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ABSTRACT 
The goal of this research is to explore the possibility of 
extending ideas proposed by von Neumann in the paper 
Probabilistic Logics and the Synthesis of Reliable 
Organisms from Unreliable Components, to build a very 
large scale intrusion detector system able to detect new 
cyber-attacks with higher reliability than the “sum” of its 
components. The proposal is to build an information 
processor made of many components networked in such a 
way that the probability of false positive and false negative 
is smaller than its individual components. 

The first phase of the work consisted of familiarization with 
the details of the original paper. Von Neumann describes a 
system of "organs" in a nervous system. These "organs" 
(not like a heart or lungs, but rather a term to describe a 
small unit) have some chance of misfiring, epsilon. As a 
result, his paper discusses a method of merging this data 
together so as to reduce the effect of "faulty" data. In 
addition, his paper addresses the issue of different messages 
being detected by different sensors. Von Neumann provides 
a method for combining this information by using 
properties of large numbers to find the "true state" of the 
system.  

We are investigating whether or not Von Neumann's 
nervous system design can be applied to anti-virus 
detection.  Unlike the nervous network proposed by Von 
Neumann to transmit a single, binary signal, the proposed 
virus detection network must make affordances for other 
critical pieces of data; multiple viruses/different signatures, 
time discrepancy, and virus spread.  In our paper, we 
investigate possible solutions to these aspects of the 
application of Von Neumann’s work to that of a virus 
detection network. 

The most recent phase of the work consisted of an in-depth 
study of the world of anomalies (the main mechanism for 
that kind of detection), and in particular system calls. We 
wished to understand how detectors using system calls can 
exchange information in such a way that their aggregated 
probability of false positive and false negative is much 
smaller than their individual probabilities of false positive 
and false negative. 
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INTRODUCTION 
As computers become pervasive in world society, the 
potential financial damage from a large viral or worm 
attack could be in the billions of dollars.  To combat such 
attacks, many systems of anti-viral software have been 
developed.  However, most of these systems are 
reactionary.  They require a human to be “in the loop” to 
help identify new threats.  Though this approach has proved 
effective, this reactionary model is slow, and usually cannot 
prevent threats in zero time.  This paper proposes the 
conceptual background for a new virus detection system, 
whose basis lies in the work by Jon von Neumann. 

In his paper Probabilistic Logics and the Synthesis of 
Reliable Organisms from Unreliable Components, von 
Neumann proposes a model of the human nervous system 
based on “organs” (a term used to describe a small unit, 
rather than a heart or lungs) which have an epsilon (small) 
chance of misfiring.  Relying on the law of large numbers, 
his network of organs reduce the chance of overall “false 
positive.”  We propose a model of a computer network, 
based on von Neumann’s that follows many of the same 
principles to dynamically detect new virus and worm 
threats in approximately zero time based on anomalous 
activity.   

We will begin by discussing more details of von 
Neumann’s paper, including our own exploration into his 
mathematical analysis.  Following the review of his 
literature, we will point out the aspects that do not directly 
map to the computer model, and our proposed solutions to 
said issues.  These solutions include the creation of new 
types of “organs”, as well as innovations in the overall 
structure of our computer network.  We will then show, 
through our own mathematical analysis, the strength of our 
new network to reduce the possibility of false positive and 
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the increased chance of true positive detection.  Finally, we 
propose some future conceptual modifications to further 
improve our network. 

VON NEUMANN 
The basis of the research originates with Jon Von 
Neumann’s paper Probabilistic Logics and the Synthesis of 
Reliable Organisms from Unreliable Components.  In this 
ground-breaking article, Von Neumann proposes a logic 
gate based model of the human nervous system, which 
through the properties of large numbers, filters out 
unsubstantiated signals (false positives).  His model uses a 
series of “organs” to send binary signals throughout the 
network, and combines these signals together to create a 
general analysis of the system as a whole.  Each node in the 
network (a total of N nodes), has a chance of malfunction 
(ε).  The goal is to reduce the probability of overall 
malfunction (some fraction above a fiduciary level Δ). 

