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Chapter 1

Eccentricity Bias and Human Object

Representation
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1.1 Introduction and Motivation

Sometimes we take for granted our ability to recognize faces. It is one of the basic needs

for social interaction, and it is effortless. How well could we relate to another person if we

never recognized their face? In fact, we can recognize faces under a dizzying number of

challenging circumstances. Intuitively, unconsciously, we can recognize faces, even on a

foggy San Francisco morning.

As easy as it seems for humans, it is actually quite difficult. After all, faces look quite

similar from a distance. As with many problems that the visual system solves efficiently,

an understanding of face and object recognition has eluded the computer vision community

even now. Yet in the early days of artificial intelligence, the problems of the visual system

were seen to be easy, because they are problems that we are so good at solving. Famously,

Marvin Minsky once assigned one of his graduate students the task of solving vision in a

summer. The summer has been long, and robust object recognition has eluded the computer

vision community.

Similarly, in the neuroscience community face and object recognition are hotly-contested

and filled with many divergent viewpoints. For example, one theory is that there are face-

selective areas of the brain, which can be selectively impaired by brain damage. This is an

interpretation of activation and double-dissociation studies . Thus one of the voices in the

choir is that face processing is handled by a specialized module, with faces being funda-

mentally different than other objects. However, other evidence suggests that the so-called

face areas are actually used to recognize individual identities of objects within a category

with which the subject has expertise.

There is however a theory that could explain all of this evidence. Faces are grossly similar,

and as such face recognition may require fixation and high-resolution information about
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subtle differences in hairline, nose structure, and eye-color. In other words, visual acuity

may be needed to recognize faces. In the brain (occipital lobe), central and peripheral visual

regions are spatially distributed. Interestingly, face images activate center-biased regions,

whereas buildings activate periphery-biased regions. Of course, the peak of activity shows

this stereotyped pattern. The activation recorded in fMRI studies actually has activity dis-

tributed in a way that falls off from the peak as a function of distance.

In the traditions of psychophysics and neuropsychology, an ideal model of face and house

recognition is built to test this theory and evaluated by comparing its performance to find-

ings from empirical studies on subjects with brain damage. Using a topographic bias which

favors short, local connections and devoting more resources towards faces than houses, the

model develops two overlapping areas to represent faces and houses. The face area is biased

towards the center, and the house area is biased towards the periphery. Selective lesions to

the center impair face recognition while leaving house recognition unaffected. Selective le-

sions to the periphery impair house recognition while leaving face recognition unaffected.

A small number of unique neurons, which suggests that the visual system has a representa-

tion of faces that is optimal in coding length. House recognition is actually shown to require

a significantly more holistic representation, requiring largely the same cells, but differing

in activation pattern. Finally, methods to analyze causal relationships and new methods

to create graphical models from energy functionals are exploited to understand something

quite fundamental about the nature of face recognition.

In the analysis of such a complicated task, and what makes the human brain so adept at

it, many new methods are developed, as a culmination and combination of other methods.

New ways of analyzing optimization problems are at the core of this analysis, as well as

ways to analyze complex, nonlinear, and noisy systems. Finally, we develop a method to op-

timize arbitrary multivariate energy or loss functions in n variables by converting them into
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graphical models and using loopy belief propagation. As graphical models, energy func-

tionals whose optimization requires belief propagation on graphs with tight cycles are more

difficult to optimize. However, it can be done, if ultimately with caution. This approach

yields a graphical model which shares the same assumptions and learning behavior as our

model, but is more tractable computationally and more general. Furthermore, by making a

graphical model of the task, the task is made algorithmic and analytical, and constitutes a

suggested algorithm for face and object recognition which is consistent with neural repre-

sentations of faces and houses. Future work is suggested to implement the algorithm and

test its performance on the FERET database.

1.2 The Neural Representation of Faces and Objects

Face recognition is important but, as commented, highly controversial. In a sense, it is the

premier battlefield for old battles that loom large over the field of cognitive science and phi-

losophy of mind. The root of this controversy is the organization of the ventral, temporal

visual system. Some claim that objects are represented with specialized modules for every

category (Kanwisher, 2000), each with different function. This is a very old idea, dating

back to Aristotle, but described most eloquently by Jerry Fodor (Fodor, 1983). Others claim

that objects are represented with a distributed, overlapping neural instantiation (Haxby and

others, 2001); (Ishai et al., 1999); (Pietrini et al., 2004). The controversy then is whether

the ventral temporal cortex is domain-specific. That is, whether we are using what amounts

to the fanciest cookie-cutter in the world to represent objects.

An additional perspective is that identifying specific individuals in an object category re-

quires different computations than identifying them just as examples of that category (Gau-

thier et al., 2000). These are so-called within-category object recognition processes. This

of course disagrees with the modular theory of functional organization.
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Understanding face recognition at the level of neural representation could in fact recruit

all of these views and more, as has been shown in previous debates in the Neurosciences.

Why is this interesting? Oftentimes mysteries dissapear when a unifying theory has been

introduced to explain and account for the seemingly conflicting and divergent evidence.

The representation of faces in ventral temporal cortex could appear to be special for three

reasons: a specific brain area is used consistently, they may require unique computations to

recognize, and that their recognition requires a process which can be selectively impaired,

without impacting recognition of other objects.

1.2.1 Selective brain activation?

Converging evidence points to face-specific response in the ventral cortex (Bentin, 2000)

(Kanwisher, 2000) (Kanwisher et al., 1997) (McCarthy et al., 1997) (Sergent et al., 1992)

(Tsao et al., 2003). Functional imaging studies have reported regions more active during

face than nonface viewing by the subjects (Sergent et al., 1992), face versus location match-

ing (Haxby et al., 1994) (Courtney et al., 1997), and faces versus scrambled (distorted) faces

(Puce et al., 1995) (Clark et al., 1996). In addition, more activation was recorded in the same

area for faces when compared to consonant strings (Puce et al., 1996). All of these studies

indicate that parts of the fusiform and inferior temporal gyri of ventral temporal cortex seem

to be activated the most when subjects view face images: an area of the brain named the

fusiform face area (FFA), located in the right fusiform gyrus.

Interestingly though, the FFA is activated by nonface objects too. A variety of objects

elicit more activation of FFA when matched to specific labels rather than abstract ones

(ie, ’coelocanth’ versus ’fish’) (Gauthier et al., 1997). The FFA is also activated during

viewing of objects that subjects are experts at identifying, for example, cars or birds when

shown to subjects who qualify as car and bird experts (Gauthier et al., 2000). And to fur-

ther undermine the view that FFA is an innate, face-specific module, people were trained
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to be experts at identifying greebles, a fantastic, visually similar set of artificial ’creatures’

that the subjects did not see before participating in the experiment. These greeble experts

showed consistent activation of the FFA when images of greebles were presented to them

(Gauthier et al., 1999). Therefore expertise with objects and identification within-category

appear to rely on the same neural representation as face recognition.

1.2.2 Selective Impairment?

Besides the activation studies which point to selective brain activation for faces in humans,

there is also work indicating that after brain damage selective impairment to face recogni-

tion is possible. What is a double-dissociation?

A double-dissociation is said to exist between two processes A and B if one experimental

manipulation affects process A but not B, and in addition there is a different experimental

manipulation which affects B but not A. This double-dissociation is said to be sufficient evi-

dence to propose that processes A and B are functionally separable. It is important to stress

that double-dissociation is actually possible without assuming that the two processes are

separable structurally. That is, we don’t have to believe in modules for double-dissociation

to imply functional separability (Plaut, 1995).

Prosopagnosia is a condition which impairs face recognition. It is caused by damage to

the lingual and fusiform gyri, which contain the FFA (Farah, 2004). If there are subjects for

which similar brain damage leads to impaired face recognition who still have intact nonface

recognition ability (and vice-versa), this suggests a double-dissociation or functional sepa-

ration between face and nonface recognition. There is evidence for both subjects that have

selectively impaired face recognition with intact nonface recognition (Henke et al., 1998);

(Farah et al., 1998); (Farah et al., 1995); (McNeil and Warrington, 1992); (De Renzi, 1986).

There are also documented cases of subjects with impaired nonface recognition and mostly
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intact face recognition (though this is rare) (Moscovitch et al., 1997). Despite the apparent

one-sidedness of the supposed double-dissociation, this double-dissociation has been used

to claim that face and nonface recognition are functionally distinct.

However, prosopagnosia in its pure form is nearly non-existent. Patients with lesions to

vental temporal cortex that also can’t recognize faces well often cannot do within-category

classification of non-face objects (Damasio et al., 1982); (Damasio, 1990); (Damasio et

al., 1990). This just gives more evidence to the hypothesis that the peculiarities of face

recognition are due to general within-category object recognition.

1.2.3 Specialized computation?

Finally, face recognition could require computation of a completely different type than

general object recognition. For example, upright faces may be recognized as whole ob-

jects rather than as a combination of low-level features (Tanaka and Farah, 1997); (Tanaka

and Gauthier, 1997). This means that though feature-based recognition contributes to face

recognition, ultimately the whole is greater than the sum of the parts. In addition, spatial

relationships between parts of the face (configuration) have been shown to contribute to

face recognition (Haig, 1984); (Hosie et al., 1988). This means that our ability to recognize

a face is severely impaired if we are just able to see someone’s hairline, or nose, or eyes,

without having an overall picture of the configuration of the face. Other stimuli, such as

faces that have been scrambled or inverted, in addition to inverted houses, can be recog-

nized well by subjects by just viewing their parts (Tanaka and Farah, 1997).

There is also evidence that human subjects are terrible at recognizing inverted faces (Valen-

tine, 1989). A number of electrophysiology studies show that this difficulty shows up as

latency delay (ie lag) in brain activation for inverted faces (Bentin, 2000); (Eimer, 1998);

(Eimer, 2000); (Rossion et al., 2000). In addition, recognition of faces by prosopagnosics
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improves dramatically when they are inverted (Farah et al., 1995). This study then suggests

that prosopagnosics are somehow using their intact object recognition process, and that this

gives further evidence to the functional dissociation between face and general object recog-

nition.

