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Abstract 

Ownership types have the potential to strengthen encapsulation in object-oriented 

programming languages. However, annotating existing code can be tedious, and fully 

automated ownership type inference has not worked well enough, with the result that it is 

difficult to obtain the benefits of ownership types in practice. 

We address this problem with an interactive ownership type inference tool that obtains 

information from the programmer about intended encapsulation properties and uses this to 

infer ownership types. This will allow developers to quickly annotate existing code, enabling 

them to obtain the benefits of ownership types. 

 

1. Introduction/Motivation 

Object-oriented languages use access modifiers to help enforce encapsulation. However, an 

object's internal representation can be exposed even without violating access modifiers; for 

example, in Java 1.1 a security function returned a pointer to an internal array rather than a 

copy, potentially allowing a malicious applet to modify the array to pose as trusted code. 

Ownership types help to strengthen encapsulation by controlling aliasing (multiple references 

to the same object). 



This paper describes an improvement in the usability of the ownership type system AliasJava 

[1, 2], although we believe the concepts could be applied to other ownership type systems as 

well. AliasJava uses unique to indicate an unaliased reference; owned to indicate a 

reference that may not be aliased by any reference not owned by the same object; ownership 

parameters to grant objects access to references owned by other objects; shared to indicate 

a reference with unrestricted aliasing; and lent to indicate a temporary, “borrowed” 

reference. See below for more details. 

An inference tool was created for AliasJava to facilitate annotating large pre-existing libraries, 

which would be tedious to annotate by hand. However, two problems appeared when the 

system was tested. First, there was no way to obtain an explanation for why a particular 

annotation was inferred, so if an inferred annotation did not match the intended behavior, it 

would be very difficult to debug. Second, far too many parameters were inferred for many 

classes (hundreds in some cases); the tool seemed to be making distinctions between 

parameters that are too fine to be useful to the programmer. 

The main issue seems to be that programmer intent cannot be inferred; an automated 

inference tool cannot know how a variable "should be" annotated, and it cannot know when 

two parameters are similar enough that it would not be useful to keep them separate. 

In this paper we present a solution to these problems by making inference interactive: allow 

more programmer input to the inference process, and provide feedback to the programmer on 

why annotations were inferred. The interactive inference tool is based on the original fully 

automatic inference tool; we have modified it to handle ownership type annotations in the 

source code and to provide certain kinds of feedback to the programmer. 

 



2. Overview of AliasJava 

This overview is based heavily on [1]. 

a. Annotations Used in AliasJava 

As stated above, AliasJava uses five annotations: unique, owned, ownership parameters, 

shared, and lent. 

Unique 

A newly created object is unique; that is, there is only one reference to the object. We 

annotate a type with unique to describe a reference that does not have persistent aliases. 

In general, after a unique variable or field is read, the source location must be dead (that is, 

unused by subsequent code); otherwise the read reference would be an alias of the supposedly 

unique source. 

In AliasJava, unique can be considered a universal source: unique values can be assigned 

to a location with any other data sharing annotation, as long as the original reference is 

destroyed afterwards. The converse is not true, as the other data sharing annotations cannot 

guarantee that a value is unique. 

Owned 

An object may need to maintain invariants over its state that could be violated if some of its 

fields have external aliases. Making these fields private is not sufficient because 

references to the objects could still escape the class as, for example, the return value of a 

public method. 

The owned annotation describes a reference that is confined to the scope of the enclosing 

object, unless that object explicitly gives another object permission to access it. Owned 

references may only flow to owned variables within the scope of the enclosing object. 



Ownership Parameters 

An object may need to structure its representation by putting some of its objects into a 

container that is also part of its representation. In this case, we can pass owned as an 

ownership parameter to the container class, granting that class the capability to reference the 

element data that are owned by another object. 

Shared 

Some objects may need to be shared throughout a program, and thus cannot be confined by an 

owning object. We give references to such objects a shared annotation, representing the fact 

that these objects may be shared globally. Unfortunately, little reasoning can be done about 

shared references, except that they may not alias non-shared references. However, shared 

references are essential for interoperating with existing run-time libraries, legacy code, and 

static fields, all of which may refer to aliases that are not confined to the scope of any 

object instance. 

Lent 

Suppose that we want to compare two unique objects with, for example, the equals or 

compareTo methods. In order to do this with the annotations so far, we would have to 

destroy our reference to one of the objects so that it can flow to the method argument. Instead, 

we can annotate the method argument as lent to indicate that it is a temporary alias. A 

unique object can be passed to a method as a lent argument even without destroying the 

original unique reference. The method can pass on the object as a lent argument to other 

methods, but cannot return it or store it in a field. Thus, the lent annotation preserves all of 

the reasoning about the unique object, but adds a large amount of practical expressiveness. 

The lent type can also be used to temporarily pass an owned object to an external method 



for the duration of a method call, without any risk that the outside component might keep a 

reference to that object. Therefore, lent can be considered a universal sink: values with any 

alias type annotation may be assigned to a lent location. The converse is prohibited: lent 

values may only be assigned to other lent locations. 

b. An Example of Usage 

Figure 1 illustrates the use of ownership 

parameters. The StackClient class 

uses a Stack to hold integers that are 

part of its representation. When the 

StackClient creates a Stack, it 

passes the owned capability as the 

Stack’s parameter to give the Stack 

permission to access the objects owned 

by StackClient. The code in run 

shows that Integers owned by the 

StackClient can be pushed onto and 

popped off the stack. 

The stack uses a linked list to store its 

elements. References to the links in the 

list should be confined to the enclosing 

Stack object, and so the head of the list (that is, the top of the stack) is annotated owned. 

