
Mixture Model for Approximate Inference in Bayesian Networks

Peerapong Dhangwatnotai
Carnegie Mellon University

Pittsburgh, PA 15213
pdhangwa@andrew.cmu.edu

May 15, 2006

Abstract

Bayesian Networks (Bayes net) is a statistical tool for rea-
soning under uncertainty. However, exact inference in
Bayes net is an NP-Hard problem. In this thesis, we pro-
pose an approximate inference algorithm which trains a
mixture model to answer queries in a given Bayes Net.
We use a large number of hidden classes for accuracy
while taking advantage of the unlimited training data gen-
erated by the Bayes net. We compare the algorithm’s
query speed and accuracy with importance sampling on
a real Bayes net.

1 Introduction

Bayesian network (Bayes net) is a statistical tool for mod-
eling independences among a set of random variables. A
Bayes net can compactly represent a joint distribution of
a large number of variables. However, exact inference
using Bayes nets is worst-case NP-hard [1]. Although ap-
proximate inference with error bound is also NP-hard [4],
many approximation algorithms do very well in general.
An example is a class of stochastic sampling algorithms
which includes likelihood weighting, Gibbs sampling, im-
portance sampling, etc. Stochastic sampling algorithms
are also appealing because they converge to the correct
answer as the number of samples goes to infinity.

However, stochastic sampling algorithms are still slow
and require many samples in the case of unlikely evi-
dences [3]. In this paper, we propose a mixture-model
approximation algorithm which provides a fast inference

and also converges to the correct answer in the limit. Then
we compare the algorithm’s accuracy and inference speed
with importance sampling on a real Bayes net.

2 Bayesian Networks

Bayes net is a language for representing the joint
probability distribution of a set of random variables
{X1, X2, . . . , Xn}. A Bayes net consists of a directed
acyclic graph and a set of conditional probability distrib-
utions which are usually stored as conditional probability
tables (cpts). Each node in a Bayes net corresponds to a
random variable and thus we call each node by the name
of its corresponding random variable. LetXi be a random
variable in a Bayes net. The set of parents ofXi, denoted
{πi}, is the set of random variables whose nodes are par-
ents ofXi. The graph encodes independence assumptions
of the form: Xi is independent of its non-descendants
given its parents,{πi}. There is a cpt associated with each
nodeXi to specify the probability ofXi given its parents,
p(Xi|{πi}). The joint probability distribution is specified
by p(X1, X2, . . . , Xn) =

∏n

i=1p(Xi|{πi}).

3 Mixture Model

A mixture model is a Bayes net with one special random
variable called “class.” The only independence assump-
tion that a mixture model encodes is all variables are in-
dependent given class. A picture of a mixture model is
shown in figure 1. The structure of the network is the
same as naive Bayes but the reason we call it mixture

1

model is because during training, class is an unobserved
variable.

The idea behind the algorithm is we can model a Bayes
net with a mixture model more and more accurately as
the number of classes increases. With enough number of
classes, the mixture model can precisely model a Bayes
net. This allows us to make a trade off between training
time and accuracy. The next two subsections deal with
mixture model training and inference.

Figure 1: Mixture model

3.1 Training

Before doing an inference, first we must train a mixture
model to approximate a given Bayes net. Since training
is a one-time cost, we can afford to spend huge amount
of time on training. Two things that affect the accuracy
of inference the most are number of classes and number
of samples. More classes and more samples lead to bet-
ter accuracy. During training, we fix a number of classes
and a set of samples. The samples are generated from the
Bayes net we want to model.

The standard approach for training a Bayes net with un-
observed variables is to use EM algorithm. On the other
hand, training a mixture model is equivalent to cluster-
ing the samples and in here, we will explain the train-
ing algorithm in terms of clustering. Algorithm 1 shows
the pseudo code. Doing EM in a discrete space is differ-
ent from a continuous space in that the samples appear
as point mass and there is no relationship between any
two values of an attribute. For example, it is possible to
choose a sample as an initial location for a class such that
it lands on top of an existing class. Therefore, we have to
modified the standard EM algorithm for this purpose.

When initializing class locations, we do a 2-pass as-
signment. In the first pass, we choose a sample at random
as an initial location for each class. In the second pass,
one by one, we choose a sample such that for each preced-
ing class, the probability that it is in the class is less thana
certain threshold. It is possible that there is no such sam-
ple. Therefore, we have to be less picky over time. This
is accomplished by increasing the threshold each time we
draw a disqualified sample. The initial location of a class
is the average between the samples assigned in the first
pass and the second pass.