Before we could start to apply his findings to our model of 
zero-time virus detection, we analyzed Von Neumann’s 
equations and system.  Von Neumann sets forth some base 
numbers for key values in his system; 

• ε < 0.0107 
• Δ = .7 

As a result, we wanted to explore other values of epsilon 
and delta to confirm that large numbers do, in fact, reduce 
the fraction above the fiduciary level. 

Appendix 1-6 illustrates Von Neumann’s system, with 
different values for epsilon, delta, and N.  From these 
results, we concluded that epsilon is the key value to work 
around in that it is the threshold above which the fiduciary 
level may not be reached.  In other words, the system will 
fail. 

PROBLEMS WITH MAPPING 
In intrusion-detection, the overall challenge is to reduce the 
false positive rate while maintaining the lowest level 
possible of false negatives.    Though Von Neumann’s 
system elegantly deals with erroneous data, providing a 
connection between that system and the real world is not so 
easy.  During the next step of the research, we brainstormed 
a list of potential mapping problems between Von 
Neumann’s network and our goal of a virus detection 
system. 

One hurdle to realizing a virus detection system is that the 
Von Neumann network assumes all information (all 
signals) occur at the exact same moment in time.  
Unfortunately, viruses and worms require some amount of 
time to spread and to cause “abnormal” occurrences on a 
user’s system.  Therefore some longitudinal or temporal 
accommodations must be made.  Beyond the difference 
between a single instant of time and a span of time, there is 
another difference:  a static system versus a dynamic 
system.  A single snapshot in time (or a pause for a system 

to reach equilibrium) is different from a system that 
continues to change (as, for example, as a worm expands 
through a network). 

Another problem is that there will potentially be more than 
one type of virus or worm in a network.  Thus a binary 
detection system (something is wrong, something is not 
wrong) will find it difficult to identify if a single threat 
exists (in the presence of multiple infections).  Further, a 
single threat may cause different symptoms on different 
systems, or the symptoms may evolve over time (for 
example, a stealth-like growth until some fraction of the 
network is infected, followed by a vigorous denial of 
service attack on a predefined target).  Thus any method 
used to compare a system’s reactions must take these 
complications into consideration. 

Automatic anomaly detection, in the current state of the 
practice, tends to have a high rate of false positive.  An 
unusual “event” can occur when a new program is installed 
or the user does something “un expected.”  Further, 
depending on how automatic anomaly detection is set up, 
simply more “dangerous” commands or sequences could be 
flagged, like a delete request, or a write request. We can try 
to reduce that rate by requiring the same detector to notice 
activity multiple times to avoid transient errors and detect 
only persistent problems.  That approach, however, would 
produce false negatives when viruses or worms only need 
one “attack” to do all of their intended damage. 

 Because this paper is the culmination of only two 
semesters worth of work, we will be addressing the former 
of the two mapping problems.  As a result, the proposed 
system will be used to identify a general trend of the 
network.  However, in the future work section, there is a 
brief discussion of theories towards dealing with different 
anomalies and different threats. 

PROPOSED ARCHITECTURE 
Our new system is composed of three levels:  Level 1 (L1), 
Level 2 (L2), and the Von Neumann Network (VNN).  The 
goal of this layout is to reduce the rate of false positives, as 
well as to manage the asynchronous nature of the network. 
The first level, L1, is the detector machine.  This machine 
uses an anomaly detection system to determine the 
possibility of an attack.  The second level of the system, L2, 
handles network asynchrony, crashed systems (possibly due 
to attacks), and validation of a threat on multiple 
computers.  The third level, the VNN, is the system 
proposed by Von Neumann in his original paper.  See 
Diagram 3 for an illustrated layout of the proposed 
architecture. 
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Diagram 1 – L1 

 

L1 can be represented by <N, D, T> where N is the network 
(graph) of system components above L1 (comprising of L2 
and VNN), and the directional links between them, D is the 
set of individual systems which are used to detect 
anomalous activity, and T which is the set of temporal 
gates, each of which provide a link from one element in D 
to many elements in N.  More specifically, a detector gate is 
connected to a temporal gate, which connects to many gates 
in L2.  Each set of detector and temporal gates can be 
considered a L1 node.  A node at L1 can be illustrated in 
Diagram 1.  