Since the linked list is a recursive data structure, each link is parameterized with a capability 

to access not only the elements of the list (owned by the StackClient in this example), but 

public class StackClient { 
  unique Stack<owned> st=new Stack<owned>(); 
 
  public void run() { 
    owned Integer i = new Integer(5); 
    st.push(i); 
    owned Integer i2 = (Integer) st.pop(); 
  } 
} 
 
public class Stack<element> { 
  private owned Link<element, owned> top; 
 
  public element Object pop() { 
    if (top == null) 
      return null; 
    owned Link<element, owned> temp = top; 
    top = top.next(); 
    return temp.get(); 
  } 
  public void push(element Object o) { 
    top = new Link<element, owned>(o,top); 
  } 
} 
 
public class Link<element, link> { 
  private link Link<element, link> nxt; 
  private element Object obj; 
 
  public Link(element Object _obj, 
              link Link<element, link> _nxt) { 
    obj = _obj; nxt = _nxt; 
  } 
  public element Object get() { 
    return obj; 
  } 
  public link Link<element, link> next() { 
    return nxt; 
  } 
} 
 
Figure 1.   A Stack class parameterized by the owner of its 
elements, a Link class used in the stack’s representation, and 
a client of the stack. 



also the other links in the list (owned by the Stack). Therefore, the Stack passes the 

owned capability as the second parameter of the links in the linked list. 

c. Properties Ensured by AliasJava 

AliasJava ensures uniqueness and ownership invariants that restrict the aliasing patterns that 

can occur during program execution. 

The uniqueness invariant states the obvious fact that variables and fields with the unique 

annotation hold unique references. 

Uniqueness Invariant: At a particular point in dynamic program execution, if a 

variable or field that refers to an object o is annotated unique, then no other field in 

the program refers to o, and all other local variables that refer to o are annotated 

lent. 

The ownership invariant states that ownership annotations are consistent across program 

variables and across program execution. 

Ownership Invariant: At a particular point in dynamic program execution, if a variable 

or field referring to object o has an ownership annotation denoting object o’, then all 

other variables or fields that refer to o at any subsequent point in dynamic program 

execution, are either annotated lent or have an ownership annotation denoting the 

same owner o’. 

Another way to state the ownership invariant is that each non-unique, non-shared object 

is owned by exactly one other object. Only an object’s owner, and the objects that the owner 

has delegated a capability to, may store a reference to that object. 

 

 



3. Using Interactive Ownership Type Inference 

a. Programmer Input 

The basic idea of how to use the interactive inference tool is fairly simple: annotate none, 

some, or all of the variables in a set of Java classes with ownership types, and then run the 

tool on the .java files. 

There are three kinds of annotations that can be put in the source code: formal parameters of 

classes and interfaces, and alias types and actual parameters of variables (including fields and 

the arguments and return values of methods). These are all specified using standard AliasJava 

syntax where user annotations are desired, and may be left out anywhere that they are not 

desired. There are a few noteworthy points regarding each: 

Formal Parameters: If the programmer wants the class's inferred parameter list to not be any 

longer than the given parameter list, this can be specified by adding "complete" to the 

beginning of the parameter list. For example, to specify that a class must have no parameters, 

provide the parameter list "<complete>". (This is admittedly a rather inelegant 

implementation, but it does work.) Note that only the number of parameters is stored, not their 

names; if any user-specified formal parameters do not appear in the code, then they may be 

absent from the inferred formal parameter list, or they may be replaced by automatically 

generated parameter names. 

Alias Types: Any identifier may be used as an alias type. If an alias type other than lent, 

shared, owned, or unique is specified, it is assumed to be a parameter of the nearest 

enclosing class whose user-specified list of formal parameters contains that word, or the class 

directly containing the variable if the word does not appear as a formal parameter of any 

enclosing class. (Thus, unless the list is specified as being complete, the programmer need 



only provide those formal parameters which will correspond at some point to a user-specified 

actual parameter.) 

Actual Parameters: If a list of actual parameters is provided for a variable, then the actual 

parameters are matched to the formal parameters of the variable's type in order. As with alias 

types, any identifier may be used. The list of actual parameters may not be longer than the 

type's user-specified list of formal parameters, but it may be shorter, in which case any formal 

parameters beyond the number of actual parameters are left unspecified. If no actual 

parameter list is provided, all parameters are left unspecified. Particular parameters may also 

be left unspecified by using the special keyword any. 

Additionally, there is one new kind of input to the inference tool other than annotations. We 

have discovered that it is sometimes necessary to merge two nodes in the “constraints graph” 

used in inference if a certain kind of path between them exists. These paths can in theory be 

arbitrarily long; however, we have found that in practice it is sufficient to only inspect 

relatively short paths. The maximum search depth (i.e. half the length of the longest path to 

inspect) can be specified by a command-line argument; otherwise a default value is assumed. 

If the tool reports an error on a valid program, then the path-checking algorithm is probably 

not searching deep enough, so the tool should run to completion if the search depth is 

increased sufficiently. 

b. Feedback 

The tool is able to provide two kinds of feedback: error reporting and inference tracing. 

I. Error Reporting 

Whenever programmers can provide types, there is the possibility that the types are invalid. 

The tool's response to invalid types depends on what types are invalid. 



If a variable has a user lent or unique annotation and the tool determines that the variable 

cannot be lent or cannot be unique according to the normal rules of AliasJava, then it 

nevertheless assumes that the user annotation is "correct" in some sense. The motivation for 

this behavior is that we have found that some aliases can be considered harmless. For 

example, the argument to the equals method of the Object class was not inferred to be 

lent by the original inference tool because under certain circumstances it can be used as a 

synchronization key; but since a hash code could be used as this key instead of the object 

without changing the functionality, it is more or less irrelevant that this alias exists, so the 

argument to Object.equals still matches the conceptual intention of the lent type. 

