct el-
ements and takes a great deal of time to achieve
tracking lock.

Eric Scheirer’s detector [3] utilizes models de-
rived from signal processing theory to perform
band-pass filtering on a frequency analysis of mu-
sical input. Envelope analysis results from each
band are then fed into a bank of resonant fil-
ters, which oscillate most strongly with inputs
of a specific frequency. The filter bank is then
observed for peak resonance, and the resulting
peak frequency is reported as the tempo of the

2



music. Scheirer’s results showed 68% of songs
from a sample of 60 correctly tracked, taking
approximately 2 to 8 seconds to achieve track-
ing lock. The detector had difficulty with music
patterned after the clave rhythm style (a style
that alternates three “clicks” in one measure and
two “clicks” in the next measure). Another issue
observed was the detector switching between the
upbeat and the downbeat for musical styles such
as jazz.

3.2 Applications

The primary benefit realizable with effective, ro-
bust beat detection would be musical classifi-
cation. As a fundamental element of musical
structure shared by almost all forms of music,
robust knowledge of the beat or tempo of a musi-
cal sample opens new opportunities for analysis
and classification. An example of beat-related
classification is the Beat-ID system described by
Kirovski [2], which condenses a sample of music
into a 32-byte “fingerprint” describing length of
beat period and energy distribution within the
sample. By comparing the Beat-ID of a sample
against a database of Beat-ID information, the
system can determine if an input sample matches
a known sample—the basis of an audio-based
music search engine architecture.

In addition to music modeling and classification,
beat detection is also useful for entertainment
purposes. Most music consumers would proba-
bly be familiar with the concept of a visualizer—
a device that responds to musical input, chang-
ing state in an appropriate fashion. An example
of this technology is the visualization architec-
ture built into the iTunes 2 music organization /
playback program by Apple Computer. Besides
the built-in visualizer module, the iTunes pro-
gram also includes a plug-in architecture that
allows for the development of other visualizers
that can receive data from the iTunes decoding
engine. The current version of BeatLib is tested

and verified by an engine built upon this plug-in
architecture for convenient access to mp3-format
music files. Visualizers such as the iTunes mod-
ule often include simple beat detectors based
upon the local maxima of energy across band-
widths. While this information may be sufficient
for reactionary visual generation, it usually lacks
higher-level information, such as an actual esti-
mate of tempo (beats-per-minute), which would
be useful for analysis purposes.

3.3 Libraries

While no general-purpose beat detection li-
braries were found in a study of the literature,
there does exist a general signal-processing li-
brary: Marsyas [4]. Based around manipulation
of arrays of double-precision floating-point val-
ues, the Marsyas library allows for the construc-
tion of complicated signal processing paths from
simpler building blocks using a source-sink rout-
ing mechanism for signal data. This is an ex-
tremely effective design for several reasons. One
reason is that the loose coupling between sources
and sinks allows for dynamic re-configuration at
runtime. Additionally, the design uses concep-
tual metaphors (“source/sink”) that are familiar
to the signal-processing community, which makes
the architecture easier to use for the target au-
dience.

One possible disadvantage to the Marsyas ar-
chitecture is the lack of typing on the mes-
sages passed between components. Since every
message has the same form (arrays of floats),
the components are maximally interchangeable;
however, nothing prevents a designer from con-
necting two logically incompatible components
and getting meaningless results. The BeatLib ar-
chitecture utilizes a source / sink design similar
to Marsyas, but also leverages the C++ template
system to enforce typing rules between connec-
tions. BeatLib also tags each message with a
frame identification stamp, which is important

2http://www.apple.com/itunes/

3



for the final re-construction of the beat informa-
tion.

4 Library Architecture

4.1 Messages

A message is a structure containing one in-
stance of data of a specific type (the type is
defined by the source sending the message) and
a “frame stamp:” a value denoting the time of
the message’s generation relative to an arbitrary
time T0 (usually the start of the music input).
A frame is a fixed-length, nonzero unit of time
in which a small sample of musical information
may occur. Messages of a specific type are con-
structed by a source and then transmitted to
its corresponding sink (assuming a sink is con-
nected).