L1 begins with a detector: that is, a component system 
detects anomalous activity (currently a black box), and 
alerts the L1 level when the amount of activity reaches or 
exceeds a predetermined threshold.  These alerts are 
forwarded to a temporal gate.  The purpose of this gate is to 
monitor the alerts that the detector finds.  Within an 
established window of time, if there are n alerts (whether or 
not similarity is required has yet to be determined) the 
temporal gates alerts L2 of its findings.  This temporal 
windowing should reduce the chance of transient false 
positives, because it requires some level of sustained 
malicious action to occur. 

 Note that this boundary between L1 and L2 is, in some 
sense arbitrary.  In an alternative configuration, L2 could 
hold the temporal filter for false positives.  That alternative 
would, however, require an expanded bandwidth between 
L1 and L2, because L2 would have to monitor all alerts 
from the L1 layer.  In general, a sound software engineering 
principle is to minimize the information flow between 
architectural components and levels, so as to provide better 
information hiding and increased flexibility at 
implementation time. 

 

 
Diagram 2 – L2 

 

L2 can be represented by <G, V, S, H, M, R> where G is 
the set of inputs coming to L2 from L1.  V represents the 
VNN, S is the set of “significant gates”, one gate for every 
input to each L2 node.  H represents the set of the history 
gates, one for every element in S, M is the set of all 
majority gates, and R for the set of repeater gates.  A L2 
node consists of 1 element for S and  H for every input to 
the node.  Each S element matches to one H element.  The 
L2 node the has  one element from M, which all elements 
from H in this node connect to.  Then the M element 
connects to an R element, which connects to V.  Diagram 2 
represents a L2 node with 3 inputs.   

 

 
Diagram 3 – L1 to L2 

 

The connection between L1 and L2 is like a web of signal 
wires, much like the human nervous system.  This is 
illustrated in Diagram 3, with a simple 3 node situation.  
Every detector in L1 connects to at least two, if not more 
L2 nodes.  This design decision was made because virus 
and worm do not necessarily spread out linearly through the 
network.  Furthermore, they do not always spread through 
physical neighbors of infected nodes.  Thus, by increasing 
the number of possible connections, we increase the chance 
that infected systems will be detected.  L2 and L1 systems 
maintain active “heartbeat” connections, constantly 
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checking to see if each is still “alive”.  If an L1 system is 
shut down, it will send a “shut down” signal to the L2 
systems connected to it.  However if an L1 crashes, such a 
signal will not be sent, and as a result, action can be taken 
to reflect a crashed system, especially if an alert was sent 
immediately before. 

L2 is more complex then L1.  It consists of  four new types 
of gates; repeater gate, significant gate, history gate, and 
majority rule gate.  The overall goal of L2 is to decide 
when there is enough evidence to report (to the next level) 
that an event has occurred. When a signal enters L2, it first 
enters through a significant gate, which monitors for a 
steady level of positives, which would suggest something of 
significance may have occurred.  Once an “event” is 
determined to exist by the significant gate, a signal is 
passed to the associated history gate.  The history gate 
processes events related to the asynchronous nature of the 
network by repeating the “event” status to the next gate in 
the L2 node.  Following the significant gate  and history 
gate series, each input into L2 converges into a majority 
rule gate. The majority rule gate takes in N inputs.  If N/2 
inputs have an alert in common, then the majority rule gates 
passes on an alert.  Even if some systems go down, the 
majority rule gate can still function as long as it still has 
viable sources of input.  Once the majority rule gate 
determines that there is a common alert across some portion 
of the network, it forwards the “event” onto a repeater gate. 
The repeater is used to deal with asynchrony in the level 
above, the VNN.  Because all signals in the network will 
not occur at the same time, nor will virus spread occur at a 
simultaneous rate, the repeater gate will continue to 
broadcast an alert to the VNN for a predetermined length of 
time, hoping to increase the chance of an alert collision (in 
time) in the VNN 