Although inference continues as if invalid user lent and unique annotations are correct, 

the invalid annotations are reported to the user after inference finishes, and information about 

inconsistencies can be requested during inference tracing. 

If the tool decides that two variables must and must not have the same owned, shared, or 

parameter annotation, then it terminates, and if possible reports which two variables caused 

the error. Unfortunately, the inference algorithm for owned, shared, and parameter 

annotations is complex, so it is not always possible to determine exactly what caused the 

error; even when two variables can be named, the names do not always provide much 

information if the programmer cannot figure out why those variables were inferred to have the 

same and different annotations. 

The final kind of error that might occur happens when a class has a user-specified complete 

formal parameter list and the inference tool cannot reduce the class's inferred parameter list to 

fit the user-specified list. In this case, the tool terminates and reports which type's parameter 

list it was unable to sufficiently reduce. 



II. Inference Tracing 

Inference tracing allows the user to ask why variables cannot be lent or cannot be unique. 

It is only performed if the user requests it, which can be done via a command-line argument 

or at a prompt if invalid user lent or unique annotations are reported. 

The user may request lentness, uniqueness, or consistency feedback for any variable in the 

files on which the tool was just run. For lentness feedback, if the query variable is lent or is 

base-case non-lent (e.g. a field), then the tool simply states this. Otherwise, it provides a list 

of base-case non-lent variables to which the query variable transitively flows; the user may 

then request the shortest flow path to any of these base cases. Uniqueness feedback is similar, 

but the base cases are different and the relevant flow is in the opposite direction (the tool 

reports base cases which flow to the query variable). For consistency feedback, if the query 

variable is not user-annotated as lent or unique or if its annotation is valid, then the tool 

simply states this; otherwise, feedback is the same as for lentness or uniqueness depending on 

which annotation the variable has. 

The user can also request that the tool simulate the removal of a flow constraint; this is useful 

for finding out how the code would have to be changed to remove inconsistencies. The flow 

graph can be restored to its original state after constraints are removed if the user wants this. 

We have not figured out any similarly useful feedback that could be provided about inference 

of other annotations. The inference algorithm for shared, owned, and parameters involves 

manipulating a graph according to a set of rules; the chain of events linking the source code to 

a particular change in the graph can be quite long and complex, and any attempt to keep track 

of all of it would increase the tool’s memory requirements and possibly its running time 

enough to make it impractical. 



Inference Tracing Example 

When the original inference tool was run on a large subset of an older version of the Java 

standard library, the argument to Object.equals was not inferred to be lent. Using 

inference tracing, we were able to figure out why. First, we ran the interactive inference tool 

on the java.lang and java.util packages of the Java 1.4 standard library, with the inference 

tracing option selected. When the tool finished inferring and reached the inference tracing 

prompt, we entered the following to ask whether the argument to equals is lent, and if 

not, then why not: 

-> l:java.lang.Object.equals(Object).obj 

The tool produced a list of sources of the non-lent annotation, which happened to consist of 

only one field: 

Sources of the non-lent annotation of java.lang.Object.equals(Object).obj 
(from shortest to longest trace): 
0: java.util.Collections.SynchronizedCollection.mutex 

 
To learn how the argument flows to this field, we entered its index in the above list: 

-> 0 
 
Trace from node java.lang.Object.equals(Object).obj to source node this.mutex: 
0: java.lang.Object.equals(Object).obj 
1: java.util.AbstractMap.equals(Object).o 
2: java.util.IdentityHashMap.equals(Object).o 
3: java.util.IdentityHashMap.equals(Object).if1.else.if1.else.if1.then.m 
4: java.util.Map.entrySet().this 
5: java.util.Hashtable.entrySet().this 
6: java.util.Collections.synchronizedSet(Set,Object).mutex 
7: java.util.Collections.SynchronizedSet.<init>(Set,Object).mutex 
8: java.util.Collections.SynchronizedCollection.<init>(Collection,Object).mutex 
9: java.util.Collections.SynchronizedCollection.mutex 

 
Using this flow path as a guide, we inspected the source code and found that the mutex is 

only used to obtain a unique identifier; it is not used in any way that could cause aliasing 

bugs. Therefore, the mutex argument of the SynchronizedCollection constructor 

could be considered lent even though it flows to the mutex field. To check what would 



happen if this flow constraint were removed, we entered the following, which means “make it 

so that the lentness of node 9 in the above list does not constrain the lentness of node 8”: 

-> -l:9,8 

To check whether there were any other flow paths to this field, we entered 

-> l:java.lang.Object.equals(Object).obj 

again; this time the response was 

No remaining traces to non-lent nodes 

We were able to deduce that we could cause the argument to Object.equals to be 

inferred as lent simply by annotating the mutex argument of the 

SynchronizedCollection constructor as lent, or by reworking the code so that the 

argument is not stored as a field (for example, by changing the field to an int and putting the 

line “this.mutex = System.identityHashCode(mutex);” in the constructor). 

 

 

4. Algorithmic Changes 

a. Overview of Original Inference Algorithm 

The interactive inference tool is a modified version of the original inference tool. In order to 

fully understand the algorithms used by the new tool, it is necessary to understand the 

algorithms used by the old tool. The following is based heavily on [1]. 

