Autonomic Computing: Learningto
Repair Systems Effectively

Nicholas Lynn (ngl@andrew.cmu.edu)
Advisor: David Garlan (garlan@cs.cmu.edu)
School of Computer Science, Carnegie Mellon Uniters
5000 Forbes Ave
Pittsburgh, PA, 15213

USA

Abstract. This research aims to integrate temporal differenc& his paper explores the viability of autonomoud-egpairing

learning methods into an autonomic learning syst@ihe
current Rainbow architecture models an adaptatiagine that
examines the system state to assess problems serthoes a
best course of action based on pre-programmed tsger
However, when expert knowledge is not readily aldé for a
system, learning proper actions withoatpriori knowledge
would often be more useful in practical situatiombis report
characterizes initial testing of a new learningiraglesigned to
learn the proper corrective actions to take in oriaerepair
problems in systems.

Specifically, reinforcement learning methods caralde a
system to learn the proper actions by actuallyngyeut actions
and seeing how well they do. This project comp&dsarning
and SARSA temporal difference learning algorithmighwhe
existing expert algorithm on the Carnegie-Mellonsigeed
Rainbow simulated system. Since they approachaeiament
learning in a different way, comparing the succest® and
speed of the algorithms on various scenarios withvige
evidence about their efficacy. My research aimgléoify the
benefits and costs associated with these algorithms

1. INTRODUCTION

The core problem that | address with this autondescner is
how to increase the ability of systems to mainthiemselves.
Computer systems continue to become increasingtgptex,

with multitudes of new features. Furthermore, theggems are
increasingly running in highly dynamic environmentghere

resources and requirements are often in flux. Witk increase
in complexity, systems also have an increasingewarand

impact of possible failures and problems. Simpléctoall

solutions such as rebooting or shutting down arerafing

program or client are often wholly unacceptablategies for
coping with such problems. For a system that reguit00%
uptime to provide client services, any kind of diedd can be a
financially devastating problem. So the owners amintainers
of these systems often turn to human system adimgtoss to
apply their expertise to repair their systems aétecountering
the potential pitfalls.

computer systems. Of course, many of the problessecated
with autonomous repair fall beyond the scope of thaper.
Here, | specifically address the question of howtlie apply
temporal difference learning algorithms to choospairs for
dynamic systems. A temporal difference algorithnmpares
the states of the system as time progresses wihtep to the
preference for any particular repair after eachigi@t. The
learner using this algorithm requires the systemptovide
options for repairs to try, as well as a meaningéyresentation
of the state of the system. From these, the leanagrbe able to
learn to repair the system as well as a system tisas
preordained expert strategies for repairing problem

Expert humans can often provide degrees of pretisind
insight that are not available to computers, buhgoters have
the advantage that they can always be there toeasldr
problems, even after hours or in a violent blizzatdpecting
the same level of performance from an autonomoushina as
a human system expert is not appropriate; howewer,can
definitely produce autonomous systems that workcdorect
most of the worst problems most of the time. If Hystem is
having particularly bad problems, an automatic irepa
mechanism could fail where an expert could idensfyme
small but critical repair that solves the problddawever, for
the more common case of something routine goingnwra
system that automatically detects the problem aes fit pretty
well, no matter the time or circumstances, is imsadn useful.
In addition, a computer-based repair scheme issosteptible
to human error from being overworked or tired.

Towards this end, IBM’s research group createdAti®nomic
Computing Initiative, aiming to create entirely fsglanaging
systems that can scale and learn about themseffazgively.

The Initiative has divided the field of autonomaneputing into
four parts: self-configuration, self-healing, sefftimization,
and self-protection [1]. The varied solutions pecat IBM

even include autonomous systems with processesatbathe
analogues of the human brain to model the learpiogess [2].
The work reported in this paper falls in the catggof self-

healing, which addresses the detection and reati@nrors in
systems. Specifically, | focus on learning apprafgrireactions
to system errors. By doing so, an autonomous leasueh as

this one could often replace the current human<basgair
work and analysis.