 

 
Diagram 4 – Full Network 

 

Finally, the signal reaches the third level, the VNN.   
Diagram 4 illustrates this.  By using only binary signals, the 
input/notification of event to the VNN will work exactly 
like the network proposed in Von Neumann’s paper.  As a 
result, if enough systems in the network detect an “event”, 
then the due to the properties of large numbers, the VNN 

will notify the central “brain” that there appears to be 
malicious code spreading throughout the network as a 
whole. 

This architecture, as it stands, assumes that there exists one 
standard uniform system architecture on each of the nodes 
in the network.  Thus there are no “OS specific” attacks.  In 
a more realistic model, there could be multiple parallel 
detector “levels” each running concurrently, linking 
systems of similar design together, so as to create a more 
accurate picture of the state of the network. 

In addition, it has been hypothesized that a modification to 
the VN could be made to simply the overall network.  
Currently in the VNN, there exists an “organ” called the 
Sheffer Stroke.  The goal of this organ is to collect all the 
(multiplexed) incoming data (inputs) and react similarly to 
a NAND gate. The inputs are put in pairs. When two input 
links are activated simultaneously there is no output, the 
rest of the time the output link is activated.   In VN 
networks, many Sheffer strokes work in parallel and what 
matters is the number of output links non-activated as 
compared to the number of input links activated.  

It is theorized, that the work achieved by L1 and L2 as 
proposed not only performs the same function as the Shafer 
Stroke, but does the task in a more practical way in relation 
to this model.  Yet, having another step to reduce false 
positives could be useful to reduce the effectiveness of the 
new network as a whole. 

MATHMATICAL JUSTIFICATION 
Ostensibly the paper of John von Neumann, addresses the 
question of how to reduce the error due to unreliable 
components to an arbitrary small level using multiplexing 
and large numbers. In practice, the ideas developed in that 
paper have the potential to be applied to a large variety of 
problems involving unreliable components and we think 
among others the problem of early detection of new 
malware. Here we described succinctly the major 
observation of von Neumann.  

Von Neumann discussion deals with two kinds of gates: the 
majority rule and the Sheffer stroke (NAND gate).  A 
majority rule gate receives information from three sources. 
The probability that the gate yields a false information is 
the probability that at least two of the three sources were 
providing a false information. If 

i
!  is the probability that 

line “i” gives a false negative, the probability that at least 
two of the three incoming lines give a wrong information 
and that the gate is sending a false negative signal is show 
in Equation 1. 

321323121
2 !!!!!!!!!" #++=

g
 

Equation 1 
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The result is shown in Figure 1. If one can assume that in 
average %10!

i
" , then the probability of false positive 

of the whole system based on a majority rule will be 
%3!

g
" .  The probability of false negative is about 3% 
and the probability that the gate will keep the evidence 
(under these assumptions) is 97%. Grouping computers in 
three and make them feed a majority rule gate would 
produce an aggregate with a somewhat improved 
probability of false positive and false negative. 

 

 
Fig 1: Output of a majority rule gate, assuming that: 

!""" ===
321

, i.e. that: 32
23 !!" #=

g . 

 

This means that if in average, 90% of the incoming lines are 
activates, 97.2% of the outgoing lines will be activated. On 
the other hand, if in average 10% of the incoming lines are 
activated, only 2.8% of the outgoing lines are activated. 
This can be interpreted as meaning that if the detectors were 
identical and had in average a 10% false positive or false 
negative rate, a majority rule gate would have a 2.8% false 
positive or false negative rate. Another way to use this 
graph is to choose a value for the maximum allowable 
probability of false positive for the gate (say 1%). Then the 
maximum tolerable probability of false positive for the 
computer sending a message to each of the three lines (in a 
sample where all the lines are activated) is 5.8%. 