The inference algorithm begins by inferring lent annotations, since this annotation is the 

most general (a value with any other annotation can be assigned to lent) and since it can be 

inferred independently from other annotations. We next infer unique annotations using an 

algorithm that depends only on the inferred lent annotations. We infer the remaining 

annotations in a final pass. 



I. Inferring Lent 

We infer lent annotations with a constraint-based algorithm. Our algorithm assigns either 

lent or non-lent to each local variable, expression, and method parameter of reference 

type, and to the this reference for each method. Initially, we optimistically assume that all 

annotations are lent. We then assign non-lent annotations the base-case expressions that 

may not be lent: fields and the return values of methods. 

Next, the algorithm constructs a directed graph capturing the value flow between the variables 

and expressions in the program. The final annotations can be computed by traversing this 

graph backwards from all non-lent nodes, so that if an expression a flows to expression b, 

and b is non-lent, then a must be non-lent as well. Intuitively, this represents the 

constraint that a lent value may not be assigned to a non-lent variable. All nodes in the 

graph that are not backwards reachable from non-lent nodes can safely be annotated 

lent. 

II. Inferring Unique 

The algorithm for inferring unique annotations is similar to the lent algorithm above. The 

algorithm assigns either unique or non-unique to each program variable and expression. 

As before, we optimistically assume that all annotations are unique. 

We divide value flow into two cases: ordinary assignments (x = y), where both x and y are 

live after the assignment, and last assignments (x =last y), where y is dead after the 

assignment. 

For each ordinary assignment x = y we require that x is non-unique, since it must alias 

the value y that is not dead. In addition, if x is not lent, then y must also be non-unique, 

since it must alias x after the assignment. 



The rule for last assignments x =last y is simple: if y is non-unique, then x must be 

non-unique also. Since y is dead after the assignment, if we can prove that y was 

unaliased before the assignment, we know that x is unaliased after the assignment. Thus, 

starting from the non-unique base cases generated from ordinary assignments and native 

methods, we can propagate non-unique forward along the directed graph formed by last 

assignments. All remaining variables and expressions are unique. 

III. Inferring Other Annotations 

In order to infer the remaining alias annotations, we adapt a constraint-based alias analysis 

that solves equality, component, and instantiation constraints over type variables. 

Due to space constraints, we cannot present the full details of the inference algorithm. Instead, 

we present a high-level overview of the algorithm in parallel with an example that illustrates 

many of the key issues.  We choose as our running example the Stack code in Figure 1, 

assuming initially that none of the alias annotations in that figure is present.  Our goal will be 

to infer the alias annotations given in Figure 1.  The discussion below focuses on the core of 

the inference algorithm, which infers the alias parameters for each class.  Later, we will 

describe how to integrate the other annotations into the constraint-based framework. 



Analysis Setup.  We begin our analysis 

by creating a unique node for every 

variable, method argument or result, 

class, field, and expression in the 

program text.  This node is a type 

variable representing the alias annotation 

for the corresponding declaration or 

expression.  Distinct type variables 

indicate distinct alias parameters of the 

enclosing class. 

Figure 2(a) shows the type variables 

generated from Figure 1.  For example, 

the code in the Stack class includes the 

type variables Stack, top, pop, temp, and 

o (we abbreviate the type variable for a 

method result by the method name).  To 

simplify the presentation, we ignore 

certain anonymous type variables 

generated from program expressions. 

Our analysis solves three different forms 

of constraints: equality, component, and instantiation, which are described in turn below. 

Equality Constraints.  When a value flows from one variable to another within a class, we 

generate an equality constraint a = b, indicating that the two corresponding type variables 

(a) Initial variables: 
class StackClient: StackClient, st, i, i2 
class Stack:   Stack, top, pop, temp, o 
class Link:   Link, obj, nxt, _obj, _nxt, get, next 

 
(b) Initial constraints: 

Equality: 
top = temp  obj = _obj nxt = _nxt 
obj = member  next = nxt 
 

Component: 
StackClient �i i StackClient �i2 i2 StackClient �st st 
Stack �top top  Stack �pop pop Stack �temp temp 
Stack �o o  Link �obj obj Link �nxt nxt 
Link �obj _obj  Link �_nxt _nxt Link �get get 
Link �next next 
 

Instantiation: 
Stack �st st  Link �top top Link �temp temp 
Link �nxt nxt  Link �_nxt _nxt Link �next next 
o �st i  pop �st i2  next �top top 
get �temp pop  _obj �top o _nxt �top top 
 

(c) After solving initial equality & uniqueness constraints: 

StackClient 

i 

st 

Stack 

top 

o 

Link 

next 

obj 

Component Constraint a >  b Instantiation Constraint b ≤ a 
a b a b 

 
 
(d) Final constraint system: 

StackClient 

i 

st 

Stack 

top 

o 

Link 

obj 

st_top 

Component Constraint a >  b Instantiation Constraint b ≤ a 
a b a b 

 
 
Figure 2.  Constraints generated and solved during inference of 
the alias types given in Figure 1. 



must represent the same alias annotation.  For example, our analysis generates the equality 

constraint top = temp due to the assignment temp = top in line 6 of the definition of 

Stack.  However, we do not generate equality constraints for value flow between variables 

in different classes.  For example, even though the method pop returns the result of calling 

get, we don’t equate the corresponding pop and get variables, because that would place 

unnecessary constraints on other parts of the program that use Link.get.  We use 

instantiation constraints (discussed below) to reason about value flow between classes in a 

way that treats different Link objects differently.  Figure 2(b) shows the equality constraints 

generated from Figure 1. 

In our implementation, equality constraints are solved via unification using a union-find data 

structure.  Thus, for the equality constraint top = temp, we choose top arbitrarily as the 

equivalence class representative, and update all references to temp to refer to top instead. 