4.2 Components, Sources, and Sinks

BeatLib allows for the definition of compo-
nents, which are simple “black box” constructs
represented by one source and one sink. Each
source can have assigned to it a single sink, to
which messages are then passed as they become
available.

To create a new component, a developer creates
a class that inherits from both the Source and
Sink template classes. The template given to the
classes is the type of message that the component
can send and receive, respectively; this type in-
formation is used to assure that sources and sinks
of incompatible types may not be inadvertently
connected together (which would allow for the
generation of garbage results). In addition, the
class must override two virtual functions in the
Sink template to allow for processing of incoming
messages:

1. set data(T &msg): Called when a new
message is ready for the component to pro-
cess. The component should use the infor-
mation in the message as needed and pos-
sibly send a message (via its source) to the
next component in the chain.

2. reset(): Called when the component
should reset. The component should re-
initialize any internal state (with the ex-
ception of any source / sink connections
that have been created), such that for the
next message received, the component will
respond as if it were the first message.

In addition to the functions described above,
the Source and Sink classes also provide several
helper and utility functions to facilitate message
passing.

In general, each component will have only one
source and one sink, allowing the components to
be connected in a strictly serial fashion. Two
specialized classes–MultiSource and MultiSink–
violate this rule. In the case of MultiSource, mul-
tiple sinks may be attached to the source and all
receive a copy of the same message. For Mul-
tiSink, a method is provided to generate single
Sink objects from the MultiSink, which can be
connected like any sink. When each sink associ-
ated with a single MultiSink has received a mes-
sage, the messages are consumed using three vir-
tual functions defined by MultiSink:

1. begin(): Called at the start of processing;
initializes the aggregation process.

2. aggregate(T &msg): Called once per re-
ceived message. The MultiSink may act
on each message in turn, probably by accu-
mulating some information about the mes-
sage.

3. process(): Called after all messages have
been aggregated, so that the MultiSink
may compute final results and act on the
messages received.

4



Note that while a component consists of a single
source and a single sink, the Source and Sink
classes may be inherited separately. This al-
lows for an interface to be constructed between
the BeatLib package and external components
through the use of inheritance; an external com-
ponent may inherit from Source to send messages
into a BeatLib component chain, or may inherit
from Sink to receive final results from a chain.

4.3 Detectors

A beat detector is a component that is a source
of beat messages. A beat message (BeatMsg)
is a message that consists of a period ‘t’ and
distance ‘d,’ both expressed in units of seconds.
The distance value denotes the number of sec-
onds until the next beat event occurs; it can be
used to derive φ, but is generated as output in-
stead of the φ value because such information is
more useful for visualization applications.

While technically the definition of the beat de-
tector is based purely on its output type, most
beat detectors will take as input an energy
message (EnergyMsg). An energy message is a
fixed-length array that represents the output of a
Fast Fourier Transform (FFT) executed against
a musical signal. One energy message is received
per frame; the width of the FFT window in time
determines the duration of a frame. Each in-
dex in the array represents a specific frequency
range, while the value in the element denotes
the amount of energy in that frequency. The
length of the musical subsample the FFT is exe-
cuted against determines the length of the frame
stamp unit in seconds. By maintaining a relation
between frame stamp length and seconds, a de-
veloper can convert the output values from the
detector source into beats per minute or other
familiar metrics. Currently, the FFT algorithm
is exectued by components external to BeatLib
(the iTunes visualizer framework).

The strongly-typed definition of the source and
sink of a beat detector allows for interchangeable

design. In any given context, any beat detec-
tor can be substituted for any other beat detec-
tor; conversely, any object satisfying the require-
ments above is considered a beat detector. This
aspect of the design will be helpful in the con-
struction of high-level modules that can combine
information from multiple beat detectors to give
more accurate results.

4.4 Scheirer Detector

Using this framework, a beat detector similar to
Scheirer’s detector has been developed. The de-
tector consists of the following components:

1. FFT splitter (EnergySplitter): Divides the
FFT array into multiple sequential sub-
arrays. This is similar to a band-pass filter.
Each subband will be processed in parallel
by an identical filterbank (bank of comb
filters of varying lengths), creating a filter-
bank array.