In a stochastic situation there are fluctuations. The majority 
rule gate has the potential to amplify their effect (by 
filtering our the “right information”) and distort the 
message.  In order to avoid a distortion of the original 
message due to statistical fluctuations, von Neumann makes 
a compelling case that multiplexing the information sent by 
the computers helps.  

Von Neumann studies in details the effect of multiplexing 
in the case of the Sheffer stroke (NAND gate). The N times 
multiplexed Sheffer stroke is made of 2N lines arrived in 
pair in N NAND gates and N lines come out. It is only 

when both lines of a pair are simultaneously activated that 
the line leaving the gate is not. If one assumes that among 
the incoming lines arriving in pair, p of N and q of N 
respectively are activated, the probability that r of the N 
outgoing lines are not, is given by the ratio of the number of 
ways that a combination of p and q lines generate r lines 
with the right properties, over the total number of ways of 
combining p and q lines in pair: 

( )
( )( )( )

( ) ( )!!

!

!!

!

!!!!

!

,

qNq

N

pNp

N

rqpNrqrpr

N

Nr

!!

+!!!!
="  

Equation 2 

 

Defining Np != , Nq !=  and ( )Nr !"= 1 , one can 
show that in the large N limit: 

( )( ) !!
"

#
$$
%

&
'''(

2

2
1

2

1
exp

2

1
)*+

,-,
.  

Equation 3 

 

With: 

( ) ( )
N

!!""
#

$$
=

11  

Equation 4 

 

I.e. one effect of large N is that the outcome is normally 
distributed with mean !"# $=1  and with a variance 
decreasing with N.  

MATHMATICS WITH ERRORS 
Equation 3 suggest that in the large N limit, when ! and 
! represent the excitation level of the input bundle, 

!"# $=1  is the relative excitation level of the output 
bundle, assuming the gate do not introduce any additional 
error. If one assumes that the gates have a non-zero 
probability “! ”  to make an error, the result is modified 
into: 

( )
!
!

"

#

$
$

%

&
!
"

#
$
%

&
'''''(
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2
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Equation 5 
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with:  

( ) ( ) ( ) ( )
N

!!""##!
$

%+%%%
=

11121
2

 

Equation 6 

 

von Neumann shows that in order for the network to be 
functional, the error probability !  should be less than 1%.  
If 01.0<! , it is possible to improve the accuracy of the 
network by increasing the number N.  If one assumes 

005.0=! , von Neumann found that the probability of 
malfunction was: 

( ) !=
" #

$%
dkeNp

k

2

2

2

1
, with N062.0=!  

Equation 7 

 

For N = 1000, the probability of malfunction of the whole 
system is 0.249%. For N = 5000, it becomes 6

1082.5
!

" .  

In the context of intrusion detection, the probability that the 
system is functional corresponds to the probability that the 
detection system makes the right identification. In Figure 2, 
N corresponds to the number of “Gates”. 

In our architecture, the source of the activation of the 
system will be computers detecting anomalies. We have in 
mind a set-up where the message of each individual 
computer is multiplexed and sent to many “gates”. The 
gates would not be Sheffer strokes, but gates receiving 
signals from many computers (Whether in actuality the 
“gates should be the same computers is not excluded, but of 
no relevance in this discussion). The “gates” have to make a 
determination whether they should pass the signal on. 
Following von Neumann computation, the probability of 
error by the gates should be kept very small (significantly 
less than one percent if it were Sheffer strokes), otherwise 
the intrusion detection system will not provide an 
information with adequate precision: it will be 
“dysfunctional”. 