The initial equality constraints shown at the top of Figure 2 are clearly not sufficient for 

inferring correct alias types.  For example, the argument o of push and the return value of 

pop should have the same alias type, yet just looking at the Stack class is insufficient to 

discover this information.  Only by reasoning about how objects are stored within the Link 

class can we infer the correct alias types for Stack.  In our system, this reasoning is done 

with component and instantiation constraints. 

Component Constraints.  A component constraint (o �m v), read “v is a component of o 

with index m,” means that the type variable v represents member m of object o.  Component 

constraints allow us to keep track of the relationship between a particular stack and the objects 

and links within that stack, for example.  For each member m of a class C, we generate a 

component constraint C �m m.  We generalize the notion of member to any type variable 



within a class, so that component constraints are also generated for method arguments, results, 

and local variables.  Figure 2(b) shows the component constraints generated from Figure 1. 

Instantiation Constraints.  If C is a class, an instantiation constraint (C �v o), read “o is an 

instance of C with index v,” means that type variable o represents an object that is an instance 

of C that is stored in the local variable or field v.  Instantiation constraints allow us to treat 

different instances of a class separately; we group instances by the local variable or field that 

the instance is stored in.  Each instance will have its own copy of its local variables and fields 

in our representation—these are generated by the propagation rules discussed below.  For 

example, different instances of Stack can have different actual alias parameters, so that 

different stacks can hold objects with different owners.  For each class member m that has 

declared type C, we generate an instantiation constraint C �m m. 

Instantiation constraints are also used to reason about the relationship between type variables 

in two different classes.  For example, the argument o of push is assigned to the _obj 

argument of the constructor of the link represented by the type variable top.  We encode this 

relationship with the instantiation constraint _obj �top o, indicating that o is the instance of 

_obj inside the top link.  Here, the index on the instantiation constraint shows how the 

instance is related to its parent.  Thus, for each member m that flows to or from a member n of 

another class at a method call or field dereference with receiver r, we generate an 

instantiation constraint n �r m.  Figure 2(b) shows the instantiation constraints generated from 

Figure 1. 

Component and Instance Uniqueness.  In the example program, values flow from the 

argument o of push to the obj field of top, and from the obj field of top to the result of 

pop.  This is represented by the two instantiation constraints obj �top pop and obj �top o (here 



we assume that _obj and get have already been unified into obj).  The index top common to 

both these constraints indicates that pop and o are the same instance of obj.  Intuitively, pop 

and o should be unified, because program values can flow from o into obj and then back into 

pop.  We formalize this intuition with an instance uniqueness rule: 

a �b c ∧ a �b d  �  c = d 

This rule ensures that two instances of the same type variable that have the same index will be 

unified.  Once pop and o are unified into o, i and i2 will both be instances of o with the same 

index st, and so they will be unified as well.  An analogous rule is used to ensure that two 

components of the same type variable with the same index are also unified: 

a �b c ∧ a �b d  �  c = d 

Figure 2(c) shows the example system after solving the initial equality constraints and 

applying the uniqueness rules. 

Constraint Propagation.  If top is an instance of Link, as shown in Figure 2(c), then it 

ought to have next and obj components.  Furthermore, these components ought to be fresh, 

distinct from the next and obj components of any other Link.  This motivates the 

component propagation rule: 

a �b c ∧ a �I d  �  ∃ e . d �b e 

Applied to top, this rule states that since Link has a component next (Link �next next) and top 

is an instance of Link (Link �top top), then there must exist some variable top_next such that 

top_next is a component of top at index next (top �next top_next).  Intuitively, this new 

variable represents the particular “next” link in the top field of Stack, potentially distinct 

from the next link of any other Link. 



Now, anything we infer about next (for example, if we discover it is equal to some other type 

variable) must also apply to top_next, since top_next is just a specialization of next that is a 

component of the top instance of Link.  We encode this intuition with the constraint that 

top_next is an instance of next.  Then top_next will be a transitive instance of Link, ensuring 

that it will gain its own next and obj components.  These constraints are generated with the 

instance propagation rule: 

a �b c ∧ a �I  d ∧ d �b e  �  c �I e 

The precondition for this rule is the conjunction of the precondition and the conclusion of the 

component propagation rule. Thus, this rule applies whenever a new component constraint is 

generated.  In the case of top_next, the rule’s conclusion simply states that next �top top_next. 

Avoiding Infinite Propagation.  The discussion above suggests that constraint propagation 

as presented above may never terminate.  For example, top is a Link, so it must have a next 

component top_next.  But, top_next is transitively a Link also, so with a couple of 

instantiation constraint propagations we discover that we need to create top_next_next, a next 

component of top_next.  There must be a way to stop this expansion if the algorithm is to 

terminate. 

We apply the extended occurs check to avoid infinite constraint propagation.  The extended 

occurs check rule can be stated as follows: 

If ∃ L �i1 a1 �i2 … �iN R and ∃ L �c1 b1 �c2 … �cM R 

 then L = R 

Intuitively, this rule states that if one type variable R is both a transitive instance and a 

transitive component of another type variable L, then we should unify L and R to avoid 

infinite constraint propagation.  In the example, the extended occurs check would discover 



that Link �next next ∧ Link �next next.  Thus, our implementation generates the equality 

constraint next=Link, which eliminates the source of the loop. 

Figure 2(d) shows the final results of the constraint-based algorithm.  As described above, 

next has been unified into Link.  Also, component propagation has resulted in two components 

each for top and st.  Due to application of the component and instance uniqueness rules, the 

components of top are itself (just as Link is its own component) and o, while the components 

of st are i and a new node, st_top.  Like top, of which it is an instance, st_top has two 

components, itself and i. 

