
Autonomic Computing: Learning to

Repair Systems Effectively
Nicholas Lynn (ngl@andrew.cmu.edu)

Advisor: David Garlan (garlan@cs.cmu.edu)
School of Computer Science, Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA, 15213

USA

Abstract. This research aims to integrate temporal difference
learning methods into an autonomic learning system. The
current Rainbow architecture models an adaptation engine that
examines the system state to assess problems and determines a
best course of action based on pre-programmed expertise.
However, when expert knowledge is not readily available for a
system, learning proper actions without a priori knowledge
would often be more useful in practical situations. This report
characterizes initial testing of a new learning engine designed to
learn the proper corrective actions to take in order to repair
problems in systems.

Specifically, reinforcement learning methods can enable a
system to learn the proper actions by actually trying out actions
and seeing how well they do. This project compares Q-learning
and SARSA temporal difference learning algorithms with the
existing expert algorithm on the Carnegie-Mellon designed
Rainbow simulated system. Since they approach reinforcement
learning in a different way, comparing the success rate and
speed of the algorithms on various scenarios will provide
evidence about their efficacy. My research aims to clarify the
benefits and costs associated with these algorithms.

1. INTRODUCTION
The core problem that I address with this autonomic learner is
how to increase the ability of systems to maintain themselves.
Computer systems continue to become increasingly complex,
with multitudes of new features. Furthermore, these systems are
increasingly running in highly dynamic environments, where
resources and requirements are often in flux. With this increase
in complexity, systems also have an increasing variety and
impact of possible failures and problems. Simple catch-all
solutions such as rebooting or shutting down an offending
program or client are often wholly unacceptable strategies for
coping with such problems. For a system that requires 100%
uptime to provide client services, any kind of failure can be a
financially devastating problem. So the owners and maintainers
of these systems often turn to human system administrators to
apply their expertise to repair their systems after encountering
the potential pitfalls.

This paper explores the viability of autonomous self-repairing
computer systems. Of course, many of the problems associated
with autonomous repair fall beyond the scope of this paper.
Here, I specifically address the question of how best to apply
temporal difference learning algorithms to choose repairs for
dynamic systems. A temporal difference algorithm compares
the states of the system as time progresses with updates to the
preference for any particular repair after each decision. The
learner using this algorithm requires the system to provide
options for repairs to try, as well as a meaningful representation
of the state of the system. From these, the learner may be able to
learn to repair the system as well as a system that uses
preordained expert strategies for repairing problems.

Expert humans can often provide degrees of precision and
insight that are not available to computers, but computers have
the advantage that they can always be there to address
problems, even after hours or in a violent blizzard. Expecting
the same level of performance from an autonomous machine as
a human system expert is not appropriate; however, we can
definitely produce autonomous systems that work to correct
most of the worst problems most of the time. If the system is
having particularly bad problems, an automatic repair
mechanism could fail where an expert could identify some
small but critical repair that solves the problem. However, for
the more common case of something routine going wrong, a
system that automatically detects the problem and fixes it pretty
well, no matter the time or circumstances, is immensely useful.
In addition, a computer-based repair scheme is not susceptible
to human error from being overworked or tired.

Towards this end, IBM’s research group created the Autonomic
Computing Initiative, aiming to create entirely self-managing
systems that can scale and learn about themselves effectively.
The Initiative has divided the field of autonomic computing into
four parts: self-configuration, self-healing, self-optimization,
and self-protection [1]. The varied solutions pursued at IBM
even include autonomous systems with processes that are the
analogues of the human brain to model the learning process [2].
The work reported in this paper falls in the category of self-
healing, which addresses the detection and reaction to errors in
systems. Specifically, I focus on learning appropriate reactions
to system errors. By doing so, an autonomous learner such as

this one could often replace the current human-based repair
work and analysis.

The desire to allow for autonomous recovery of systems is a
common one. In order for a complete system of that kind to
exist, there are two requisite components: Automatic detection
of faults and effective forms of recovery.[3]. Each of these
components has myriad levels of complexity to reach a fully
autonomic system capable of functioning entirely without
assistance. The work I am performing here is focused on only
the “effective” part of recovery. If the detection of faults and
choice of repairs is given, I will show that the correct choice can
be made.