Our “gates” will defer significantly from von Neumann’s 
gates. How they will operate is not yet completely clear. In 
this proposal we show that it is (at some computational 
cost) possible to generalize the results of von Neumann to 
other gates. 

MATHMATIC GENERALIZATION TO OTHER GATES 
Pushing one step further the analogy with the brain, we 
imagine a system with a very high cross connectivity. I.e. 
we imagine a system with N (large) sensors (level 1) 

connected to N sensors (level 2), And each level 2 sensor is 
connected with q level 1 sensors. 

Assume that out of the N level 1 sensors, p are activated 
and send a signal. Let k be the number of signals received 
by individual level 2 sensors. The distribution of k is the 
hyper geometric distribution: 

( )

!!
"

#
$$
%

&

!!
"

#
$$
%

&

'

'
!!
"

#
$$
%

&

=

q

N

kq

pN

k

p

kqpNH ;,,  

Equation 8 

 

Its mean is: 
N

pq
 and ( )kH ;10,50,100  has the general 

shape show in Figure 2. 

 

 

Fig 2: Hyper geometric function ( )kH ;10,50,100 . 

 

MATHMATIC PROBABILITY OF FALSE POSITIVES 
If each level 1 sensor has the same probability π of false 
positive, the probability that k signals are all false positive 
is: ( ) kFP

kP != . One can choose a threshold κ on the 
value k ( !"k ) for the level 2 detector to be triggered, 
such that ( ) !"# #

$=FP
P . 

FUTURE IMPROVMENTS 
Clearly, the proposed system falls short of providing 
complete detection of arbitrary virus spread throughout a 
network with zero false positives.  Yet notification of 
suspicious events throughout a network is helpful for a 
system administrator, or a company like Symantec.  The 
authors, however, have considered several ways to improve 
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the current model.  The following are some possible 
additions to the architecture to facilitate more complete 
and/or accurate conclusions. 

Currently, sensors send a simple “error” indication.  A 
simple modification of the architecture would be to 
elaborate event signals with a brief description of the 
anomaly that occurred.  Such metadata could improve 
detection and diagnosis in several  ways.  On a pragmatic 
level, a supervisor or administrator could examine the 
profiles of the events at the brain level of the VNN, and 
draw more informed conclusions.  On a more autonomic 
level, the brain could examine the profiles, and match 
similarities between events, and system configurations to 
find possible commonalities or patterns.  However this 
metadata is used, it would provide for a more accurate level 
of reseponse, beyond mere notification.  Of course, the cost 
is the requirement for higher network and processing 
bandwidths, to send and manipulate the metadata, and 
larger storage requirements at any node responsible for 
temporal aggregation or time shifting. 

Another modification would be to have specialized parallel 
networks layered on top of the same base network.  Each 
layer would be used to deal with a unique profile or 
common pattern representing a given threat.  This would 
allow the network to detect the spread of each category of 
threat throughout the network.  As a result, the network 
would be alerted each time a specific threat has propagated 
through the network.  However, this poses a new set of 
questions: How would a designer determine what threats 
are the same, and what are different? What is the optimal 
number of parallel networks? Would the reliance on 
specific networks to detect threats reduce the sensitivity to 
new, previously unobserved infections? 

Once the architecture separates different kinds of threat 
detection, the problem of recombining sets of events from 
different networks becomes significant.  We have explored 
several possible ways of identify and group such threats.  
One way is by detecting anomalies by a series of unusual 
system calls.  A snapshot of these system calls would be 
used as a rough signature for the identification of a specific 
threat.  As the alert travels through the network, a signature 
or pattern match would be run against each alert.  This 
pattern matching could be done using a dynamic 
programming algorithm, hash tables, or the like.  However, 
for dealing with more complicated threats, more intelligent 
pattern detection, or anomies detection might be necessary. 
When a match reaches a certain trigger level, it would be 
considered significant.  This sounds very promising, but 
unfortunately, every detection network would need to have 
a deep understanding as to what series of system calls 
represent a class of anomalies.  This could be difficult in a 
heterogeneous configuration of the different types of 
systems (hardware and operating systems) or in a 
homogeneous configuration with different tasks being 

performed on each node.  Reliance on a fix set of detection 
patterns, could be vulnerable to malicious code that chose 
random system calls (generally considered normal) to mask 
its critical calls. 