The example constraint system has now reached fixpoint with respect to the constraint 

propagation and uniqueness rules.  Link has two components, one of which refers to another 

Link instance; these represent the alias parameters used in Figure 1.  Stack also has two 

components; one of these will turn into Stack’s alias parameter, and the other will turn into 

an owned annotation, as discussed below.  Finally, StackClient’s two components will 

eventually turn into owned and unique annotations. 

Integration With Other Alias Annotations.  The algorithm described above can infer alias 

parameters for each class in the system.  However, some of the type variables in the example 

should actually be given a non-parameter alias type.  For example, temp and i2 could be 

annotated lent, and st and i could be annotated unique. 

We integrate alias parameter inference with inference of other alias annotations by storing a 

boolean flag in each node for each possible non-parameter annotation: lent, unique, 

owned, and shared.  Below, we discuss how each flag is initialized and propagated as type 

inference proceeds, and how a final alias annotation is computed from the flags at the end. 



The owned flag is initialized to true for each variable that is non-public and is never 

accessed on a receiver other than this.  These constraints are the two base-case semantic 

requirements for owned methods and fields.  When two nodes are merged, the resulting node 

is owned only if both of the merged nodes were owned. 

The shared flag is initialized to true for each static field and each argument and result of a 

static or native method, as these are the base cases for shared annotations.  Whenever 

a shared node is merged with an unshared one, the resulting node is shared.  Furthermore, 

whenever a component constraint is introduced, if the parent node is shared, then the 

component node must be marked shared as well—otherwise, there would be no way to 

express its alias annotation in the final system.  

The lent and unique flags are initialized with the result of lent and unique inference, as 

described above.  Lent and unique flags are not modified or propagated during constraint 

solution. 

Final Alias Annotations.  The final alias annotations are assigned from the constraint graph 

so as to make the annotations as precise and flexible as possible.  Since lent is the most 

general annotation, all declarations whose node has a lent flag equal to true are given a lent 

annotation.  Unique is the most precise possible annotation for the remaining declarations, so 

every remaining declaration whose node has a true unique flag is annotated unique.  In 

order to be sound, we must next make every unmarked declaration whose equivalence class 

representative (ECR) node has a true shared flag shared.  Next, we mark the remaining 

declarations as owned based on their ECR nodes’ owned flags.  All remaining declarations 

must be marked with an alias parameter of the enclosing class; for each class, the different 

ECR nodes that are components of that class are given letter names a, b, c, and so forth. 



In the stack example, the nodes i2 and temp have true lent flags, and so these variables are 

marked lent (note that this is a more optimistic annotation than the one given in Figure 3). 

The variable i is marked unique on a basis of node i’s flags.  In class Stack, the ECR 

node for top has a true owned flag, while the ECR node o representing members pop and o 

is not owned.  Thus, top is annotated owned, while pop and o are annotated with a fresh 

alias parameter a.  Likewise, member and next are given fresh alias parameters a and b in 

class Link. 

Declarations that have a class type which is parameterized must be given actual alias 

parameters that correspond to the formal alias parameters of the class.  Because of the way the 

constraints were set up, the declaration’s node will have a component node that is an instance 

of each formal parameter of the class, and the corresponding actual parameter can be 

computed from this node: either owned, shared, or a formal alias parameter of the 

enclosing class.  For example, in class Stack, we need to assign actual alias parameters to 

top, temp, and the new expression.  These all share the same ECR node, top.  But node top 

has two component nodes: itself and o.  Node o corresponds to parameter a of Stack, and o 

is an instance of obj (which is parameter a of Link), so the a is used as an actual of top 

corresponding to the formal parameter a of Link.  Node top is owned, and is an instance of 

Link (which is parameter b of Link), so owned is used as an actual of top corresponding to 

the formal parameter b of Link.  Thus the inferred type of top is owned 

Link<a,owned>, and similar types are inferred for temp and the new expression. 



b. Modifications for Interactive Inference 

The modifications I have made are as follows: 

 

I. Checking user annotations 

The tool stores any user annotations that are in the source code, including formal parameters 

of classes and interfaces and alias types and actual parameters of variables. 

 

II. Changes to lent and unique inference 

Variables that are user-annotated as something other than lent are marked as base-case non-

lent variables during lent inference. If the flow constraints indicate that a variable with a 

user lent annotation should be non-lent, it is not marked as non-lent; however, the tool 

maintains a mapping between variables with inconsistent user lent annotations and the sets 

of non-lent variables that they directly flow to. A representation of the flow graph is also 

retained in order to enable inference tracing. 

The changes made to unique inference are similar, except that a variable's unique 

annotation is inconsistent if a non-unique variable flows to it rather than from it. 

The original inference tool saved time by not propagating non-uniqueness from lent 

variables. This worked because lent variables could only flow to lent variables. However, 

now that user-annotated lent variables can flow to non-lent variables, this optimization 

has been removed. 

Finally, code has been added to enable inference tracing as described above. 

 

 



III. Changes to ownership inference 

Any two nodes in the same class with same user ownership annotation are unified 

immediately, as are any two shared nodes at all. 

Two new kinds of constraints have been introduced: inequality constraints (indicating that 

two nodes definitely do not represent the same aliasing behavior) and possible equality 

constraints (indicating that we may wish to unify two nodes but it is not necessary to do so). 

Inequality constraints are added between two nodes in the same class with different user 

owned or parameter annotations, between two nodes in different classes with user owned 

annotations, and between the (now singleton) shared node and any node with a user owned 

or parameter annotation. 