However, the inversion effect is not unique to faces. It has also been shown to manifest

with non-face object experts (Gauthier et al., 1997). Dog-show judges, for example, have

more difficulty recognizing inverted dogs (Diamond and Carey, 1986). Car and bird ex-

perts also have similar difficulties (Gauthier et al., 2000). Even subjects who were trained

to become experts in greeble recognition during the experiment showed inversion effects

(Gauthier et al., 1999), and even a dependence on configural cues, but only when the gree-

bles were upright (Gauthier and Tarr, 1997); (Gauthier and Tarr, 2002). So the inversion

effect may just be a side-effect of expertise with representing upright objects using spatial

configuration (Carey and Diamond, 1977).

It is quite clear that there is something special going on during face recognition. How-

ever, it could be something that isn’t just unique to faces. Other evidence has pointed to an

alternate hypothesis. However this evidence has not indicated one theory which can account

for all of the conflicting evidence, which suggests that there is a much more fundamental

theory which could explain away the conflict. Notice that none of these studies spoke of the

topography or structure of the brain, except in the broadest of generalities. This informa-

tion, as it happens, may provide the theory we so desperately seek.
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1.2.4 Eccentricity bias and object recognition

Other theories

It is important to survey some more results which call other coherent theories into ques-

tion. For review, the other theories are the face modularity and within-category expertise

hypotheses. The first assumes that faces are represented in a domain-specific way in the

ventral temporal cortex, with a special brain area, and specialized computation (Kanwisher,

2000). The rest of ventral temporal cortex is assumed to be for general object recognition.

The within-category expertise theory suggests that object representations are organized ac-

cording to the type of computation required (Tarr and Gauthier, 2000). Faces are recognized

at the level of individuals, in a highly specific, within-category manner. This is presumably

because we become experts in face recognition. For objects which we are unfamiliar with,

recognition is done at a very abstract, between-category level, for example, identifying a

mexican fender telecaster as a guitar, not an elephant.

With regards to the face module hypothesis, the strong activation of an occipito-temporal

object-selective region when subjects view pictures of that object does not mean that this

is where all the object recognition happens (Grill-Spector et al., 1998a). At least, not this

bit of evidence alone. There is evidence that representations of objects are not restricted to

category-specific structurally distinct modules (Ishai et al., 1999). For example, when iden-

tifying upright faces and houses, FFA activation is higher during house recognition than

vice-versa (Haxby et al., 1999). In fact, there are suggestions that objects are represented

in a much more efficient way, distributed topographically across the ventral temporal cortex.

As regards within-category expertise, no mention is made of the topography of ventral tem-

poral cortex. One interesting fact that is unaccounted for by both the modular and expertise

hypotheses is that within the posterior fusiform region, selective activation to buildings is

always more medial in location than for faces (Epstein and Kanwisher, 1998); (Ishai et al.,
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1999). Strictly speaking, we should aspire to a theory which explains the topography of

object recognition areas while retaining the strong behavioral consistency of the within-

category expertise account of object recognition.

Eccentricity bias

A theory with claims to this ideal is based on the relationship between cortical areas and the

organization of early visual areas (Hasson et al., 2002). This theory, proposed by Malach

et al. (Malach et al., 2002); (Hasson et al., 2003), argues that the topographic constraints

of our early visual system best explain the organization of ventral and dorsal stream visual

areas.

Faces are extremely similar as images, as can be seen by histograms of pixel values (see

Figures 1.1 and 1.2). This uniformity means that face recognition demands high visual acu-

ity in order to identify small differences in facial configuration unique to individuals. Face

recognition also deteriorates rapidly when faces are presented at the periphery of vision,

even when corrected for magnification changes (Makela et al., 2001), in order to have the

face viewed at the center of the retina. Images of houses, on the other hand, are profoundly

non-uniform, as can be seen by their pixel histograms. This suggests that face recogni-

tion requires very local, low-level, high-resolution information, while house recognition

requires global, high-level, low-resolution information.

In visual cortex there is evidence that parts of the visual field are magnified as a

function of their eccentricity (radial distance) from the center and orientation (in degrees,

from the horizontal). This retinotopic organization describes well early visual areas and

some higher-level visual areas as well. An interesting property of this mapping (which is

formally called the log-polar mapping), is that neighboring spots on the retina project to
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Figure 1.1: These are the histograms with a bin width of 256 of the pixel values in six
different images of faces frontally viewed under variable lighting conditions
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Figure 1.2: These are the histograms with a bin width of 256 of the pixel values in six
different images of houses frontally viewed under variable lighting conditions
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neighboring cells in the early visual areas. Another interesting aspect of this mapping is

that the fovea is over-represented. The center of the visual field has a one-to-one mapping,

whereas the periphery has a many-to-one mapping. This means foveal, or more central,

projections are higher-resolution. fMRI studies have shown approximately parallel bands

of neurons which become active when visual stimuli are presented at different orientations.

Perpendicular to these bands are eccentricity bands, which can be viewed as an eccentricity

gradient (DeYoe et al., 1996); (Sereno et al., 1995); (Tootell et al., 1985); (Duncan and

Boynton, 2003). Because the axes of this representation are orthogonal, it can be approxi-

mated by a log-polar transformation.

This eccentricity map may extend into ventral high-order object areas. By using stimuli

that tend to activate mid- and high-level visual areas, researchers have shown that these low-

level retinotopic constraints are still preserved (Grill-Spector et al., 1998a); (Grill-Spector

et al., 1998b); (Hasson et al., 2003); (Levy et al., 2001). To be explicit, the same retinotopic

map of central versus peripheral parts of the visual field can be found in regions thought to

be involved in face and place perception (Grill-Spector and Malach, 2004). Therefore, the

topography of object recognition areas has a very strong eccentricity bias towards the cen-

ter, which features high-resolution at the center, low-resolution at the periphery, and with

distance proportional to distance in the retinal image.

Interestingly, when the location of face-related and building-related regions was projected

into an eccentricity map, face images consistently activated center-biased regions, while

buildings activated periphery-biased regions, independent of image size (Hasson et al.,

2002);(Hasson et al., 2003); (Levy et al., 2001); (Levy et al., 2004); (Malach et al., 2002).

Therefore, FFA being more central in the topographic layout of ventral temporal cortex

could be due to face recognition requiring high-resolution information (Malach et al., 2002).

The preferential bias of upright objects of expertise to a more central eccentricity is because
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within-category classification requires high-resolution information and high visual acuity.

It comes as no surprise then that we can throw out our cookie cutters if we adopt this theory.

Its elegance is impressive, in that it explains the evidence for both the within-category ex-

pertise hypothesis and the face module hypothesis. In addition, it explains the topographic

organization of the ventral temporal cortex. It is easy to see why within-category classifica-

tion requires high-dimensional information about very small variations in images, because

objects within the same category are very similar.
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Methods and Algorithms
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2.1 Introduction

The problem faced by the nervous system is to represent its interactions with the world as

simply as possible but no simpler. The costs of an overly-complex model are more than

just aesthetic. A naive approach is to treat the complex interactions with the world as the

input to a system which dynamically represents these interactions in a way that is both

minimal and goal-directed. The fundamental problem as we have framed it then is to find a

representation or model of the input which is both efficient and correct.

2.2 Bayesian Inference

In the specific case that we have inputs and we wish to discover the probability distribution

that best reflects the statistics of the input, we can use Bayesian Inference to find the best

model to describe the inputs:

p(i|m) =
p(m|i)p(i)
p(m)

This is the so-called posterior distribution, encoding our a posteriori (after the fact) knowl-

edge of the input given the model. This posterior distribution is more peaked when our

uncertainty about which model m is best for the input is very low. Note that this approach

is equally valid using discrete probability distributions as well.

p(i) is a density function which follows directly from our knowledge of the statistics of

the input, for example, whether inputs are highly correlated or uncorrelated. This a priori

(prior) knowledge about the inputs allows us to find a good model more accurately in less

time if we have a significant amount of information about the statistics of the input already

(strictly, in numbers of iterations). If our knowledge of the input statistics is inaccurate,

then this will in fact increase substantially our uncertainty about which model is best and

slow convergence.
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p(m|i) is the likelihood of the model given the input. This gives us an estimate of how

probable a specific model is given the input that we have seen so far.

A specific approach towards finding the best model is to use Bayesian Inference to find

a posterior distribution for different models q given the true model t. A very simple way in

which this distribution can be used is to find the most probable model q, which corresponds

to the model which gives the highest posterior probability p(q|t), the peak of the posterior.

This is called the MAP (maximum a posteriori) estimate, is defined as follows:

qmap = argmax
q

(p(q|t)p(t))

An often used special case of a MAP estimate is Maximum Likelihood or ML estimation,

which is MAP estimation but with a uniform prior distribution on t, so the MAP estimate is

equivalent to maximizing the averaged likelihood. The ML estimate converges to the em-

pirical distribution of frequencies actually seen in the data, and assumes no prior knowledge

at all about the input. Why it is used often in practice is that it is easy to approximate, with

many ML estimates having closed-form solutions.

2.3 Function Approximation

If we wish to model not only the structure of the input, but approximate a function from

inputs to behaviors, then we need more information than just the inputs. Specifically, we

need an idea of how close we are to the ideal behaviors. The problem of finding a functional

mapping from inputs to behaviors that minimizes some Energy or Cost functional is called

function approximation.

If our inputs are real-valued but our behaviors must be some sort of category, class, or label,
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then the task is called classification. A very relevant example of classification is when we

see someone and immediately know their identity based only on their hairline.

2.4 Graphical Models

2.4.1 Random Variables

A random variable X is simply a variable which takes on a specific value X = x with

probability P (X = x). A classic example is the random variable signifying the face

that comes up when you roll a six-sided die, where each face comes up with a probabil-

ity P (X = f) = 1
6 .