The desire to allow for autonomous recovery of ayst is a
common one. In order for a complete system of Kiad to

exist, there are two requisite components: Autocndgitection
of faults and effective forms of recovery.[3]. Eaoh these
components has myriad levels of complexity to reacfully

autonomic system capable of functioning entirelythaiit

assistance. The work | am performing here is foduse only
the “effective” part of recovery. If the detectiaf faults and
choice of repairs is given, | will show that therext choice can
be made.

A crucial part of the learner lies in its abstrantifrom any
particular underlying system. My proposed learrestacts the
choice of repairs from any particulars about thelaulying

system. Such an abstraction can combine with athstractions
in this field, such as the already developed efieabstraction
[4] that could execute the repairs on any humbesubkystems.
While developing an autonomous system for a spec#sk
could provide insights, an autonomous frameworkhvparts
that are easy to implement or that “plug-in” to fr@mework
allow for much more flexibility.

Rainbow is a reusable infrastructure developecdetp facilitate
autonomic computing [5] which enables the kind elf-sepair
that this project expands. Rainbow monitors an tyiheg

system with multiple probes to observe the perforrea of
numerous specific parts (such as bandwidth, latearoy load in
a client/server setup). It then compiles these data into a
model of the system, which is what Rainbow willrthect upon
for its decision-making and eventual repair choitbe repair
choice and issuance of the command to repair calsegjes in
the underlying system. Currently, the decision-mgkprocess
for a given system
experimentally determined
circumstances.

“best decisions” for

Rainbow

.

Arch|tectu re Layer

Adaptation Arch
Engine Evaluator

Adaptation Model
Executor MaAnager

N o

Translation
Infrastructure

Gauges

5' System Layer

--

Fig 1 The Rainbow Architecture

In this paper, | will test the efficacy of two teoral difference
learning algorithms constructed to learn what appabe

repairs to undertake for broken systems. The leamaighly
abstracted, requiring very little from an undertyisystem to
choose the best repairs. The underlying systemse,(lbe
Rainbow architecture) must only implement a smalinher of
core functions for the learner to function. | ube Rainbow
framework because it is an especially useful toitth which to
implement such functionality.

Specifically, given a system state and a set dbaoptto attempt
to repair the problem, the algorithm will learn whniis the most
appropriate. This project judges the merits ohealgorithm by
comparing their performance with hard-coded expedision-
makers, aiming to achieve at least that level afgpmance in
correct decisions and in timeliness. It fits intee tRainbow
model as an adjunct to the adaptation engine, penfig the
choice of which repair to execute on the system.

Autonomic Learner

Repairs States
)) Architecture
Adaptation Engine Evaluator

TciAdaptation Executor FromTModel Manager

Fig 2: Where this autonomic learner fits into the Rainbow
model.

2.METHODS

is predefined, based on previous
give The purpose of the learner tested here is to replsse expert-

determined “best decisions” with better learnedisiens. The
learner itself sits on top of the Rainbow systerhicl provides
the learner with a set of states and repairs thaidws how to
execute. The collapse of the multitude of datdlabiz to the
underlying system into a finite set of states amel ability to
execute repairs are the only responsibilities treatwith the
underlying system, so any number of systems castisute for
Rainbow by providing the information the learnereds
Enabling this to happen requires reducing the lefeletail the
Rainbow model provides to a finite representatibstates and
repairs.

2.1 State

public abstract class State{
abstract
abstract

abstract

public
public
public

int getlD);

doubl e get Reward();

bool ean i sAGoal ();

public abstract bool ean conpareState(State s);
public abstract RepairScore

get Repai r Score(Repair r);

public abstract Repair getBestRepair();

public abstract Repair chooseRepair();

public abstract void updat eRepai r Scor e(Repai r
r,State s);

}

A state is the functional element of the learners lan abstract
class which requires subclasses to implement ttlewimg
functions. In general, all instances of a statel whare a
subclass that expresses whatever learning algotitlentearner
is using. The learner uses LearnedStateQ
LearnedStateSARSA objects that each extend this ddass.