Originally, if a variable flowed to another variable in the same class, their nodes were always 

unified. This is no longer done in the case of flow to a lent variable or from a unique variable, 

since it is legitimate for two objects with different owners to both flow to the same lent 

location; however, it is still necessary for the actual ownership parameters of a variable to be 

consistent with the parameters of any variable to which it flows. In terms of AliasJava syntax, 

this means that their corresponding components must be equal. To implement this, we 

maintain a list of “component-equality classes”. Whenever there is flow to a lent variable or 

from a unique variable, the component-equality classes of the two nodes are merged (every 

node is initially considered to be in a component-equality class by itself). If at any time two 

nodes in the same component-equality class have different nodes as components at the same 

index, an equality constraint is immediately generated between the components. 

Lists are maintained of nodes that must or must not be owned or shared (whether this is 

due to code or user annotations); inequality constraints are generated between forced owned 



and forced non-owned nodes in the same class, and between the shared node and all forced 

non-shared nodes. Since components and instances of shared nodes are made shared, 

any node that has a forced non-shared component or instance is also put in the list of forced 

non-shared nodes (almost; see immediately below). 

Previously, all components of shared nodes were made shared. This is no longer done 

when all variables represented by the component are lent and unique, since a non-

shared object may flow to a lent component or from a unique component of a shared 

node; instead, the component is added to a list of "potential shared" nodes, meaning that if 

it ever is unified with a node that is neither lent nor unique, then it will become shared. 

If an entirely lent and unique node has a forced non-shared component or instance, it is 

put in a list of "potential non-shared" nodes, indicating that if the node is unified with a 

non-lent and non-unique node, then it will be moved to the list of forced non-shared 

nodes. Inequality constraints are generated between potential shared nodes and forced non-

shared nodes, and vice versa. 

The extended occurs check now generates possible equality constraints instead of equality 

constraints, in order to make sure that it does not create any unnecessary inconsistencies. 

Inequality propagation rules have been introduced to make sure that the graph is never 

modified so that two inequal nodes must be unified; these rules logically follow from the rules 

that dictate when two nodes must be unified. The instance uniqueness rule states that a node 

has no more than one instance at any specific index; from it we obtain the following two 

inequality propagation rules: 

DBECEACA DB ≠�≠∧≤∧≤  

DAECEDCA BB ≠�≠∧≤∧≤  



Likewise, from the component uniqueness rule, we obtain the following two rules:  

DBECEACA DB ≠�≠∧∧ ��  

DAECEDCA BB ≠�≠∧∧ ��  

We obtain the following rules from component-equality, where “ yx C= ” means “ x  and y  

are in the same component-equality class”: 

EBFCDAFDCA CEB ≠�≠∧=∧∧ ��  

FDFAECEDCA CBB ≠�=∧≠∧∧ ��  

From the constraint propagation rules we obtain the following inequality propagation rule: 

DAFCFEEDCBBA IJJI ≠�≠∧≤∧∧∧≤ ��  

Other inequality propagation rules could be derived from the constraint propagation rules, but 

it turns out that only this one is necessary; for example, the following possible rule generates 

no inequalities that would not be generated by the rules derived from instance uniqueness: 

EDFCFEDACBBA IJJI ≠�≠∧≤∧∧∧≤ ��  

There is also an inequality propagation rule based on indirect proof: 

( ) BABABA ≠�≠�=  

To implement this, if we are considering unifying nodes A  and B , then for each C  such that 

CA ≠  we propagate CB ≠  and for each D  such that DB ≠  we propagate DA ≠  using the 

other rules; if BA ≠  was generated in the process then the unification cannot happen. In such 

a case, we retain the constraint BA ≠  but discard all other generated inequality constraints. 

 

Originally, constraint propagation was not done until after the extended occurs check 

produces no more results; doing constraint propagation first would defeat the purpose of the 



extended occurs check. In the interactive tool, it is necessary to determine when constraint 

propagation will unify two nodes in order to make sure not to report a conflict when there is 

none. There are two processes for doing this. 

First, we apply constraint propagation as soon as we can when it would not generate a new 

node; in other words, if CA B�  and EA D≤ , then if FC D≤  and GE B�  we add the 

constraint GF = ; if only one of FC D≤  and GE B�  is already present we add FE B�  or 

GC D≤  respectively. This does not cause infinite looping because it does not generate any 

new nodes. 

Second, we have found that it is sometimes necessary to predict unifications that will be 

caused by constraint propagation more remotely. For example, consider the following 

constraints graph: 

Constraint propagation will generate a node J  such that JD M�  and JB P≤ . It will then 

generate the constraints GJ Q≤  and EJ N� . Finally, constraint propagation will generate 

the constraint IH = . 

A  B  C  

D  E  

F  G  H  I  

M  

M  

N  

N  

P  

Q  

P  

Q  

Key:        GF M�                      EC P≤  

Figure 3: Example of “remote” constraint-propagation-based unification. 



To take care of these harder-to-find unifications, we make use of the following statement, 

which we have not proven but which we believe we could prove: 

 Two nodes X and Y will eventually be forced to be unified if and only if: 

 there exists a path from X to Y 

 of forward and backward component and instance constraints 

 such that when traversing the path, 

  if a stack is kept for component indexes 

  and another for instance indexes, 

  and traversing a constraint backwards 

   (i.e. traveling from its right side to its left side) 

   adds the index to the corresponding stack 

  and traversing a constraint forwards 

   (i.e. traveling from its left side to its right side) 

   pops an index off the stack 

   and asserts that it is the same as the constraint index 

  then when you get to Y, both stacks are empty 

   and no assertion failure or empty stack failure has occurred. 