A crucial part of the learner lies in its abstraction from any
particular underlying system. My proposed learner abstracts the
choice of repairs from any particulars about the underlying
system. Such an abstraction can combine with other abstractions
in this field, such as the already developed effector abstraction
[4] that could execute the repairs on any number of subsystems.
While developing an autonomous system for a specific task
could provide insights, an autonomous framework with parts
that are easy to implement or that “plug-in” to the framework
allow for much more flexibility.

Rainbow is a reusable infrastructure developed to help facilitate
autonomic computing [5] which enables the kind of self-repair
that this project expands. Rainbow monitors an underlying
system with multiple probes to observe the performance of
numerous specific parts (such as bandwidth, latency, and load in
a client/server setup). It then compiles these raw data into a
model of the system, which is what Rainbow will then act upon
for its decision-making and eventual repair choice. The repair
choice and issuance of the command to repair causes changes in
the underlying system. Currently, the decision-making process
for a given system is predefined, based on previous
experimentally determined “best decisions” for given
circumstances.

Fig 1: The Rainbow Architecture

In this paper, I will test the efficacy of two temporal difference
learning algorithms constructed to learn what appropriate

repairs to undertake for broken systems. The learner is highly
abstracted, requiring very little from an underlying system to
choose the best repairs. The underlying systems (here, the
Rainbow architecture) must only implement a small number of
core functions for the learner to function. I use the Rainbow
framework because it is an especially useful tool with which to
implement such functionality.

Specifically, given a system state and a set of options to attempt
to repair the problem, the algorithm will learn which is the most
appropriate. This project judges the merits of each algorithm by
comparing their performance with hard-coded expert decision-
makers, aiming to achieve at least that level of performance in
correct decisions and in timeliness. It fits into the Rainbow
model as an adjunct to the adaptation engine, performing the
choice of which repair to execute on the system.

Fig 2: Where this autonomic learner fits into the Rainbow
model.

2. METHODS

The purpose of the learner tested here is to replace these expert-
determined “best decisions” with better learned decisions. The
learner itself sits on top of the Rainbow system, which provides
the learner with a set of states and repairs that it knows how to
execute. The collapse of the multitude of data available to the
underlying system into a finite set of states and the ability to
execute repairs are the only responsibilities that lie with the
underlying system, so any number of systems can substitute for
Rainbow by providing the information the learner needs.
Enabling this to happen requires reducing the level of detail the
Rainbow model provides to a finite representation of states and
repairs.

2.1 State

��������

���������	�

������������

������
������

������
�����

�

�����������
�����

�	���

�������

��������	�

�����	�

����

������	�

��������	�

������

Gauges

Adaptation Engine
Architecture
Evaluator

Autonomic Learner

States Repairs

From Model Manager To Adaptation Executor

A state is the functional element of the learner. It is an abstract
class which requires subclasses to implement the following
functions. In general, all instances of a state will share a
subclass that expresses whatever learning algorithm the learner
is using. The learner uses LearnedStateQ and
LearnedStateSARSA objects that each extend this base class.

The functions that are not simple accessors are the core of how
the learner learns. GetBestRepair() chooses the highest-valued
repair for this state. The values it uses to make this comparison
arise from the historical success of using this repair from this
state. The chooseRepair() function applies the policy of repair
choice under whatever algorithm is running for this state. The
updateRepairScore() function is called after a repair has finished
and updates the state/repair pair with appropriate success values
as indicated by whatever learning algorithm this learner uses.
This function uses the Q-learning and SARSA algorithms
described later.

Developing appropriate states for an existing system require
some degree of knowledge of how the underlying system
functions. A developer seeking to generate states for the learner
to use would need to identify which properties of the system
and what kinds of combinations are meaningful. In general,
someone familiar with the system knows how to categorize its
operating behavior into a few differing categories. The goal in
state generation is for the properties that define a state to be
interrelated in a sensible fashion and somehow different from
the other defined states. Generating too many states slows
learning down tremendously because each state needs to be
visited a fair amount to obtain good learning. For example,
defining a different state for every increment of 1 ms of latency
over a connection is going to generate too many states that
could have reasonably been combined. Generating too few
states hinders repair effectiveness. Consider a system with only
‘good’ or ‘bad’ as states. A learner would learn the best average
action to take to fix the system but would be ignoring the
advantages it could gain from knowing why the system is in a
bad state. Generation of states is a balancing act between
making too many or too few.