The functions that are not simple accessors aredhe of how
the learner learns. GetBestRepair() chooses theebigralued
repair for this state. The values it uses to make domparison
arise from the historical success of using thisaiefrom this
state. The chooseRepair() function applies thecpadif repair
choice under whatever algorithm is running for téiate. The
updateRepairScore() function is called after airdpas finished
and updates the state/repair pair with appropsateess values
as indicated by whatever learning algorithm thigrher uses.
This function uses the Q-learning and SARSA alhong
described later.

Developing appropriate states for an existing systequire
some degree of knowledge of how the underlying esgst
functions. A developer seeking to generate statethe learner
to use would need to identify which properties loé System
and what kinds of combinations are meaningful. &negal,
someone familiar with the system knows how to aarieg its
operating behavior into a few differing categoriébe goal in
state generation is for the properties that definstate to be
interrelated in a sensible fashion and somehovewifft from
the other defined states. Generating too many sstakews
learning down tremendously because each state rteefie
visited a fair amount to obtain good learning. Example,
defining a different state for every increment ahs of latency
over a connection is going to generate too mantestthat
could have reasonably been combined. Generatingféao
states hinders repair effectiveness. Consider @sywith only
‘good’ or ‘bad’ as states. A learner would leara tiest average
action to take to fix the system but would be igngrthe
advantages it could gain from knowing why the syste in a
bad state. Generation of states is a balancingbatween
making too many or too few.

2.2 Repair

public interface Repair {

public int id () ;
public int type ();
public void execute(String elem D) ;

}

The execute() function takes an ID for the brokemponent in
the system. This allows for a repair like “Fix tlient’s
bandwidth” to specify which client is broken. Thestem, e.g.,
the Rainbow model, provides the details of how ¢tually
execute the repair.

2.3 Q-Learning [6]

Q-learning is one learning algorithm used to updéie

angtate/repair pair values of the learner. This dtlor is an off-

policy temporal difference learner. Off-policy meathat its
predictions about future actions are independenthefactual
policy that makes those decisions. Specificalligheéime a
repair is executed, the current state/repair pairesponding to
that state will update based on the following updatmula:

Qs a) =Q(s, &) +a(ru, + ymaxQ(s.,,a) - Q(s;,a))
2.4 SARSA [7]

SARSA is an on-policy learning algorithm. An on-jggl
algorithm uses the same policy that makes choitespairs to
predict what choices will be made in the futureisTbperates
very similarly to Q-Learning; but, the algorithm ess the
defined policy of choosing a State (chooseRepaio)predict
future actions instead of assuming a greedy chioidbe way
that Q-learning does. Past research indicates that;, time,
SARSA will produce the same results as Q-learnimgf, its
patterns of learning are different. In general, S&Ris more
measured, choosing states with better expectedinststad of
best-case cost. Its update formula is:

Qs &) =Q(s,a) + a(ry + WASusr) —Q(S, Q)

3. IMPLEMENTATION

State | Client latency | Client Client's | Client

bandwidth server’'s| alternative
load viability

0 1 Oorl Oorl Oorl

1 0 1 1 Oorl

2 0 1 0 1

3 0 1 0 0

4 0 0 Oor1l 1

5 0 0 Oorl 0

Figure 3: State definitions (1 means it is within the acceptable
range for that property, 0 meansit isin violation of the acceptable
range)

The simulation system used here creates six statefis

initialization, one goal state and five error s$afEig. Y). This

is the only part of the learner that requires thaiser provides
some information to the learner. The informatiorded is in
the state objects gathered from collapsing theegystinternal
state into one of these six. For the purposesisfekperiment,
the goal state has a reward value of 1.0, whilé eaor state is
equally weighted with -1.0 as a reward. This meamat

algorithms will optimize patterns that achieve tbee non-
erroneous goal state, with shorter predicted paticsuing less
negative reward. This favors shorter and genefafiter repairs.
The learner was run on nine system failures for B&@tions

for each learning algorithm.