When the tool is started, a maximum depth at which to check is stored (the depth of the check 

being half the maximum length of paths that it can find); this value can be specified by a 

command line argument, otherwise 4 (the minimum depth of a hard-to-find unification) is 

used. A depth-first search algorithm is used to find unification-inducing paths within this 

bound, and an equality constraint is generated between the endpoints of each path found; this 

algorithm is run immediately before first EOC run (so that we know the user annotations are 



self-consistent before we start doing unifications that might introduce unnecessary 

inconsistencies) and periodically thereafter, but not too often since it can be quite time-

consuming on large graphs (the current implementation runs it after every 100 unifications 

based on possible equality constraints). Since we run this algorithm so infrequently, it is 

necessary to sometimes undo previous changes that we have made due to possible equality 

constraints. After each run of the path-finding algorithm, we save a backup copy of the 

constraints graph. We keep a list of possible equality constraints that have been accepted since 

the last run of the path-finding algorithm. If an equality/inequality conflict is encountered 

after a backup has occurred, we attempt to recover as follows. If two nodes have recently been 

unified due to a possible equality constraint, then we replace the last possible equality 

constraint on the list by an inequality constraint, reload the backup graph, and replay the 

constraints on the list. Otherwise, if the possible equality constraint list is not empty, then we 

reload the backup graph and replay using binary search with the path-finding algorithm to 

find where in the list the problem is; then we negate that constraint and proceed. If no 

problem is discovered, we assume the algorithm fixed it inadvertently and proceed; this might 

happen because an equality constraint added by a run of the path-finding algorithm changed 

the graph in such a way that the inference tool is now able to determine that some pair of 

nodes should not be unified although this previously could not be determined without running 

the path-finding algorithm. If an equality/inequality conflict occurs when the list is empty, 

then we have reached a point where there is a problem we cannot fix: the last run of the path-

finding algorithm reported no problems with the graph, and all changes in the graph since 

then have been necessary, so we cannot attempt to fix the problem by undoing something. In 

such a situation, the inference tool terminates and reports that it was unable to fix a problem. 



The following features have been added to make sure that classes with complete formal 

parameter lists do not end up with more parameters than they should. 

If a possible-equality constraint between two nodes is rejected, then possible-equality 

constraints are added between corresponding components of the nodes, except where 

inequality constraints are already present. This exception is necessary to prevent infinite 

looping; for example, if XX I�  and YY I�  and YX ≠ , and we reject a possible-equality 

constraint between X  and Y , then adding another possible-equality constraint between X  

and Y  would cause the same thing to happen again, and the inference tool would never 

terminate. 

After inference finishes running, if any class's parameter list needs to be reduced, we apply a 

list of heuristics to that class in order until one produces at least one possible unification; we 

then add possible-equality constraints to the list of constraints to be dealt with and resume 

running the inference algorithm. The implemented list of heuristics is: 

i. Attempt to unify component-equal nodes. 

ii. Attempt to unify return values and corresponding arguments of overloaded methods. 

iii. For two variables of the same type, or a type and a variable with that type: 

 -suggest unifying the two nodes if they are not inequal 

 -if they are inequal, then suggest unifying their corresponding components 

iv. If all else fails, unify any of the class's transitive components that can be unified. 



5. Future Research Possibilities 

We have not tested the interactive inference tool on any large code bases. While we are fairly 

confident that the tool works, it would be useful to apply it to at least one large system to 

determine how useful it is in practice. 

If enough of the public interface of a class is annotated by a programmer, it should be possible 

under certain circumstances to infer ownership types for classes that depend on this class 

without simultaneously inferring the remaining ownership types for this class. We believe that 

modifying the inference tool to run on as small a code base at a time as possible would 

noticeably improve the running time. 

As mentioned above, while developing the interactive inference tool we noticed that certain 

references (such as the mutex in SynchronizedCollection) are not used in ways that 

could cause aliasing bugs and could therefore be considered harmless aliases. It may be 

possible to extend AliasJava to incorporate an annotation for such references. 

We were mostly unsuccessful in trying to provide feedback to the user regarding inference of 

shared, owned, and parameter annotations. A system for providing useful feedback about 

this part of the inference process could greatly improve the usefulness of the tool. 

The concept of ownership domains [3] is similar to the concept of ownership types but more 

powerful. At the moment no inference algorithm for ownership domains has been created; 

thus, while ownership domains are more expressive than ownership types, they may be less 

practical to apply to large preexisting systems. Inference for ownership domains would make 

this more powerful system practical enough to be appealing. 



6. Related Work 

The inference tool described in this paper is based on the original AliasJava inference tool; 

AliasJava and the original, non-interactive inference algorithm are described in [1] and in 

more detail in [2]. 

[4] describes an “algorithm for inferring certain data sharing relationships in Java programs” 

which “identifies references as owning, borrowing, or sharing”; these correspond roughly to 

AliasJava’s unique, lent, and shared annotations respectively. However, the goal of 

their inference algorithm is to aid reasoning about when an object may be deallocated or 

garbage collected, whereas AliasJava’s goal is to aid reasoning about where a reference may 

be aliased. 

 

 

 

7. Conclusion 

This paper described a new inference algorithm for ownership types which is able to 

accommodate the presence of some user-specified types and which is able to provide some 

feedback to the user regarding why it inferred certain types. Using this tool should be less 

tedious than annotating a program purely by hand, while at the same time producing more 

usable results than were produced by the original inference tool. This should allow developers 

to obtain the benefits of ownership types in practice, which would not always be feasible 

otherwise. 
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