2.4.2 Statistical Independence

Two random variables A and B are independent under the following conditions:

P (A,B) = P (A)P (B)

P (A|B) = P (A)

This is formally denoted as A ⊥ B. What statistical independence intuitively means is that

if we know the value of random variable A, we can’t predict the value of B and vice-versa.

A andB are uncorrelated and, in some interpretations of probability, behave no dependence

on each other at all. That is, if A changes, B won’t change in a similar way.

A generalization of statistical independence is conditional independence. A is conditionally

independent of B given C if

P (A,B|C) = P (A|C)P (B|C)

P (A|B,C) = P (A|C)
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which is denoted as A ⊥ B|C. The intuitive meaning behind conditional independence is

that if we know C, A and B are statistically independent. That is, knowing the value of

C makes A and B uncorrelated, unrelated, and thus A and B can be manipulated indepen-

dently without fear of a change in B causing a change in A, assuming we know the value

of C.

2.4.3 Graph Theory Preliminaries

A walk is defined as an alternating sequence of edges and vertices, with each edge being

incident to the vertices immediately preceding and following it in the sequence. A trail is a

walk with no repeated edges. A path is a walk with no repeated vertices. A cycle is a closed

trail with at least one edge and with no repeated vertices except that the first vertex is equal

to the last vertex.

A directed graph is a graph composed of edges directed from one vertex to another. A

directed acyclic graph is a directed graph which contains no cycles.

2.4.4 Graphical Models

A Graphical Model is a graph G = (V,E) with each vertex representing a random variable

such that, for each vertex v ∈ V ,

v ⊥ nondescendants(v)|Pa(v)

that is, each random variable in the graph is conditionally independent of its non-descendants

in the graph given its parents. This is the so-called Local Markov Assumption (Pearl, 1988).

As a consequence of the local markov assumption, the joint distribution of the random vari-
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ables in the graph has the following form:

P (v1, ..., vn) =
n∏
i=1

P (vi|Pa(vi))

So one way to look at a graphical model is as a compact way of representing interacting

random variables with known conditional independence properties. In fact, it has been

shown that from a graphical model we can obtain a subset of the conditional independences

between the random variables and vice-versa. So we can translate any set of assumptions

about independence into a graphical model. In fact, using graph theory, we can actually

derive more conditional independences, if we consider a special type of graphical model

which has directed edges:

2.4.5 D-separation

A trail starting at v1 and ending at vk in a directed graphical model is an active trail when

variables O ⊂ v1, ..., vn are observed (we know their values) if for each consecutive triplet

in the trail:

1. vi−1 → vi → vi+1 and vi is not observed

2. vi−1 ← vi ← vi+1 and vi is not observed

3. vi−1 ← vi → vi+1 and vi is not observed

4. vi−1 → vi ← vi+1 and vi or one of its descendants is observed

Variables vi and vj are conditionally independent given Z ⊂ X1, ..., Xn if there is no active

trail between vi and vj when variables Z are observed. In this case, vi and vj are said to be

d-separated and vi ⊥ vj |Z (Jordan, 1999).
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A B

X

Figure 2.1: Random variable X has parents A and B in this graphical model. Explaining
away effects can be seen when we know the probability of X taking on a value. In this
situation knowing A or B alone explains away any influence of the other variable.

2.4.6 Explaining away effects

Suppose we have a random variable X with two parents A and B that are not connected

to each other in a graphical model. Explaining away means formally that P (A = a|X =

x,B = b) ≤ P (A = a|X = x), which means that if we observe A, it is sufficient to

explain any changes observed in X (Pearl, 1988). The same holds for B as well, because

either one alone will explain changes in X . This generalizes to more than two parents as

well. This graphical model is shown in Figure 2.1.

2.4.7 Hierarchical Bayesian methods and Graphical Models

If we have some very general idea of how one variable varies with respect to another, we say

that one is proportional to the other in some way, multiplied by a constant of proportional-

ity. Usually the constant is determined empirically by trial and error. However, it is actually

possible to learn what this constant should equal, giving a more principled approach to

learning a model of the relationship. This constant of proportionality is a type of parame-

ter, which we tune to change the relationship between two variables. Let’s say we have two

random variables, P , which stands for the presidential candidate who wins the election, and

IQ, which is either 1 or 0, depending on whether a candidate is intelligent or not. We would

hope that these two variables are related, so we say P (P = p) = ξP (IQ = 1|P = p). Un-
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µ σ

D

α β

Figure 2.2: This is a graphical model for hierarchical bayesian estimation of the mean and
standard deviation of a gaussian fitted to data given prior information about the mean and
standard deviation.

fortunately for us, ξ ended up being a negative number for these last two elections. Maybe

if we had some way of predicting this, many things would have changed. Once again,

bayesian inference has a way to this, by treating ξ as a random variable and calculating a

probability for it taking on different values (Good, 1987); (Good, 1965).

A more orthodox presentation of so-called hierarchical bayesian inference is when we wish

to fit a gaussian distribution to some new data D for something we’ve already seen before.

This prior data is very extensive, and we have found from it a specific value for the mean

and variance (α and β, say). But we can’t say that the mean and variance will be the same

for this new data. At the same time, we can use what we know already by treating µ and σ as

random variables and assigning a high probability to them taking the values we found from

the prior data. This is called the empirical bayesian approach. The subjectivist approach

to hierarchical bayesian inference is similar, but derives the prior from formal assumptions

about the model. A graphical model for this situation is shown in Figure 2.2.
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2.5 Neural Network Models

A neural network is a compact representation of a function mixing linear algebra, statistics,

and signal processing (Bishop, 1996). Each “node” in a neural network has a set of input

connections and a set of output connections. The type of neural network which will be

studied here is a classic three-layer neural network, defined by these equations:

g(x) =
1

1 + e−x
(2.1)

yh = g(
∑
i

xiwih) (2.2)

yo = g(
∑
h

yhwho) (2.3)

Where there are three layers: the input, hidden, and output layers, and with y being the out-

put of a single unit in a specific layer. g(x) is a transfer function applied onto the weighted

sum of the inputs to a node.

From a practical perspective, the weights (indicated by w) must be learned so as to ap-

proximate some function. In the case we are interested in the mapping from real-numbered

input to real-numbered outputs. To learn a mapping, we must find the weights which min-

imize some error function or loss function. In the classic 3-layer supervised learning task,

we are provided not only with the inputs, but also target or desired values do for the outputs

by a teacher. The error functional which we are interested in then is:

ED =
1
2

∑
o

(do − yo)2

This error or loss function is called sum-squared error or quadratic loss, which is appropriate

when we assume that there is fixed additive gaussian noise added to the outputs of the

networks (and wish to maximize the likelihood of the choice of weights given the data)

(Duda et al., 2001).
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2.6 Topographic Bias

The theory and justification for Topographic Bias is to provide a mechanism for favouring

short connections and enforcing locality of representations in the hidden layer. This con-

straint is inspired by brain organisation, which must permit sufficient connectivity among

neurons to carry out the necessary computations while still fitting the total axonal volume in

the skull (Jacobs and Jordan, 1992). In the case of the brain, this constraint is drastic, if the

brain’s approximately 1011 neurons were placed on a sphere and interconnected with 0.1 m

radius axons, fitting the total axonal volume in the skull would require a sphere over 20 km

in diameter (Nelson and Bower, 1990). Also, another constraint on neural organization is

the use of metabolic energy. Only a limited amount of metabolic energy can be used by the

brain, and the neural organization suggested to optimally conserve energy is one that has

tightly-interconnected clusters of neurons which have sparse projections to other clusters

(Laughlin and Sejnowski, 2003). Topographic bias, in a formal sense, is implemented by

scaling the magnitude of the error derivatives by a gaussian function of the length of the

connection. Formally, the partial derivative of the error with respect to wij is multiplied by

the following:

τ(l, j) = e
−l(i,j)2

σ2
τ

where

l(i, j) =
√

(j − i)2

This can be simplified to

τ(i, j) = e
−(j−i)2

σ2
τ

2.7 Bayesian analysis of Neural Networks

As a result of the nonlinearity introduced in the hidden layer, analysis of what computations

are being performed by the classic three-layer network are often intractable. However, it is
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possible to analyze the computational properties of the network in more detail if we adopt

the Bayesian analysis framework ((MacKay, 1992)). Similar to the proof/program dual-

ity in the field of programming languages, not only can this analysis framework give us a

way to understand the computations of the network, but also create more general models

from this understanding. Or, put another way, we can compile a general model for optimal

performance, which can generate new learning algorithms and a common framework to un-

derstand all of them.

An ingenious observation makes analysis of the classic three-layer network more tractable:

the two layers of weights can be analyzed as part of a general weight matrix that is being

learned. This new weight matrix can be written as wio, and is constrained by the dimen-

sions of smallest layer. Similarly, the biases at each layer can be combined with the weights

to form the parameter w. The learning of the weights then becomes a very simple problem:

how do we find the optimal w to map from the inputs to the outputs? Because we have

effectively combined the intermediate layers and collapsed the three-layer network into a

two-layer network, the energy functional changes slightly as well:

ED(w) =
1
2

∑
h

∑
o

(d(h)
o − yo(x(h);w))2

We wish to find the weights which minimize this energy functional (the error) (MacKay,

1992). The interesting parallel to statistics with this objective is that it is equivalent to

maximizing the likelihood of the weights assuming that the desired values have a fixed

level of gaussian additive noise applied to them. To see this, we note that the objective is to

find the best w possible, given the inputs to the network, the network architecture, and some

level of noise we are assuming exists in the desired values. D is the data fed to us as input,

A is the network architecture, and β is the amount of noise in the desired values. According

to our discussion of Bayesian inference, this yields the following rule for inference of the
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best w:

P (w|D,β,A) =
P (D|w, β, A)P (w|A)P (A)

Zm(β)

where Z is the partition function. If we assume that all weight vectors are equally likely and

so are all possible architectures, then this simplifies to just the normalized likelihood. Due

to the gaussian noise added to the desired values, the likelihood can be defined as follows:

P (D|w, β, A) =
e−βED(w)

ZD(β)

It is easy to see then that under the uniformity assumptions we made the log-transformed

posterior is just the average log-likelihood, which is

logP (D|w, β, A) = −βED(w)

Minimizing the sum-squared error defined above is thus equivalent to maximizing the log-

likelihood (MacKay, 1992). This of course is a more abstract view of what learning the

weights must do. We introduce and justify gradient descent to see how the weights can be

learned over time from the input. Then we will return to Bayesian analysis of the three-

layered network after discussing rigorously energy functionals.