During the E-step in the EM, we assign a sample to
at most two classes. First we find the two most likely
classes. If the probability that the sample is in the most
likely class is greater than the probability that it is in the
second most likely class by more than a constant (0.2),
we assign the whole sample to the most likely class. Oth-
erwise, we assign a fraction of the sample to each of the
two classes according to the ratio of their probabilities.
This speeds up the EM when we have many classes and
prevents more than two classes from staying at the sam e
location.

It is possible that during the course of an EM, a class is
“starved”. We define “starved” as having number of sam-
ples less than a certain threshold. When a class is starved,
we relocate the center of the class to a random sample
with some criteria and set the probability or weight of the
class to (number of samples)/(number of classes). Since
it is possible to choose a sample which is on top of an
existing class, some criteria are needed to make sure the
class is not likely to become starved again. To do that, we
calculate the probability that the sample is in each class
and require that none of the probabilities exceeds a cer-
tain threshold.

We have observed that it is possible to use only unique
samples and assign each sample a different weight propor-
tional to its probability. Using unique samples will help
speed up training and greatly decrease the probability of
choosing two samples of the same location. However, it
is an item of future research because there is not enough
time to reimplement the EM.

3.2 Inference

Inference is the process of calculating the probability of
some variables given some variables. The strength of mix-

2

Algorithm 1 pseudo code for EM
Initialize class locations
repeat

E-step: Assign samples to most likely class(es)
M-step: Estimate parameters p(variable|class) from
the assigned samples
for each starved classdo

repeat
Pick a sample,µ
Increaseδ by a fraction

until for each class except the starved class,
p(sample|class) is less thanδ
Initialize the class with meanµ and some amount
of variance.
Set the weight (prior) of the class to 1/(number of
classes).

end for
until parameters of the mixture model change by less
than a certain threshold

ture model is running time for inference is linear in the
number of classes. This is shown in the inference formula
below.

p(X |Y) =
∑

C

p(X, C|Y) (1)

=
∑

C

p(X |C, Y)p(C|Y) (2)

=
∑

C

p(X |C)p(C|Y) (3)

Note that the assumption that X and Y are independent
given C (class) is the mixture model assumption which
will be true if the number of classes equals the number of
possible values of the joint distribution of all variables.In
that case, we can let each class contain only samples of the
same configuration and thus all variables are independent.

4 Experiment

4.1 Convergence test

First, we confirmed that in the limit, the mixture model
converges to the true Bayes net distribution. We trained

a mixture model on a small Bayes net called fash net as
shown in the figure 2. We varied the number of classes
from 2 to 16 and used two sets of samples, one of size
10000 and the other of size 100000. Then the difference
between the mixture model distribution and the Bayes net
distribution is measured using KL-divergence. Specifi-
cally, let P be the Bayes net distribution and Q be the
distribution modeled by the mixture model. We want to
estimate

DKL(P ||Q) =
∑

x P (x)log(P (x)
Q(x))

This is accomplished by drawing 10000 samples from
the fash net and calculate1

n

∑n

i=1 log(P (xi)/Q(xi))
whereP (xi) is the probability of sample i given by the
Bayes net andQ(xi) is the probability of sample i given
by the mixture model. It can be shown that this is an un-
biased estimate ofDKL(P ||Q). Figure 3 shows the re-
sult which suggests that as the number of classes and the
number of samples increase, the mixture model’s distrib-
ution converges to the Bayes net distribution. Modeling
the fash net with 16 classes and 100000 samples, we have
KL-divergence as low as 0.000061.

Figure 2: fash net

4.2 Query Test

To see how well mixture model does in real world net-
works, we compared its accuracy and speed with impor-
tance sampling on a real network, called alarm network.

3

2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

number of classes

K
L−

D
iv

er
ge

nc
e

100000 samples
10000 samples

Figure 3: Mixture model convergence

The network, shown in figure 8, is used by medical ex-
perts to monitor patients in intensive care units.

Mixture models with number of classes from 10 up
to 310 were trained with 100000 samples. The KL-
Divergence between the mixture model and the Bayes
net decreases as the number of classes increases (shown
in figure 4). Since the mixture model with 310 classes
has the best KL-divergence, it is used in the performance
comparison with importance sampling.