Repair # Action taken
0 Do nothing
1 Add server
2 Move client

Figure 4. Repair definitions

The learner used three repair actions to attempepair the

system. These repairs were executed by a simuR&eabow

system. Each repair's execution was allowed tosfin{as

defined on a per-repair basis) before re-polling shistem state
to determine the outcome of the repair.

4. EXPERIMENTAL DESIGN

Each algorithm as described above was implementd#d w
gamma = 0.3 and alpha = 0.4*(100/99+n) where heéstumber
of times this state/action pair has been visitetHzalso used an
epsilon-greedy policy to choose repairs in each, jéven by
the following:

Wth probability (100/99+n) choose repair action
at random otherw se choose the hi ghest val ued
action in this state.

The underlying system was a Rainbow-based simulatio

designed by S. Cheng at Carnegie Mellon University.
modeled the effects of repairs on a simulated uyidgrsystem.
It also reported the system’s state for the leaasespecified
above.

5.RESULTS

State # | Expert System Q-learning SARSA

0

lor2

1

2

QAW IN|F
=N IN)
OO NN

0

Figure 5: Expert repair strategy and optimal repair number
determined by each approach after 500 iterations

The algorithms each produced the same resultsciisather by
the end of the run. The patterns of these scores time were
similar for each of the learner's algorithms as Iwélwill

address each state’s learning individually. | wibw only one
graph for each state because the other one thadtishown
looks very similar in all cases. For all the charepair 0 is a
dotted line, repair 1 is a solid line, and repaig a dashed line.

State 1 Repair Values

15

I TV
Vlf"‘{'ll
\

/1|/F
Vo

ifr,'/v‘/\//ﬂ Vs P
M \‘ t \/\“/l v
7

n‘\i

o
\-w'\v |‘!

Repair Value

—

451

T T
301 401

T
201

151 251 351

Training iteration

Figure 6: Repair values for state 1 (Q learning) over time.
The upper lineisrepair 2.

In state 1, something has negatively affected lieatts latency
but its bandwidth and server load are well withipectations.
The expert system suggests taking no action, vagitéh learner
shows a strong preference for the ‘move clienticactWhile

doing nothing could certainly allow an aberrantwagk hiccup

that affects latency to clear out, moving the dliem a new
server sets it up on an entirely new connectiorcivig unlikely
to be in a failure state as well.

State 2 Repair Values

Repair Value

301 351 401 451

251

101 151 201

Training lteration

Figure 7: Repair values for state 2 (Q learning) over time.
The upper lineisrepair 2 and the middleisrepair 1

In state 2, the client is connected to a serveumgrthat is
overloaded. However, alternate server groups aadaéle to
switch. The expert system will choose either repahile the
learners each settle on ‘move client.” This is aatear decision
in either case, with the ‘add server’ repair beuggy close in
preference throughout the learning period.

State 3 Repair Values

0.5

Repair Value
<)
(%)

N

—

401

f r—i

-1.5 +
1 51 101 151 201

Training iteration

251 301 351 451

Figure 8: Repair values for state 3 (SARSA) over time. The
upper lineisrepair 1.

In state 3, the state is similar to state 2, exdhpte is no
alternate group to move to. This eliminates the venalient’
option, making the expert prefer the ‘add servepair to fix
the problem. The learners each come to the sanmausion as
the expert system, although the difference betwbenrepair
and the other ones is not high. Often repair 1 heveld fail,
however it will fail less than the other optionsyigg it only a
small advantage above the others in value.

State 4 Repair Values

0.2 4
0.4 4
0.6 4
0.8+

-1 .
A
1.4 L

-1.6 -

Value

201 251 301
Training iteration

-

401

T T T T
101 151 351 451

Figure 8: Repair values for state 3 (Q learning) over time.
At theend all of the valuesare precisely equal.