2.8 Stochastic Gradient Descent

To maximize the log-likelihood and minimize the error, we introduce gradient descent,

which is by far the most popular algorithm for optimizations of this sort. The basic idea is

to take the partial derivative of the Energy functional with respect to the variable being op-

timized and update the variable additively over every iteration, weighted by a learning rate

(the sign of the additive change determines whether it is maximization or minimization).
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The partial derivative of interest is clearly

∂ED(w)
∂w

because we wish to minimize the error of our weights over time. Our weight change to

minimize this partial derivative is then

∆w = −ε∂ED(w)
∂w

In our prior analysis, the quantity of interest was the log-likelihood, which if we

take the partial derivative yields the following:

logP (D|w, β, A) = −βED(w)

∂ logP (D|w, β, A)
∂w

= −β∂ED(w)
∂w

It is easy to see that using gradient descent on the error is equivalent to using gra-

dient ascent on the log-likelihood, and, notably, the learning rate is actually equal to β, the

amount of noise that is assumed to be in the desired values given to the learner. Backprop-

agation can be understood as gradient descent on the error in w-space (MacKay, 1992).

2.9 Energy Functionals: Proof/Model Isomorphism

In the words of Schrodinger, “There is, essentially, only one problem in statistical thermo-

dynamics: ...to determine the distribution of an assembly of N identical systems over the

possible states in which this assembly can find itself, given that the energy of the assembly

is a constantE.” He then goes one to say that the individual states are independent and have

energies that sum to the constant E. Finally, he defines E as a constant of motion useful for

studying a system (Schrodinger, 1989).
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John Hopfield first noted the similarity between memory and minimizing an energy func-

tional (Hopfield, 1982), and the mapping between statistical thermodynamics and learning

algorithms has been fruitful, yielding the EM algorithm (Dempster et al., 1977) and Boltz-

mann Machine (Ackley et al., 1985) among others. However, the sense in which energy

functionals are used in that work is much more specific, tied to the existence of a Lyapunov

functional (Hopfield, 1982). We wish to study energy functionals with an interpretation

closer to Schrodinger’s.

There is a very interesting link between the log-posterior and the minimization of some

energy functional. This link was implicit in our prior analysis of the three-layer network.

Here we make it explicit. If our energy functional E is to be minimized with respect to θ,

then this immediately yields a probability model for the posterior, based on the Boltzmann

distribution (Schrodinger, 1989):

Theorem 1. For any functional E quantifying cost, energy, error, or loss associated with

believing parameters θ, when approximating random variable D, assuming a variability g

in the accuracy of our estimate:

P (D|θ, g) =
δ(θ)e−gE(θ)

ZE(θ)

where ZE(θ) =
∑

θ e
−gE(θ) is the partition function and δ(θ) is the degeneracy function

which gives the number of other parameters which have the same energy E(θ) as θ.

Proof. Consider an assembly of N parameters θ, each with an energy E(θ) = εi. We as-

sume that the most probable distribution of parameters among energy states is a maximum

of W , the number of different assignments. Each microstate gi has energy εi, and the num-

ber of ways a parameter could have energy εi is gi. If we have n independent parameters,

the number of ways the parameters can have energy εi is (gi)n.
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The number of waysN parameters can be distributed among the possible energies is
∏
i(gi)

ni ,

where ni is the number of parameters with each energy, subject to
∑

i ni = N and
∑

i εi =

E. Since there areN parameters and ni of them fit in the ith microstate gi, the total number

of ways to distribute all parameters into the microstates is:

W =
N !∏
ni!

∏
gni
i

If N is large, stirling’s formula(log n! = n log n − n) can be used. We take the maximum

of logW , subject to constraints to take advantage of stirling’s formula. This can be done

by using the Lagrange multipliers implied by our constraints:

f(ni) = logW + α(N −
∑
i

ni) + β(E −
∑
i

niεi)

When we use Stirling’s formula and set f(ni) = 0 to find the maximum, we obtain

ni =
gi

eα+βεi

Since this is just an approximation using combinatorics, we observe that the joint probabil-

ity of entering a set of microstates gi is multinomial, and that the only constraint that isn’t

satisfied by our expression for W to be a multinomial distribution is that gi isn’t normal-

ized. We assume that the a priori probability of entering a microstate is uniform. Instead of

normalizing gi, we instead find the maximum likelihood estimate for the probability of en-

tering the microstate gi, assuming that the probability of a particular assignment of energies

to microstates is multinomial:

Pml(gi) =
ni
N

is the maximum likelihood estimate for the probability of entering a microstate if the joint
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distribution on microstates is multinomial. Also, remember that
∑

i ni = N . Therefore,

Pml(gi) =
gi

eα+βεi∑
i

gi

eα+βεi

Pml(gi) =
gi

eα+βεi
∑

i
gi

eα+βεi

Pml(gi) =
gie

−(α+βεi)∑
i

gi

eα+βεi

Pml(gi) =
gie

−(α+βεi)

Zα,β

If we further assume that α = 0 and β = g, and in addition, remember that εi = E(θ), then

we have:

Pml(gi) =
gie

−(gE(θ))

ZE(θ)

If we take the likelihood of the set of parameters θ and g to be equal to the (maximum

likelihood estimate of) probability of microstate gi, then we have:

P (D|θ, g) =
δ(θ)e−(gE(θ))

ZE(θ)

where δ(θ) is simply a function which, given a set of parameters, returns the microstate

gi corresponding to it. This can be understood as the degeneracy of the energy functional

E(θ), because if it is greater than one, then many different parameters end up having the

same energy. This of course makes finding a minimum or maximum of E(θ) harder.

An important special case is when each parameter has a unique energy associated with

it, in which case δ(θ) = 1.

the log-posterior is simply:

log(P (θ|D, g)) ∝ −gE(θ) + logP (θ) + log δ(θ)
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which if each set of parameters θ is assumed to be equally likely a priori and to have a

unique energy, equals:

log(P (θ|D, g)) ∝ −gE(θ)

This is Mumford’s definition of an energy functional, and the common one which is used

in the computer vision community (Mumford, 1994). Therefore, if we define an energy

functional, we automatically have a statistical model of the network. This suggests that the

output of an energy functional can be viewed as a random variable.

Note that this model assumes a priori that all sets of parameters have a unique energy asso-

ciated with them. If this is not true, then each term in the probability should be weighted

by a different degeneracy factor gi, corresponding to the number of different sets of pa-

rameters for which E(θ) is identical. So the common definition of energy functional as it

is used in both the neural networks and computer vision assumes many things statistically.

Degeneracy is actually quite common. In fact, the sum-squared error or quadratic loss has a

degeneracy δ(θ) = 2 for all θ because of the reflective symmetry of a quadratic function. A

proof of this is not relevant to the current work, because we never treat degeneracy directly.

However, in another paper that is in progress it is calculated in full from the symmetries

of the energy functional (and thus invokes group theory). In future work it is likely that

degeneracy in energy functionals can be used to find optimal energy or loss functionals for

a particular learning problem. This in fact follows from the fact that the log-likelihood of

the probability associated with the energy function includes a penalty term for degeneracy.

Curiously, in the case of statistical mechanics, this assumption was made exclusively by

Boltzmann and other proponents of classical physics (kinetic theory). This alternative form,

which keeps the degeneracies, is attributed to a reformulation of the Boltzmann distribution

in the early history of quantum mechanics (Schrodinger, 1989).
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This statistical model is also equivalent to assuming that the noise model is fixed and gaus-

sian (with a mean of zero and standard deviation 1√
2g

), but only if the energy is in some

way a quadratic function. Thus an energy functional, which tells us a great deal about the

functioning and learning of the system, also provides us with a statistical model of that sys-

tem.

Formally, the statistical model (Boltzmann distribution) has the property that low-energy

states are more probable than other states when the system is at equilibrium and has con-

verged to a solution (Schrodinger, 1989).

The following sections assume that δ(θ) = 1 for all θ. This is because gradient descent

as it is used in backpropagation assumes it and that is the algorithm we are analyzing.

2.9.1 Composite Energy Functionals

Another intriguing bit of analysis is what happens when energy functionals are summed.

Specifically, what does this do to the statistical model of our network? If there are two

constraints at play in the network, defined by energy functionals EP and EQ, then their

composite energy functional is simply EPQ = EP + EQ. By Theorem 1, the following is

true of the composite functional EPQ:

P (D|θ, g) =
e−gPQEPQ(θ)

ZE(θ)

P (D|θ, g) =
e−(gPQ/gP )EP (θ)e−(gPQ/gQ)EQ(θ)

ZE(θ)

P (D|θ, g) =
e−(gPQ/gP )EP (θ)e−(gPQ/gQ)EQ(θ)

ZEP
(θ)ZEQ

(θ)
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P (D|θ, g) =

[
e−(gPQ/gP )EP (θ)

ZEP
(θ)

] [
e−(gPQ/gQ)EQ(θ)

ZEQ
(θ)

]
The same, of course, can be said of any composite energy functional. A composite energy

functional represents the log-posterior of multiple independent gaussians. That is, if the

outputs of both EP and EQ are random variables, the probability of both having a certain

value during optimization of EPQ is decomposable: the sum of the probabilities of each.