To test query performance, we generated 2000 queries
by drawing 2000 samples from the alarm network and
for each sample, randomly set 10 of the 37 variables
to be missing. Therefore, a query consists of 10 sub-
queries, which are, for each missing variable, p(the miss-
ing variable|evidence). The evidence is simply the vari-
ables whose values are not missing. Since there are only
10 missing variables, we can calculate the correct answers
using exact inference.

Accuracy
To compare the accuracy, we calculated the score for each
algorithm based on KL-divergence. For each subquery,
we calculated the KL-divergence between the distribu-
tion given by an approximate inference (mixture model
or importance sampling) and the correct distribution. The

0 50 100 150 200 250 300 350
0.5

1

1.5

2

2.5

3

3.5

4

number of classes

K
L−

di
ve

rg
en

ce

Figure 4: Alarm network convergence

score an algorithm gets for each query is the average KL-
divergence of the subqueries. Each algorithm’s final ac-
curacy score is the average score over all queries. Since
KL-divergence measures the difference between two dis-
tributions, the lower the score, the better the accuracy.

Importance sampling is very accurate in general. How-
ever, there were some queries in which the probabilities
of some variables taking on some particular values were

4

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of samples

pr
op

or
tio

n
of

 q
ue

rie
s

Figure 5: Proportion of queries which the number of sam-
ples is insufficient for importance sampling to determine
the distribution

0 because importance sampling did not see any sample
of those values. Therefore, the KL-divergence of impor-
tance sampling for those queries are infinite or undefined.
Figure 5 shows the proportion of queries which cannot be
answered with a certain number of samples. Importance
sampling requires at least 1000 samples to be able to an-
swer all queries.

Excluding the queries which importance sampling
could not answer, we obtained the score for importance
sampling as shown in figure 6. Mixture model’s score is
0.03382.

Speed
Inference speed was measured by timing each algorithm
on the same set of queries and computing the average time
per query. The result is shown in figure 7.

5 Discussion

When running time is not a concern, importance sam-
pling can draw more samples and achieves accuracy be-
yond mixture model. However, when we want fast infer-
ence, drawing a few hundred samples is not an option for
importance sampling because it will not have a sample
for some values of some attributes. As shown in figure
5, importance sampling needs at least 500 samples to be
able to answer at least 95% of the queries. Drawing the

amount of samples, importance sampling takes about 5
times longer than mixture model to answer a query.

Even if we ignore the insufficient sample problem, mix-
ture model still has the advantage when time is a factor
in performance evaluation. Importance sampling requires
between 150 and 200 samples to achieve the same level of
accuracy as the mixture model. When using that amount
of samples, importance sampling is 1.45 to 2 times slower
than mixture model. If we fix the running time at mixture
model’s speed, mixture model’s accuracy score is 27.43%
more than importance sampling’s.

The above statistics are specific to the network and the
type of query. There is more research to be done to exam-
ine the generalizability of this result. It is interesting to
see how both algorithms perform on other networks and
with a different number of missing variables. We conjec-
ture that if there are more missing variables, importance
sampling will take longer time to converge because the
space to sample from is larger while mixture model will
still take about the same amount of time. It is also possible
to combine the two algorithms together. We can use the
distribution from a mixture model as a proposal distribu-
tion for importance sampling. This will help importance
sampling converge faster.

5

100 200 300 400 500 600 700 800
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

number of samples for importance sampling

av
er

ag
e

K
L−

di
ve

rg
en

ce

importance sampling
mixture model

Figure 6: Accuracy score

0 200 400 600 800 1000 1200 1400
0

0.002

0.004

0.006

0.008

0.01

0.012

number of samples for importance sampling

qu
er

y
tim

e
(s

)

Mixture model
Importance sampling

Figure 7: Inference speed

6

Figure 8: Alarm network

7

References
[1] G. F. Cooper (1990) The computational complexity of

probabilistic inference using Bayesian belief networks,Artificial
Intelligence, 42(2-3):393-405.

[2] D. Lowd, and P. Domingo (2005) Naive Bayes models for
probability estimation,Proceedings of the 22 nd International
Conference on Machine Learning, Bonn, Germany.

[3] C. Yuan and M. J. Druzdzel (2003) An Importance Sam-
pling Algorithm Based on Evidence Pre-propagation,Proceed-
ings of the 19th Annual Conference on Uncertainty in Artificial
Intelligence, Pittsburgh, Pennsylvania.

[4] P. Dagum and M. Luby (1993) Approximating probabilis-
tic inference in Bayesian belief networks is NP-hard,Artificial
Intelligence, 60(1):141-153.

[5] Genie developers (2006) http://genie.sis.pitt.edu/.

8