In state 4, the bandwidth and latency availabléhi® client are
bad, but there is an alternative group. While ikesasense that
moving the client would fix this problem, neithealner found
any evidence that any repair strategy ever workss Tould be
a specific issue with the training set or the satioh, but this is
the only state where the learners and the expesagdie.
Interestingly enough, should the expert attempfoltow its
strategy here, it will do no better than the legmatrategy
because no repair actually fixes the system framditate.

State 5 Repair Values

-0.5

Repair Value

h A MM& MDA AR A A
201

Training Iteration

-1.5

1 51 101 151 251 301 351 401 451

Figure 8: Repair values for state 3 (Q learning) over time.
At theend all of the valuesare precisely equal.

In state 5, the client has the bad values of gtdet there are no
alternatives to move to. The expert suggests doiothing
because no repair really makes sense when thergtldng for
this client is broken and there is nowhere to goe Tearners
arrive at the same conclusion, finding no evidetita any
repair is useful.

5.1 Discussion

The results of the program are encouraging in thatlearner
very accurately identified appropriate repair methmn the
given client-server system. The results were nafept but
they showed a great deal of potential in learnimg televant
solutions in a situation. In each case where ampairewas
useful, the system settled on a decisive solutidrichkv was
sensible. In fact, in every case where it came ifip an answer,
the results matched those determined by expeB&BRSA and
Q-Learning generated basically the same estimatespair
value—any differences were small and did not shovstsuntial
patterns of bias.

Future runs of the algorithm would do well to intsig more
ways to perturb the state to present a wider wariet
underlying problems with the system that map tostéume state.

Probably some of these changes would produce sesult

analogous to those the expert system has hard-dodathte 4
in particular. While ‘move client’ never worked this iteration,
that strategy probably works for some different entying
system states, while ‘add server never does. Sarcleffect
observed enough during training would correct teéative
levels of preference for the ‘move client’ repair.

A number of limitations and additional opportursti€for
enhancement are apparent. The actual expert leasest in
Rainbow has systems for which a failed repair witjger an
attempt at the second-best repair, which the leaconerently
does not. This strategy offers a substantial adegnin many
cases, and we should modify this learner to allesting of
second-best repairs. The other advantage of Rainisoits
knowing when to quit. This learner will continuallyy to
execute repairs until time runs out. This can by westly for
certain repairs (such as adding a server). Themaif cost is

not one that this learner addresses very well isecthe learner
erroneously acts as if repeatedly trying to addeeves and
failing is no more costly than doing nothing foe tlame length
of time. For example, in state 5 where no solut®possible,
simply stopping would be more efficient in a regdtem.

Another potential limitation is the number of rumscessary to
learn the best options. This run took around l@€aitons in
each state before a best repair began emergingjnasdme
cases (state 2) the best repair was still notlyotéar after 500
iterations of running. For a system that is costlyoperate or
cannot simulate a large number of runs, this leawik not be

appropriate. However, since one can seed the reakies with

whatever values one wants, one can pre-seed tlagr neglues
appropriately and save some time if needed. Théoetpry

nature of the learning process will make mistaked poor

choices to learn what not to do, so systems wigh ltosts of
failure would need to require a simulation to getalequate
time period in which to learn.

The learner system also has a narrow scope andesgome
priori information, which might eventually be generategd b
bootstrapping. For example, the scheme of stateps# from
the underlying system to a state object is one #hétarner
could conceivably bootstrap, but the associated pbexity
would be enormous.

What the learner requires now is only for usertheflearner to
be able to answer the question, “What are the itapor
properties of the underlying system?” This questi®mmuch
simpler than what the expert system requires, whihan

answer to “What are the important properties ofuhderlying

system and how exactly do we react to them effelytt/

Therefore, this learner requires a simpler sebhfafrmation than
one wholly reliant on expertise in order to funatieffectively.

What this learner loses over the current expedisented
Rainbow model in raw hard-coded efficiency, it gaim

adaptability to new situations.