This means there is a principled way of decomposing energy functionals into basic, statistically-

independent energy functionals. This is isomorphic to the statistical mechanics conception

of weakly-interacting or independent systems (Schrodinger, 1989): the network is doing

learning of multiple things at once, rather than learning one thing. This is equivalent to the

concept in optimization of a “tradeoff”: learning with respect to one measure alone prevents

learning anything else. The best learning algorithm for a composite energy functional will

try to learn best with respect to all measures. In other words, EP ⊥ EQ. However, when

EPQ is observed, then the two become dependent. This is shown perfectly in the following

graphical model (Figure 2.3):

Ep Eq

Epq

Figure 2.3: This is a graphical model for a composite energy functional EPQ

Interestingly, when EPQ is observed, along with EP , the probability of EQ goes

down. This is a classic example of the explaining away effect mentioned before. In some

sense then, EP and EQ are inversely related, when the total energy is known, and increases
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in certainty about EP mean more uncertainty about EQ. This is another, more formal way

of analyzing a tradeoff in optimization.

2.9.2 Basic Energy Functionals

A basic energy functional is an energy functional E(θ) that cannot be simplified into

statistically-independent components during optimization. That is, when learning using

this energy functional, only one thing is being learned or optimized. All terms in the en-

ergy functional are coupled, or strongly related. A concrete example of such an energy

functional is EB = EPEQ. By Theorem 1 the statistical model for EB(θ) is:

P (D|θ, g) =
e−gBEB(θ)

ZE(θ)

P (D|θ, g) =
e−gB(EP (θ)EQ(θ))

ZE(θ)

P (D|θ, g) =
e−gB(EP (θ)

EQ(θ)
)

ZE(θ)

which doesn’t decompose into two statistically-independent statistical models. That is, if

the outputs of both EP and EQ are random variables, the probability of both having a

certain value during optimization of EB is not decomposable: both are strongly coupled.

This is illustrated in the graphical model for the energy functionals (Figure 2.4):

Interestingly, if any of the energy functionals are known with any certainty, the other

two become uncertain (again by explaining away effects). Under no circumstances can any

of the energy functionals be independent.

2.9.3 Improper Energy Functionals

When using energy functionals to guide learning, it is often taken for granted that all parts

of the energy functional will affect learning. However, this isn’t true, especially for what are

called improper energy functionals. The definition of an improper energy functional E is
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Ep

Epq

Eq

Figure 2.4: This is a graphical model for a basic energy functional EPQ

an energy functional which has terms not being optimized by the learner. In practice, these

can result from aspects of a statistical model which come from prior information on the

architecture of a network, or other sources. Those terms which are not in terms of variables

being optimized by the learner effectively dissapear in the partial derivative with respect to

the optimized variables during gradient descent.

2.9.4 An Energy Functional for Topographic Bias

Now we can demonstrate how this expanded set of methods for analysis of energy func-

tionals can be of use. To formally study what impact some constraint to the network has on

learning, it is useful to find the partial derivative of the energy functional with respect to the

weights. First, we write an expression for the partial derivative of the energy functional Eτ

as we defined topographic bias:

∂Eτ
∂wij

= τ(i, j)
∂ED(w)
∂wij
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An energy functional which has this partial derivative is:

Eτ (w) =
m∑
i

n∑
j

τ(i, j)ED(wij)

with w being an nxm matrix, and where τ(i, j) = e
−(i−j)2

2σ2
τ is a matrix.

We show that the partial derivative is as desired below:

∂Eτ
∂wij

=
∂(

∑m
i

∑n
j τ(i, j)ED(w))
∂wij

∂Eτ
∂wij

=
∂(τ(i, j)ED(w))

∂wij

∂Eτ
∂wij

= τ(i, j)
∂ED(w)
∂wij

an approximate form for Eτ is derived below:

Eτ (w) =
m∑
i

n∑
j

τ(i, j)ED(w)

Eτ (w) = ED(w)
m∑
i

n∑
j

e
−(i−j)2

2σ2
τ

Eτ (w) =
ED(w)
eσ2

τ−2

m∑
i

n∑
j

ei
2+ij+j2

Therefore, the standard deviation of the gaussian we are scaling the weights by (στ ) should

be as high as possible, but no higher. That is, this energy functional penalizes decreases

in the standard deviation of the topographic bias. However, if the standard deviation is too

high, then the resultant energy will be low, even if the error of the current set of weights

is high. Therefore the standard deviation should also avoid being too high. This tradeoff

between being able to correct for changes in error and not throw away too much global

information is best resolved with a fairly localized, small standard deviation for the to-
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pographic bias (the exponential grows quickly). Also, there is a very strong penalty on

increases of mn, the size of the weight matrix. For a fixed topographic bias and network

architecture, this energy linearly increases with increases in error.

The statistics of the model are interesting chiefly because in the context of the statistical

model implied by Eτ (by Theorem 1), the energy formed from the sum-squared error is a

basic energy functional which cannot be decomposed into independent gaussians. That is,

Eτ cannot be decomposed into a combination of simpler energy functionals, and what this

means is that the error isn’t a separate term in the model. We can only discern the error

from Eτ , which means that everything else but ED(w) must remain fixed, or else the like-

lihood of the weights will not be related closely to their error. This of course also means

that we have to choose the architecture of the network and the amount of topographic bias

very well before even seeing any inputs, which can only happen if we have a prior model

of both these things.

2.9.5 An Energy functional for weight decay

The energy functional for weight decay is

Ew,α =
1
2

∑
i

∑
j

αw2
ij

which penalizes weights that grow too large. In a sense, minimizing this energy functional

means using models that are as simple as possible. Also, and most importantly, learning the

weights to fit the data precisely makes the neural network inflexible. Specifically, if input

that the network has never seen before is presented to it, it does horribly. The idea is that

the network should learn weights that will generalize to new inputs by keeping the weights

as small as possible (MacKay, 1992). Intuitively, this means that an overly complex model

which has an internal model of every type of change in the input leads to what statisticians
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call “overfitting,” the equivalent of fitting a function to plotted data by connecting the dots

in the scatterplot. Obviously such a function would fail to fit a new datapoint unless it was

identical to one already seen before.

2.10 Bayesian Ideal Observer Analysis in psychophysics

The central tenet of ideal observer analysis is a constructed “ideal observer,” which is a the-

oretical device that performs a given task in an optimal way given available information and

specific constraints. Ideal observers do not perform without error, but at the physical limit of

what is possible given the constraints imposed and information available. Because there is

an inherent complexity and uncertainty in the visual environment, the ideal observer model

must be described in probabilistic (statistical) terms (Geisler, 2003). This type of analysis

has been successfully applied to much of lower-level visual perception, including character-

izing the simple-cell responses in V1 (Simoncelli and Olshausen, 2001) and multi-sensory

integration (Knill and Richards, 1996).

Ideal observers are derived from Bayesian statistical decision theory. In this framework,

complex goals are represented with a utility or loss function, u(r, ω), which specifies the

cost associated with making response r when the state of the environment is ω (Berger,

1993). The optimal response for an ideal observer is then the MAP estimate over all states:

R = argmax
r

[∑
ω

u(r, ω)p(S|ω)p(ω)

]

and before going too astray from our original formulation of learning problems, it is as-

sumed that the particular utility function u(r, ω) = −grE(r) can be chosen. Finally, this is

only true for the retinal image as it is presented. To make ideal observer analysis amenable

to constraints, Geisler et al. suggest transforming the stimulus S into an intermediate rep-

resentation Z and using the same formula for an optimal response r, replacing S with Z
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(Geisler, 2003). In addition, the utility, loss, and, ultimately, energy function can be mod-

ified to introduce constraints. So the final modified expression for the response of an ideal

observer is:

R = argmax
r

[∑
ω

−grE(r)p(Z|ω)p(ω)

]

2.11 Ideal Classifier Analysis

In the case of an ideal observer in which there are cn different classes, and the observer

must respond with the correct class ci given a stimulus S or intermediate representation Z,

which is a special case of the general ideal observer. The possible states of the environment

are the classes c = c1, ..., cn, the responses are the class labels, and the utility for each

response is either 1 or 0. This yields the following ideal classifier:

C = argmax
c

[∑
c

p(Z|c)p(c)

]

of course, any classifier can be constructed from a function approximator which tries to find

a function from the intermediate representation Z to the class labels ci that minimizes the

energy gcEc. Thus the ideal classifier can be understood as finding the MAP estimate of the

class given the intermediate stimulus Z. The MAP estimate can be learned by a three-layer

neural network that learns a mapping w from the intermediate representation Z to the class

labels (learning the MAP estimate for w allows the network to generate C) (Duda et al.,

2001). This means that a particular implementation of the ideal classifier is gradient descent

on the energy gcEc of the mapping w from intermediate representation Z to class label c,

which if we assume a priori that all classes are equally likely is the maximum likelihood

estimate, given by:

W = argmax
w

(logP (Z|w, β, A))

W = argmin
w

(βED(w))

39



2.12 Cognitive Neuropsychology and Computational Models

The logic of double-dissociation has already been discussed in part 1. Most interesting is

how to interpret a demonstrated double-dissociation in a neural network. Or, more rigor-

ously, when such an empirically-derived double-dissociation can provide evidence that the

computational assumptions behind a model are valid. Plaut and colleagues have discussed

this at great length (Plaut, 1995); (Plaut and Shallice, 1993). The most important criteria

is to know what assumptions are being made by the model, and justify each of those as-

sumptions. The early attempts at computational models of patients with brain damage were

largely unprincipled in this regard, notably the early Hinton and Shallice model (Hinton and

Shallice, 1991).

One aspect of using neural networks as ideal models of a task is that there are many fewer

units in a neural network than in an actual network of neurons in the brain. Thus each unit

cannot be taken to be equivalent to a real neuron when interpreting the behavior of the ideal

observer. Instead, each unit should be interpreted as representing a large cluster of neurons.