2. FFT envelope finder (EnvelopeFinder):
Determines the maximum energy (enve-
lope) in a range of FFT values. Passes the
single energy value forward as an “energy
scalar” message (EnergyScalarMsg).

3. Energy differential (ScalarDifferential):
Buffers input values to determine dif-
ference between subsequent values (first
derivative).

4. Energy rectifier (ScalarRectify): Deter-
mines the magnitude of the input value.

5. Resonator : A comb filter with a specific
length. The resonators used in Scheirer’s
algorithm take an EnergyScalarMsg as a
sink and generate a “resonanace message”
(ResonanceMsg) as a source. As described
in (Scheirer 87-89), the comb-filter res-
onator feeds the output value proportion-
ally back to the input. For resonators with
a comb length near the period of the beat

5



(in frames), the feedback will tend to in-
crease the output magnitude of the filter.
The Scheirer beat detector uses a bank of
combs of various lengths to test for multi-
ple potential beat periods.

6. Resonator output merger (Res-
onatorMerge): Merges the output of mul-
tiple resonators of the same width together
through a simple summing operation. This
component combines the output from each
subband in the filterbank, allowing the de-
tector to aggregate resonance information
by comb length.

7. Resonator picker and query tool (Res-
onatorPicker): Analyzes the resonators
and chooses the most responsive one as
representative of the actual beat. Once
the most responsive resonator is chosen,
the resonator picker queries the chosen res-
onator (referenced by a back-pointer stored
in the ResonanceMsg) to determine the du-
ration until the next beat. The output of
the resonator picker is a “tempo message”
(TempoMsg), consisting of the period of
the beat and the duration until then next
beat.

8. Tempo to beat converter (TempoToBeat):
Simple converter class to turn the pe-
riod information in the TempoMsg to the
beat frequency information required of the
BeatMsg.

9. Scheirer Detector (ScheirerDetector):
Wrapper class to create the entire detector.
The ScheirerDetector class can be used to
generate all the needed components and
organize them in the fashion described in
(Scheirer 81-94).

5 Evaluation

Once the Scheirer detector has been constructed,
its performance will be evaluated against music
files of varying genres with varying tempos. Be-
fore evaluation, an experimenter will manually

record the “foot-tapping” location of beat events
in the music. The detectors will then be executed
against the music inputs, and the location of the
beats identified by the detectors will be deter-
mined by observing the d value’s approach to 0.
The beat locations will be recorded, and their
distance from the human-assigned beats will be
evaluated.

6 Future Work

The BeatLib architecture could serve as a valu-
able framework for building a standardized
toolkit of beat detector components. to improve
its utility, more detectors could be implemented
under the framework—preferably using classes
that have already been constructed for the im-
plementation of Scheirer’s algorithm. Goto’s al-
gorithm for beat detection is somewhat similar,
and could serve well as the next test case for the
framework. A script parsing system allowing for
file-based description of a beat detector configu-
ration could also be created. By augmenting the
already-existing factory functions with the abil-
ity to consume serialized descriptions, the func-
tions could create detector components and en-
tire detectors from a textual description.

One major hinderance in the design of accurate
beat detectors is computational efficiency. A de-
tector must operate at a rate that allows it to
keep pace with the musical input; a processing
step that is too intensive could result in dropped
messages or poor accuracy. If the beat detector
is running on a modern multitasking operating
system, the amount of processing time allowed to
the detector could change dynamically, making
performance tuning more difficult. One solution
to this dynamic tuning problem could be the ad-
dition of a regulator to the detector architecture.
The regulator would determine the amount of
time consumed in generating the detector output
and dynamically throttle non-essential elements
of the detector (trading accuracy for speed).

6



References

[1] M. Goto. An audio-based real-time beat tracking system for music with or without drum-sounds.
Journal of New Music Research, 30(2):159–171, Jun 2001.

[2] D. Kirovski and H. Attias. Beat-id: Identifying music via beat analysis.

[3] E. D. Scheirer. Music-Listening Systems. PhD thesis, Massachusetts Institute of Technology,
Apr 2000.

[4] G. Tzanetakis. Marsyas sound feature processing library, 2003.

7



Figure 1: Graphical representation of source-sink relation and component. The shape of the source-
sink interfaces denote the template-based types assigned to each source and sink.

8