Another possible solution to this problem of correlating 
events would be to trace back anomalous activity to the 
binary events that began the detection pattern.  Therefore, 
no matter the series of system calls, or activities, however a 
virus or worm is detected, the same initial binary event 
would be able to be compared.  However, this may prove to 
be easier said then done.  In a very superficial analysis, we 
can only find a function called “strace.”  Though this 
function does appear to be a good start, it does not appear to 
be a quick solution.  One problem with this binary solution 
is that the malicious code could simply generate random 
bits, thus similar binary events on different systems would 
appear to be different. 

Lastly, we have discussed using a neural network to self 
organize based on known infections, and the network 
history.  Clearly, this is the most complex of the proposed 
solutions, and it is also the one we have pursued the least.  
The main reason for the lack of Neural Network exploration 
is because it only deals with half of the problem.  Though it 
would help mobilize the detection based on historical 
patterns, and known spreads, it does not help reduce false 
positives for new threats, which spread in an 
unconventional pattern.  Consider the situation where a 
system is constantly running compromised software, and 
always downloads and spreads the newest and greatest 
worm or virus.  The NN solution would clearly help in fast 
detection.  However, for the threats which target general 
users (ie ones that spread over email or target systems with 
specific configurations, like SLAMMER), the NN might 
not help, or could even hurt if the network is designed to 
look within a given pathway. 

Though none of these additional enhancements solve a 
problem completely, they do make a step in the right 
direction.  We strongly believe in the direction of this work, 
and further meditation on these solutions could provide the 
basis for a stronger, and more reliable network that would 
not only inform about events, but also provide information 
to combat the threats. 

FUTURE WORK 
The next step in this research would be to conduct real 
world testing of our architecture.  The goal of this would be 
to develop the code-level architecture and protocol system 
to determine the necessarily level of complexity that would 
be necessary to support virus detection.  In addition to 
being a proof of concept, this implementation would also 
allow us to observe how the actual system reacts to a 
virus/worm threat, and what kind of analysis we can 
perform on the results.  Though we know what information 
we would like systems to pass on, this would allow us to 
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examine all the information we can collect about a virus.  
This approach would also provide a useful baseline of 
information for the study of more intelligent reactionary 
systems.   This small initial implementation would 
also serve as the basis for improvements in robustness, 
practicality and scalability.  

In addition to testing the feasibility of such a network, 
implementing it on top of an existing system could provide 
real world results.  Symantec has a large scale virus 
detection network called Deepsight, which would provide a 
great opportunity to test our model.  It is feasible to 
consider working with Symantec towards testing this 
research in the future. 

 

CONCLUSION 
This project has laid the groundwork for a broad agenda of 
virus detection research.  Von Neumann‘s original paper 
provides us with a method to systematically reduce false 
positives based on the law of large numbers.  We have 
shown, both conceptually and mathematically, that it can be 
applied to virus detection. 

More generally, our work shows that we can use the same 
property of large numbers that the brain uses to weed out 
faulty information.  In effect, the total is better than the sum 
of the parts.  Even more intriguing is that sometimes the 

most reliable components do not always produce the most 
reliable output. 

One observation is that many detectors will be needed to 
put into practice the theory discussed here.  And the larger 
the number of detectors, the better the automatic detection 
of new viruses through anomalies will be.  Given the 
current state of virus detection in the real world, if it were 
anomaly based, it would be effective if the malicious traffic 
was about 1% or more of all the traffic.  At this point, if 
detection occurred, it would be too late.  We hope our 
proposed model can improve the chance of virus detection. 
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