That is, ideal observer models using neural networks must be analyzed as a coarse measure

of the impact of structure on behavior. When a single unit is lesioned in our ideal observer,

it is equivalent to lesioning a large number of interconnected neurons (Plaut and Shallice,

1993).

2.13 Eccentricity Bias Models of Object Representation

2.13.1 Ideal in Classification Error

In the ideal observer that was constructed, log-polar transformed images of faces and houses

at varying scales were the inputs Z. These transformed stimuli are meant to stand for the

intermediate representation Z of retinotopic visual cortex. The responses available are 34

distinct faces and 9 distinct houses. The desired outputs specified by the trainer are the cor-
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rect identities corresponding to each input. To be specific, a feedforward, three-layer neural

network was taken to be the ideal observer for this task whose weights were learned using

backpropagation. The inputs are bitmaps, with each unit in the input layer corresponding

to a pixel in the bitmap (1024 units total). The hidden layer is a bottleneck, significantly

smaller than the input layer, and a topographic bias was imposed on the hidden layer weights

in order to enforce locality. The number of hidden units is large initially, but progressively

diminished as the ideal observer is corrupted. The hidden layer receives input from every

input unit. A small weight decay term is used to allow the network to learn more general

patterns, and a negative biasunit was added to both layers. The output layer is localist and

corresponds to each of the different responses. Due to the log-polar transformation of the

images, increasing scale means horizontal translation. This means that face images will

activate primarily center-biased portions of the hidden layer, with house images extending

more peripherally in the hidden layer. The weights between the input units and the hiddens,

in addition to the layer between the hidden units and the outputs are initially random values

in the range [−0.25, 0.25] before training. The weights from bias units are initially set to

random values close to zero. The metric used for topographic bias is the horizontal distance

between two units. Note that delta-bar-delta and momentum were used, but since they only

speed up the learning, their effects on learning (ie on the energy functional) is ignored. See

Figure 2.5 for a picture of the initial network architecture, including an example of the log-

polar face input.

The face inputs are 32x32 bitmaps, which vary in the spacing between the eyes, nose, and

mouth. The building inputs were different in a more global sense, with changes such as big-

ger windows, a different base, and different shapes for the roof. In addition, for the training

regime, each input was presented at nine different scales, decreasing from 100 to 60 percent

in 5 percent decrements. If the network was presented with the pure bitmaps, it could possi-

bly learn the within-category classification task based only on the number of active units in
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the input layer. To circumvent this, we used gaussian smoothing, and presented the blurred

image to the ideal observer. Also as a part of the training, smaller face images and larger

house images were presented more frequently as input to the ideal observer. Specifically,

the frequency of presentation was approximated by scaling the error derivatives such that

as the scale of face inputs increased, their impact on learning decreased. As the scale of

building inputs increased, their impact on learning increased. This allows us to impose a

prior constraint on the scale of faces and houses inspired by the statistics of actual images

(faces are more likely to be small in scale than houses).

In the training regime there is much to be justified. First, there is controversy surrounding

the use of backpropagation in computational models of neural systems (Plaut and Shallice,

1993). We are using backpropagation with no claims to the algorithm being implemented

in learning representations of objects. Instead we claim that it is an ideal observer for the

task of face and object recognition within-category. This is because it is ideal in terms of

mean-squared error. The controversy is still alive because backpropagation is a supervised-

learning method, which assumes that there is a teacher giving the network explicit feedback.

This is well-known to be biologically-infeasible as a model. However, as we shall see later,

the assumption that we have access to the correct response for every input can be relaxed

without changing the important computational assumptions of the ideal observer’s energy

functional. The feedforward nature of the architecture is not meant to be any serious claim

about the connectivity of the brain, as it is known to be rife with feedback loops. Again,

this is considered to be an ideal observer, and thus behaviorally isomorphic to the neural

representation of faces (not structurally isomorphic, in detail). Finally, the initially strong

negative bias is to speed up learning, because the network will learn to turn off all but one

unit anyway due to the localist nature of the output layer.

To analyze the learning of the network, we characterize the energy functional minimized
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during learning. The utility of the isomorphism between energy functionals and statistical

models is that we can translate between the two. This means that if we have a statistical

characterization of the network’s learning, we can convert that into an energy functional,

and vice-versa. We will take advantage of that with analysis of this network. Part of what

we know already about the learning behavior is in the language of energy functionals, and

the other part is in the language of statistics. We know that the energy functional that im-

pacts learning directly and is optimized is the sum of EW (w) and Eτ (w), because of the

imposition of a topographic bias and weight decay during each weight update. We also

know that the architecture of the network in the hidden layer has face units closer to the

inner (leftward) section of the output layer, whereas the house output units are in the outer

section of the hidden layer (as the log-polar transformed image is being learned). We can

model this as two gaussian priors for the network architecture, one for faces, and one for

houses, with the mean of the face prior being 0, and the mean for the house prior being

strictly greater than 0 (and the standard deviations being proportional to the number of rep-

resenting units a priori for each class). We converted the priors into energy functionals via

Theorem 1:

Efaces(σf ,m) =
1

2σ2
f

m∑
i=0

i2

which can be simplified by solving the summation:

Efaces(σf ,m) =
1

2σ2
f

m(m+ 1)(2m+ 1)
6

Ehouses(σh,m) =
1

2σ2
h

m∑
i=0

(i− µh)2

which can be simplified by solving the summation:

Ehouses(σh,m) =
1

2σ2
h

[
m(m+ 1)(2m+ 1)

6
− µh

2
m(m+ 1) + µ2

hm

]
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Finally, we scaled the derivatives according to the size and type of stimuli. This means

that topographic bias isn’t the only factor which acts on the error derivatives. Thus the

topographic bias energy functional we derived before is not enough. However, from the

derivation of that energy functional, it is easy to see that the energy functional Eτ is now

Eτ (στ ,m, n,w, fs, hs, f, h) =
m∑
i

n∑
j

τ(i, j)ψ(fs, hs, f, h)ED(w)

where ψ(s, f, h) = (1 − s)f (s)h, with s being the scale in percent, and f and h being

indicator variables signifying whether the image is a face or a house. In a simplified form,

this becomes:

Eτ (στ ,m, n,w, s, f, h) =
sh(1− s)fED(w)

eσ2
τ−2

m∑
i

n∑
j

ei
2+ij+j2

The total energy functional is then:

Eeb = Eτ (στ ,m, n,w, s, f, h) + EW (w, α,m, n) + Efaces(σf ,m) + Ehouses(σh,m)

Note that this is an improper energy functional, because when we take the partial derivative

with respect to wij, we have

∂Eeb
∂wij

=
∂Eτ
∂wij

+
∂EW (w)
∂wij

∂Eeb
∂wij

= ψ(fs, hs, f, h)τ(i, j)
∂ED(w)
∂wij

+ αwij

as is apparent, the energy functionals associated with the priors dissapear when we opti-

mize with respect to the weights. However, if we were to optimize with respect to the

network architecture, specifically to the number of rows m in the matrix w, these terms

would suddenly become very important, and the weight decay term dissapears instead. The

energy functional is also composite, so there is a tradeoff between modularity/topographic
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bias, variance/generalization, and how much of w is devoted differentially to the repre-

sentation of faces and houses. An interesting tradeoff to analyze is that between the units

devoted to representing faces and the units representing houses. If σf > σh, then surpris-

ingly Efaces < Ehouses, for all m, which is equivalent to saying that adding more units to

represent houses is more costly than for adding face-representing units (since m is the total

number of rows, and increasingm increases both the number of units representing faces and

the number representing houses). This will become more important in our analysis of the

performance of the network, as we actually vary the architecture’s hidden layer size. Also

note what was said about the topographic bias: the network architecture should be learned

optimally a priori. This can be done by optimizing with respect to m. Another very in-

teresting tradeoff is between modularity and generalization. If the modularity is very high,

then this actually prevents generalization of the network’s performance to new faces and

houses. Again, the formal properties and computational assumptions of this ideal observer

will be analyzed with more rigor in tandem with the results.

2.14 Experimental Design

In our preliminary remarks on the learning behavior of the network, it was mentioned that

the number of units in the hidden layer should be as low as possible. Also, the number

of units devoted to houses must be as small as possible, with the opposite being true for

faces. With this in mind, the number of units in the hidden layer were varied. The ideal

observer’s hidden layer first was made quite large, 32x16, and progressively corrupted by

reducing the hidden layer size. Recall that the horizontal distance was the only distance

important in topographic bias. Therefore reducing the number of rows in the hidden layer

while keeping the number of columns constant makes the effect of topographic bias the

same on each corrupted ideal observer. This means that we can claim that any changes

in network performance are not due to effects from the topographic bias. Any changes in

network performance must then be due to a change in the number of units in the hidden
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layer. In the language of our energy functional, we varied m and controlled for all other

parameters. The hypothesis from our energy functional is that a small hidden layer, with

a larger proportion of units selective to faces than to houses, will best match the behavior

seen in the activation studies mentioned before.

The ideal observer and the corrupted observers were trained to classify the faces and houses

within-category and between-categories with 100% accuracy. In order to study the selectiv-

ity and localization of the representation formed by each network, we lesioned a group of

three columns of the hidden layer with varying eccentricity (horizontal position in the hid-

den layer) and recorded the classification accuracy for both faces and houses of the network

on novel faces and houses (the test set). Note that the both the training set and the testing

set were taken from the same pool of images, and randomly assigned to either set.
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Figure 2.5: This is the network architecture for the ideal observer. The layer of units at the
top is the output layer, the group of units under that is the hidden layer, and the units under
the hidden layer are the input layer. The absolute value of a unit’s activation is the unit’s
brightness, with red indicating positive activation and blue indicating negative activation.
The input layer activations correspond to pixels on a log-polar transformed bitmap of a face.
Each column in the input layer represents a different eccentricity, and each row a different
orientation (starting with zero degrees at the upper left corner and zero eccentricity at the
lower left). Thus the leftmost section of the input layer corresponds to foveal input, and the
rightmost section corresponds to peripheral input.
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Chapter 3

Results and Analysis
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3.1 Results

After constructing the ideal observer and reducing the number of rows in the hidden layer,

we tested how the classification error for both faces and houses was localized in eccentric-

ity. The results are shown in Figures 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. The first four graphs

are of the classification error as a function of the eccentricity of the column lesioned for a

set number of rows in the hidden layer. The last two graphs are of classification error of all

four networks for faces and houses respectively as a function of eccentricity of the lesioned

column.