2.2 Repair

The execute() function takes an ID for the broken component in
the system. This allows for a repair like “Fix the client’s
bandwidth” to specify which client is broken. The system, e.g.,
the Rainbow model, provides the details of how to actually
execute the repair.

2.3 Q-Learning [6]

Q-learning is one learning algorithm used to update the
state/repair pair values of the learner. This algorithm is an off-
policy temporal difference learner. Off-policy means that its
predictions about future actions are independent of the actual
policy that makes those decisions. Specifically, each time a
repair is executed, the current state/repair pair corresponding to
that state will update based on the following update formula:

)),(),(max(),(),(11 ttt
a

ttttt asQasQrasQasQ −++= ++ γα

2.4 SARSA [7]

SARSA is an on-policy learning algorithm. An on-policy
algorithm uses the same policy that makes choices of repairs to
predict what choices will be made in the future. This operates
very similarly to Q-Learning; but, the algorithm uses the
defined policy of choosing a State (chooseRepair()) to predict
future actions instead of assuming a greedy choice in the way
that Q-learning does. Past research indicates that, over time,
SARSA will produce the same results as Q-learning, but its
patterns of learning are different. In general, SARSA is more
measured, choosing states with better expected cost instead of
best-case cost. Its update formula is:

)),(),((),(),(111 ttttttttt asQasQrasQasQ −++= +++ γα

3. IMPLEMENTATION

State

Client latency Client
bandwidth

Client’s
server’s
load

Client
alternative
viability

0 1 0 or 1 0 or 1 0 or 1
1 0 1 1 0 or 1
2 0 1 0 1
3 0 1 0 0
4 0 0 0 or 1 1
5 0 0 0 or 1 0
Figure 3: State definitions (1 means it is within the acceptable
range for that property, 0 means it is in violation of the acceptable
range)

public abstract class State{

public abstract int getID();
public abstract double getReward();
public abstract boolean isAGoal();
public abstract boolean compareState(State s);
public abstract RepairScore
getRepairScore(Repair r);
public abstract Repair getBestRepair();
public abstract Repair chooseRepair();
public abstract void updateRepairScore(Repair
r,State s);

}

public interface Repair {

public int id () ;
public int type ();
public void execute(String elemID) ;
}

The simulation system used here creates six states at its
initialization, one goal state and five error states (Fig. Y). This
is the only part of the learner that requires that a user provides
some information to the learner. The information needed is in
the state objects gathered from collapsing the system’s internal
state into one of these six. For the purposes of this experiment,
the goal state has a reward value of 1.0, while each error state is
equally weighted with -1.0 as a reward. This means that
algorithms will optimize patterns that achieve the one non-
erroneous goal state, with shorter predicted paths accruing less
negative reward. This favors shorter and generally faster repairs.
The learner was run on nine system failures for 500 iterations
for each learning algorithm.

Repair # Action taken
0 Do nothing
1 Add server
2 Move client
Figure 4: Repair definitions

The learner used three repair actions to attempt to repair the
system. These repairs were executed by a simulated Rainbow
system. Each repair’s execution was allowed to finish (as
defined on a per-repair basis) before re-polling the system state
to determine the outcome of the repair.

4. EXPERIMENTAL DESIGN

Each algorithm as described above was implemented with
gamma = 0.3 and alpha = 0.4*(100/99+n) where n is the number
of times this state/action pair has been visited. Each also used an
epsilon-greedy policy to choose repairs in each step, given by
the following:

With probability (100/99+n) choose repair action
at random, otherwise choose the highest valued
action in this state.

The underlying system was a Rainbow-based simulation
designed by S. Cheng at Carnegie Mellon University. It
modeled the effects of repairs on a simulated underlying system.
It also reported the system’s state for the learner as specified
above.