6. CONCLUSION

The results are very promising: this work showst thsing

temporal difference learning as a replacement fioct expert
methods is reasonable. In order to function atl¢vel of an
expert model, the learner requires only methodsnigement
repairs to its system and a mapping from the systestates. In
addition, its abilities are independent of how thnederlying
system actually functions. As a proof of concepgse data
definitely demonstrate feasibility. The independeriiom the
underlying system allows the learner to work withultiple

environments, from simple client-server systemssystem
security or databases. Conveniently, each algoritlenformed
basically the same, meaning that one could usereithe in
future work of this kind.

All further changes to the learner’'s capabilitiagild on the
assumption that the underlying algorithms learnuestely.

From this base, additions such as a GUI or the lsmal
improvements described below are straightforwarde Pproof
of concept of the algorithm’s successes demonstradequate
baseline performance to justify further work in ifie
applications and enhancements.

6.1 Futurework

Avenues to expand on this research split into tategories.
Firstly, some methodological improvements would
functionality of this particular learning tool. Sewly, some
work would facilitate self-healing repair for ajlstems.

the

The possible functionality improvements for thisrtigalar
learner are numerous, depending upon the scope o
development. The simplest improvements would imertive
accuracy and real-world implications of the exigtaigorithms.
Slightly more complex changes involve expandingl&aener to
perform the “state collapse” automatically, as vl learning
the appropriate time to wait for a repair to execbefore
examining the result. Much larger in scope aredkal changes
of allowing for a history of repairs and stated®incorporated
cumulatively to define otherwise inaccessible reg#iategies.
For example, if no single “repair X" can repair elglem,
maybe combining “repair X” with “repair Y” and apjihg them
successively can fix the system. Such an idea lisbegond the
complexity of this Q-learning algorithm, althoughhet
framework provides a starting place.

A first and very important improvement would berlgag the
proper length of time for a repair to execute. diyreexamine
the system too quickly, a repair may simply havel et
enough time to execute, giving an erroneous impyesbkat the
repair was a failure. Even worse, future repairsy ma
inappropriately register as having fixed the prablewhen
correct attribution would identify the latent effecf the prior
repair. Such results break the algorithm, as tiselt® are no
longer attributable to the correct causes. Havixigeenely long
wait times wastes time because the repair hadhédiexecuting
long ago. In addition, intervening problems withe teystem
would again mislead the algorithm in attributingcsess or
failure to the repair. Accurately learning precysehen a repair
has ‘finished’ would be very useful for future work

In line with the above, other systems have purgbeddea of
cost for repairs through a two-part system [8].str the
system can perform “test actions” that incur notcd$ese
actions are meant to give the learner accuratenrdbon about
how likely certain repairs are to work. However,cdn also
perform the same repairs as “repair actions” whighgh the
associated cost of the repair when determining lwhblwice to
make. This allows quick or simple repairs to haxeference in
some cases because, even if they fail, they daké tp a lot of
time or resources to attempt.

Another simple improvement would be to bar tryingaaticular
repair after it has failed once for a current ins& This

requires building in the assumption that whatesgepreventing
this state from being fixable by the failed repaimdigenous to
the full underlying system state instead of thdapded state
reported by the system.

A logical extension of this property, albeit one ahdarger in

scope, would be amending the collapsing procesmdiude

whatever is making this state unique. For exaniple,certain

state/repair combination either works very welhot at all, the
state representation for it is likely to not captwverything

important about the underlying system. Having tearter

communicate with the system to pick out anotherartant

attribute in the underlying state in order to geter new state
for the learner to examine would be quite useful.

The addition of a memory for past failed state/nepairs is a
very useful opportunity for further research. Thisovides
another approach towards the state collapsing enobl
described above. Basically, one would aim to tehehlearner
the correct actions to take by integrating padedaattempts
with its existing knowledge about what states a@pairs are
appropriate in the current state. If a repair faiking the
information the learner has for the current stéatepuld look
backwards to see if past repair/state combina@oasndicative
of a repair being unable to succeed currently.