It can be seen that in Figures 3.5 and 3.6 the corrupted ideal observer with m = 4 rows

in its hidden layer also had the most eccentricity-biased selectivity to faces and houses.

That is, the maximal selectivity as a function of eccentricity was attained when the number

of rows was minimal. Interestingly, there is an apparent relationship between the eccentric-

ity of the lesioned columns and the classification accuracy. The face-selective area is more

central (low in eccentricity), whereas the house-selective area is more peripheral. This is

exactly the type of representation shown to exist in human visual cortex by the activation

studies. The eccentricity bias does not segregate object representations completely. In fact,

it is a topographic, overlapping representation. This pattern also emerges from our ideal

observers, as for intermediate eccentricity lesions the impact to classification accuracy is of

similar magnitude. This of course also agrees with the eccentricity bias hypothesis.

Finally, recall that one aspect of the energy functional introduced by the architecture is

that the number of units used to represent faces is much higher than the number for houses,

and this disparity increases with decreasing m. Because the double-dissociation was most

apparent in the corrupted observer with the least rows, this implies that the number of units

used in face recognition is much greater than the number used for house recognition. This

relationship can be seen in Figure 3.4, in which the classification accuracy for faces is
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lower than for houses when lesions are done at 68% of the eccentricities. This suggests that

face-selective units outnumber house-selective units by almost a ratio of 7 : 3. When we

consider that each unit in an ideal observer’s hidden layer represents tens of thousands of

cells, this makes the number of face-selective neurons predicted by the model much greater

than the number of house-selective neurons. This in turn implies that the dimensionality of

the observer’s representation of faces is much higher, meaning that higher-resolution infor-

mation is used for face recognition than for house recognition. This again agrees with the

eccentricity bias hypothesis.

Interestingly, the number of units activated in the input for face images that were learned by

the network was relatively low compared to the high representational power of the approx-

imately 44 units (68 percent of 64) which are most face-selective. This implies that there

are relatively few units used to represent any one face. In contrast, for house recognition,

the number of units active in the input layer for each image of a house was much higher

relative to the reduced representational power of the 20 units that are more house-selective.

This means that most of the house-selective units are used to represent any given house.

What does this mean? Because of the high dimensionality of the representation for faces, a

face is easier for us to identify than a specific house. As a consequence, objects that require

high-resolution information also are represented very efficiently. Not surprisingly, this has

also been found in the outstanding performance of independent components analysis as a

classifier for faces (Bartlett and Sejnowski, 2005). An intriguing consequence of this ideal

model’s behavior is then that we can do face recognition in a way that is optimal in terms

of coding efficiency. So, using the language of information theory, perhaps the way objects

are represented in the visual system is a function of how efficient of a code we can make

of them. There are of course many examples of optimal encodings throughout the visual

system, but mostly in early vision (Olshausen and Field, 2002) (Doi et al., 2003) (Laughlin,

1989).
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Figure 3.1: This is the classification on novel houses and faces error for the largest (uncor-
rupted) ideal observer as a function of the eccentricity of the cluster of columns lesioned.
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Figure 3.2: This is the classification error on novel houses and faces for the corrupted
observer with 16 rows in its hidden layer as a function of the eccentricity of the cluster of
columns lesioned.
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Figure 3.3: This is the classification error on novel houses and faces for the corrupted
observer with 8 rows in its hidden layer as a function of the eccentricity of the cluster of
columns lesioned.
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Figure 3.4: This is the classification error on novel houses and faces for the corrupted
observer with 4 rows in its hidden layer as a function of the eccentricity of the cluster of
columns lesioned.

54



Figure 3.5: This is the classification error for novel houses of all four ideal observers as a
function of the eccentricity of the cluster of columns lesioned.
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Figure 3.6: This is the classification error for novel faces the largest (uncorrupted) ideal
observer as a function of the eccentricity of the cluster of columns lesioned.
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3.2 Analysis

Now that we have established that the ideal observer we constructed was indeed in agree-

ment with the activation studies and eccentricity bias hypothesis, we can look at further

assumptions that are made in the model which contribute causally to the learning behavior

of the network. The most rigorous models of causality are, conveniently, graphical models

(Spirtes et al., 2000); (Pearl, 2000); (Druzdzel and Simon, 1993). So if we want a causal

model of the learning done by our ideal observer, it suffices to consider its graphical model.

Using the hierarchical bayesian methods and considering the value of the energy functional

a random variable, we can draw the graphical model pictured in Figure 3.7. The depen-

dencies in this graphical model are just the parameters used in the energy functional which

are or could be learned. For example, Eeb is the sum of four different energy functionals,

which if the energy functionals do not share parameters would make them independent of

each other. However, clearly many different energy functionals rely on the number of rows

m and the weights w. The graphical model for the learning behavior of the network is quite

complicated, so analyzing learning behavior in an ad-hoc way is frought with peril.

First, we observe that graphical models encode conditional dependencies between

random variables. This means that we can actually discover new conditional dependencies

that were not even considered by ad-hoc approaches. Our great ally in causal analysis is

d-separation, which was described before and first derived in the context of causality (Pearl,

2000). Even more significant is that d-separation can be checked algorithmically in a graph-

ical model, almost directly from the definition of an active trail (though see (Shachter, 1998)

for a popular alternative).

This means we can easily and methodically discover important causal dependencies in any

graphical model. Before summarizing the results from d-separation, we first mention the
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Figure 3.7: Graphical model of the learning that is done by the ideal observer. σf is propor-
tional to the number of units selective to faces, σh to the number of units selective to houses,
m to the number of rows, n to the number of columns, στ to the amount of modularity or
locality in the representation, w to the learned mapping between inputs and responses, s
to the scale of the image, f and h indicating whether the image is a face or a house, ED
to the error of the observer’s output, and Ew to how narrow-minded or context-specific the
observer’s learning is.
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more obvious causal dependencies. Also, what does observation mean in the context of our

ideal observer? When a variable in the graphical model is observed, it means we know what

the current value of the variable is. If our analysis of the ideal observer’s learning behavior

is to be as general as possible, we should consider that we can only know what the value of

a variable is when we are not learning with respect to it. That is, if we manipulate a variable

directly in the learning process, then it is considered to be unobserved. This is intuitively

because if we knew what the value of the variable was, then we wouldn’t be attempting to

learning it. First, we notice that there are explaining away effects if we observe only Eeb,

as the network we implement does. That is, knowing with any certainty the modularity,

generalization, resources devoted to face recognition, or resources devoted to house recog-

nition reduces other three. Therefore, all four of those energy functionals are dependent in

the ideal observer. This argues against hap-hazard optimization of one energy functional

without taking the others into account. It could be argued though that this could be an arte-

fact of our model that wouldn’t be true of the visual system. To counter that argument, we

invoke the powerful d-separation methods described before.

The great power of causal analysis in graphical models is that we can find dependencies

that are more general than just the ones seen in our specific ideal observer. So we can

even see which causal dependencies exist independent of our specific implementation of

the ideal observer. So first we relax the assumption that we know Eeb. Now we can discuss

dependencies not in our implementation of the ideal model, but are still essential to learning

which was shown to be essential to the eccentricity bias hypothesis.

Applying d-separation on Figure 3.7, we find that στ ⊥ ED. This states that the amount of

locality or modularity is always independent of how high the classification error is. This is

very good news indeed for the modularity hypothesis.
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3.2.1 Known network architecture

If we observe m, then by their d-separation Ef ⊥ Eh ⊥ Eτ ⊥ ED ⊥ EW . Note that we

observe m when the network architecture is already determined. That is, when the number

of neurons in the brain is set. Therefore, if the number of neurons is constant, modularity is

independent of everything else, and should be optimized as Kanwisher prescribes (as much

as possible).

Also, if the network architecture is set, then the number of neurons selective to faces and

houses has no impact on how local the representation is or how high the classification error

is. This suggests that the reason for the high dimensionality of the face representation is

not to reduce classification error or to increase modularity, but due to the statistics of face

images.

Finally, ifm is observed, then s is d-separated from Ef and Eh, so therefore Ef ⊥ s|m and

Eh ⊥ s|m. This is interesting because it suggests that the number of units selective to faces

and houses are independent of the scale of the image in our ideal observer. This means that

our ideal observer can do scale-invariant face and house recognition.

3.2.2 Known weight matrix

What causal relationships hold if we consider a variant of the ideal observer that has in-

nate knowledge of how to do face and house recognition? In this case w is observed,

which under d-separation means Eτ ⊥ ED ⊥ Ew. Therefore, no matter whether m is

observed, if w isn’t observed, a change in any variable will affect the generalization of what

is learned. This is because any two nodes which are not d-separated are causally depen-

dent. the ideal observer’s learning is. So recklessly declaring that there is a domain-specific

face module is equivalent to saying that domain-specificity and localization are optimized

independently from any other factors. This means that if there is no learning in the human

brain’s object and face recognition processes, then Kanwisher might actually be right about
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domain-specific modules for face recognition. There is then an empirically-testable predic-

tion. If learning and synaptic plasticity are demonstrated in the FFA, then our criticism of

the modular hypothesis still holds. However, if there is no synaptic plasticity in the FFA,

then face recognition is fully modular, domain-specific, and innate. However, the evidence

supporting the expertise hypothesis suggests that there is plasticity in this region, and so it

is more likely that face recognition is not modular.

3.3 Discussion

It is evident that simplistic hypotheses that are not quantified mathematical models can have

major pitfalls. The modularity and expertise hypotheses both are very simple models of ob-

ject recognition, and thus fail to capture all of the essential features of how the human brain

recognizes faces. Eccentricity bias theory provides a specific and mathematical account of

face recognition, and our constructed ideal observer model seems to capture the richness of

behavior reported in the activation studies. In addition, it can be interpreted that eccentricity

bias is also a theory of optimal coding and image statistics. The ideal observer constructed

teaches us two things: first, face recognition requires higher dimensional representation

and efficient coding; second, object recognition requires a balance of modularity, general-

ization, units selective to faces, and units selective to houses. Any more naive account will

perhaps fail to capture the full range of human object representation.

Graphical models proved to be quite useful for discovering causal relationships in

the ideal observer. Even more fascinating than this is the fact that they can be used to

turn the ideal observer we constructed into a face and object recognition algorithm which

is guaranteed to have the same learning behavior as gave rise to the effects seen in the

activation studies. That is, we can “compile” our ideal observer into a face and object

recognition algorithm that behaves the same way as the human subjects in the activation
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experiments.
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Chapter 4

ECCO: Eccentricity-biased Object

and Face recognition
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4.1 Graphical Optimization Models

There are many pitfalls associated with optimizing energy and loss functionals, and the dif-

ferent methods fail to be sufficiently general or fast to be applied to many different learning

problems. Simulated annealing has guaranteed convergence to a global maximum or mini-

mum (Kirkpatrick et al., 1983), but is notorious for being extremely slow and hard to work

with, due to the careful tuning that is required for the temperature schedule. There are nu-

merous problems with gradient methods (Steihaug, 1983), as they are notorious for getting

stuck in local maxima or minima, and also have free parameters to be tuned. Expectation-

maximization, or EM (Dempster et al., 1977) is known to be much slower than gradient-

based methods and also converges to local optima. However, it should be said that EM

applies more generally than gradient methods, which generally cannot deal well with in-

herently probabilistic optimization problems. Finally, the more recent methods of convex

optimization (Boyd and Vandenberghe, 2004) show great promise, but one of the most often

used convex optimization methods, convex hull, suffers from space complexity issues for

intermediate results and poor performance with degeneracies in the energy funcional (Avis

and Bremner, 1995).

An alternative method, which is both quite general and able to handle degenerate energy

functionals, is to use Theorem 1 to translate energy functionals into graphical models and

then to do a MPE query to obtain optimal estimates for the free parameters in the energy

functional. This method finds optimal values for each of the free parameters, meaning that

it is designed to handle multivariate optimization problems. An MPE query on a graphical

model gives the most likely assignment to all free parameters given the data. In fact, as

shown in chapter 2, section 8, gradient descent is a special case of a MPE query which as-

sumes a uniform prior on all parameters being optimized (MPE is a special case of MAP).

These so-called Graphical Optimization Models do not need such assumptions, since a hi-

erarchical model can be made and prior information about the parameters being optimized
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βw

D

Figure 4.1: This is a simple example of a graphical optimization model. When a MPE query
is performed, if the prior probabilities of both w is uniform, and β is a fixed constant, then
this is equivalent to MLE for w, and thus gradient descent.

can be integrated into the optimization model. For example, say we wish to optimize some

mapping w with respect toED(w) assuming a learning rate β. Then, according to Theorem

1, the statistical model for this energy functional is:

P (D|w, β) =
δ(w)e−βED(w)

Zβ

which can be translated into a graphical optimization model by translating the only condi-

tional dependency in the model,D|w, β (see Figure 4.1) the power of such a way of looking

at optimization is that we are not required to assume nothing before we search for optimal

parameters. If we have prior knowledge about the infeasibility of a range of values for the

parameters, we can reduce the search space substantially. Importantly, we can derive a prior

distribution for the parameters based upon the statistics of the data D . A powerful way of

doing this for images is by using minimax entropy methods (Zhu et al., 1997); (Huang

and Mumford, 1995). Also, because the probability distribution includes the degeneracy

function δ(θ), we see directly the effect that the degeneracy of the energy functional has

on our ability to find optimal estimates. This means we can potentially improve our energy

functional and handle degeneracy in a robust way (recall that this was a problem for convex

hull algorithms). A future paper will detail further work in this area.
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4.1.1 Caveats of graphical optimization models

Of course, graphical optimization models are not a panacea. Finding an exact MPE on

arbitrary graphical models is an NP-complete problem (Bylander et al., 1991). However,

this means that the general exact inference problem is very hard, not that it is hopeless.

In practice there are many approximations which sidestep the computational complexity of

MPE. The most often used approximation is loopy belief propagation (Pearl, 1988), which

converges to the correct MPE (using the max operation instead of sum) only in the case of

an acyclic graph (a polytree, to be precise). The error of the MPE query is actually quite

low though for most graphical models, with the error increasing on inclusion of very tight

loops and deterministic mappings in the graphical model (Yedidia et al., 2001). In practice

if the graph is highly cyclic, double-loop belief propagation can be used (Yuille, 2002). For

the sake of sanity though if there are many tight loops in the graphical optimization model

corresponding to an energy functional, it is perhaps wiser to either use other approximate

algorithms (for example variational methods (Jordan et al., 1999)) or other optimization

methods were applicable.

4.2 ECCO: Eccentricity Bias as a Learning algorithm

The desirable properties of the human visual system are well known. The properties of ob-

ject recognition captured by our ideal observer are scale invariance, optimal classification

for different types of objects, and possibly optimal coding properties. All of these proper-

ties and more seen to stem from the human representation of objects can be infused in a

graphical model. Using Theorem 1, we can construct a graphical optimization model from

the energy functional optimized by the ideal observer, and also encode patterns we noticed

in what types of assignments of parameters were best.
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Recall the definition we used of the energy functional for the ideal observer:

Eeb = Eτ (στ ,m, n,w, s, f, h) + EW (w, α,m, n) + Efaces(σf ,m) + Ehouses(σh,m)

the statistical model for this energy functional is then, by the chain rule for probability and

Theorem 1,

P (D|στ , σf , σh, f, h, s,w, A,m, n, α) = P (D|στ ,m, n,w, s, f, h)P (w|α,A,m, n)P (A|σf ,m)P (A|σh,m)

where A is the total number of rows required to represent the current object. The graphical

optimization model given by this factorization of the likelihood is given in Figure 4.2.

To define the probabilities for all terms in the graphical optimization model, we must

first recall some definitions.

g(x) =
1

1 + e−x
(4.1)

yh = g(
∑
i

xiwih) (4.2)

yo =
∑
h

yhwho (4.3)

yo =
∑
h

g(
∑
i

xiwih)who (4.4)

and that we can simplify this with

yo(xh;w) =
∑
h

g(xhwho)

where w is a random matrix. and further recall that the error is defined as

ED(w) =
1
2

∑
h

∑
o

(d(h)
o − yo(xh;w))2
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σf σh

m

D

w στ n s f h

A α

Figure 4.2: Graphical model of the learning that is done by the ideal observer. σf is propor-
tional to the number of units selective to faces, σh to the number of units selective to houses,
m to the number of rows, n to the number of columns, στ to the amount of modularity or
locality in the representation, w to the learned mapping between inputs and responses, s to
the scale of the image, f and h indicating whether the image is a face or a house, and A is
the number of rows used to represent an object.
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with d being a vector provided during training which has a one for the correct identity and

a zero for the rest. By Theorem 1,

P (D|στ ,m, n,w, s, f, h) =
e−ψ(s,f,h)ED(w)

Pm
i

Pn
j τ(i,j)

ZEτ

with

τ(i, j) = e
−(j−i)2

σ2
τ

ψ(s, f, h) = (1− s)f (s)h

P (w|α,A,m, n) =
e−(1/2)

Pm
i

Pn
j αw

2
ij

ZEw

P (A|σf ,m) =
e
− 1

2σ2
f

Pm
i i2

ZEfaces

P (A|σh,m) =
e
− 1

2σ2
h

Pm
i (i−µh)2

ZEhouses

where µh = 4 is introduced by the eccentricity bias of houses for peripheral representations.

Because this is a bayesian hierarchical model, we can also talk about the distribution of the

parameters. By doing this, we can include what we learned from tuning the parameters of

the ideal observer. First, recall that the values of m and n we found worked best were 4

and 16 respectively, but that was for a small image, so if the model is to work with larger

images, both could be much larger. We can say then that the following holds true of the

parameters, with a large uncertainty so that the model can adapt to variable image size:

m ˜ N(4, 100)

n ˜ N(16, 100)

The values of σf and σh were not precisely found, but it was noticed that 3σf = 7σh.

Therefore, we actually see that σh can be written in terms of σf , which is why in Figure 4.2

there is an arrow between the two. We can estimate as we did before that about 44 units are

used for faces. This gives the following expressions for the parameters:
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σf ˜ N(44, 1)

P (σh|σf ) =
3P (σf )

7

We can assume that s, f and h are provided by the trainer as well during training. That is,

each image is labeled during training with three things, its identity, what type of object it is,

and what scale it is. We can calculate each of these probabilities and then use belief propa-

gation to solve the MPE problem for our graphical optimization model. We can use belief

propagation because there is only one tight loop in the model and all mappings between

random variables are stochastic.

So ECCO, in summary, is a graphical optimization model that gives an estimate of w,

m, n, σf , and σh given training data D that includes images labeled with scale, identity,

and category. After training, the learned w can be used to get the identity L of an image I

as follows:

L = wT I

L is a matrix such that argmaxi,j L(i, j) is the the identity of image I .

4.3 Future Work

In future work, optimizing with respect to degeneracy seems like a good direction, and

implementing ECCO, possibly applying it to the FERET database of faces which is standard

in face recognition. Note that in ECCO we assumed that all energy functionals were non-

degenerate, which is not true.
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