The most involved and complex avenue for futurekwisrfor
the learner to be able to utilize the full decistoees developed
for Rainbow [9]. These trees combine large numbésmaller
repairs into a comprehensive strategy of repaiesé€hmixes of
repair have considerable power to fix problems system, so
bootstrapping them as well would be a remarkalfigieht step
forward. Such an approach provides an extremely epfodv
method for systems to be able to learn about theeseAs
long as a learner is not entangled with the spedditails of an
underlying system, it will have a flexibility of ppication that
makes it very useful. The learner that | presenthis paper
requires just a few abstractions from the systemy Bystem
can produce these abstractions and thereby allevietirner to

apply.

Looking at the larger picture, this kind of learigi small part
of an eventual goal of being able to trust automosyistems to
run entirely on their own. Ideally, developers wikkep such
systems abstract so that users can integrate amly weeated
system with the autonomic learner and have theégatiscover
how to run it effectively. The major limiting faatdor many
algorithms that attempt to tackle the generalizigbproblems
associated with much of autonomic research is thhat
scalability. It is simple to imagine defining statéor a single
continuous variable (e.g., server load) by findingges where
certain results seem more likely to occur. Howeeee has to
add another variable like bandwidth. Not only isrth an
entirely different scale to discover for bandwidthyt also a
scale to handle the interaction between bandwicith laad.
Each new property greatly increases complexity. thokutions
simply do not scale.

The problems associated with complexity and scatevery
important to solve for an ideal autonomous systdawever, in
the meantime, one can attack the problem by commgvith
approximations that simplify things for a learnéssuming
approximations like the state collapse | used fos tearner
allows for a great deal of progress because itragsuhat some
other agent will handle complexity and scalability.this case,
that agent is a human who knows something about mlées
a state interesting. Should we arrive at an algorithat can
make that decision on its own, our learners shdealdabstract
enough to be able to just use that algorithm asgsat instead
of a human. Maintaining the independence of a kxamith
respect to the underlying system while focusingriompments
on the real-world modeling of the learner will pase its
generalizability. Making the real-world improvemsnwill
increase the power and applicability of this kirfdlearner to
the problems we face today. Doing both lays theugdevork
for integrating future advances while providing fuseesults in
the present.

REFERENCES
[1]

Bantz, D. F. et. al. Autonomic Personal Cotimpy IBM Systems
Journal, 42(1), 165-176, 2003.

[2] Norman, D. A, Ortony, A., & Russell, D. M. Agtt and Machine
Design: Lessons for the Development of CognitivecMaes.
IBM Systems Journal, 42(1), 38-44, 2003.

[3] Candea, G., Kiciman, E., Kawamoto, S., & Fox, Autonomous
Recovery in Compnentized Internet Application€luster
Computing, 9(2), 175-190, 2006

[4] Valetto, G., Kaiser, G., & Phung, D. A UniforfArogramming
Abstraction for Effecting Autonomic Adaptations onBoftware
Systems. Proceedings of the International Conferemn
Autonomic Computing (ICAC '05), Seattle, WA, Jun&-16,
2005

[5] Cheng, S, et. al. Rainbow: Architecture-basetf-8daptation with
Reusable Infrastructure. Proceedings of the Intemal
Conference on Autonomic Computing (ICAC '04), Neverk,
NY, May 17-18, 2004.

[6] Watkins, C. J. (1989). Models of Delayed Rencement Learning.
Ph.D. thesis, Psychology Department, Cambridge e&fgity,
Cambridge, United Kingdom.

[7] Sutton, R.S. (1996) Generalization in reinforemt learning:
Successful examples using sparse coarse codindvances in
Neural Information Processing Systems 8, Cambritige, MIT
Press.

[8] Littman, M. L., et al. Reinforcement Learningrf Autonomic
Network Repair. Proceedings of the Internationahf€mence on
Autonomic Computing (ICAC '04), New York, NY, May7118,
2004.

[9] Cheng, S., Garlan, D., & Schmerl, B. Architeet-Based Self-

Adaptation in the Presence of Multiple Adapatatiofsappear in

Proceedings of the ICSE 2006 Workshop on Software
Engineering for Adaptive and Self-Managing Syst€BEAMS),
Shanghai, China, May 21-22, 2006.