5. RESULTS

State # Expert System Q-learning SARSA
1 0 2 2
2 1 or 2 2 2
3 1 1 1
4 2 0 0
5 0 0 0
Figure 5: Expert repair strategy and optimal repair number
determined by each approach after 500 iterations

The algorithms each produced the same results as each other by
the end of the run. The patterns of these scores over time were
similar for each of the learner’s algorithms as well. I will

address each state’s learning individually. I will show only one
graph for each state because the other one that is not shown
looks very similar in all cases. For all the charts, repair 0 is a
dotted line, repair 1 is a solid line, and repair 2 is a dashed line.

State 1 Repair Values

-1

-0.5

0

0.5

1

1.5

1 51 101 151 201 251 301 351 401 451

Training iteration

R
ep

ai
r

V
al

u
e

Figure 6: Repair values for state 1 (Q learning) over time.
The upper line is repair 2.

In state 1, something has negatively affected the client’s latency
but its bandwidth and server load are well within expectations.
The expert system suggests taking no action, while each learner
shows a strong preference for the ‘move client’ action. While
doing nothing could certainly allow an aberrant network hiccup
that affects latency to clear out, moving the client to a new
server sets it up on an entirely new connection which is unlikely
to be in a failure state as well.

State 2 Repair Values

-1.5

-1

-0.5

0

0.5

1

1 51 101 151 201 251 301 351 401 451

Training Iteration

R
ep

ai
r

V
al

u
e

Figure 7: Repair values for state 2 (Q learning) over time.
The upper line is repair 2 and the middle is repair 1

In state 2, the client is connected to a server group that is
overloaded. However, alternate server groups are available to
switch. The expert system will choose either repair, while the
learners each settle on ‘move client.’ This is not a clear decision
in either case, with the ‘add server’ repair being very close in
preference throughout the learning period.

State 3 Repair Values

-1.5

-1

-0.5

0

0.5

1 51 101 151 201 251 301 351 401 451

Training iteration

R
ep

ai
r

V
al

u
e

Figure 8: Repair values for state 3 (SARSA) over time. The
upper line is repair 1.

In state 3, the state is similar to state 2, except there is no
alternate group to move to. This eliminates the ‘move client’
option, making the expert prefer the ‘add server’ repair to fix
the problem. The learners each come to the same conclusion as
the expert system, although the difference between this repair
and the other ones is not high. Often repair 1 here would fail,
however it will fail less than the other options, giving it only a
small advantage above the others in value.

State 4 Repair Values

-1.6
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
0

1 51 101 151 201 251 301 351 401 451

Training iteration

V
al

u
e

Figure 8: Repair values for state 3 (Q learning) over time.
At the end all of the values are precisely equal.

In state 4, the bandwidth and latency available to this client are
bad, but there is an alternative group. While it makes sense that
moving the client would fix this problem, neither learner found
any evidence that any repair strategy ever works. This could be
a specific issue with the training set or the simulation, but this is
the only state where the learners and the expert disagree.
Interestingly enough, should the expert attempt to follow its
strategy here, it will do no better than the learner’s strategy
because no repair actually fixes the system from this state.

State 5 Repair Values

-1.5

-1

-0.5

0

1 51 101 151 201 251 301 351 401 451

Training Iteration

R
ep

ai
r

V
al

u
e

Figure 8: Repair values for state 3 (Q learning) over time.
At the end all of the values are precisely equal.

In state 5, the client has the bad values of state 4 but there are no
alternatives to move to. The expert suggests doing nothing
because no repair really makes sense when there everything for
this client is broken and there is nowhere to go. The learners
arrive at the same conclusion, finding no evidence that any
repair is useful.

5.1 Discussion

The results of the program are encouraging in that the learner
very accurately identified appropriate repair methods on the
given client-server system. The results were not perfect, but
they showed a great deal of potential in learning the relevant
solutions in a situation. In each case where any repair was
useful, the system settled on a decisive solution which was
sensible. In fact, in every case where it came up with an answer,
the results matched those determined by expertise. SARSA and
Q-Learning generated basically the same estimates of repair
value—any differences were small and did not show substantial
patterns of bias.

Future runs of the algorithm would do well to integrate more
ways to perturb the state to present a wider variety of
underlying problems with the system that map to the same state.
Probably some of these changes would produce results
analogous to those the expert system has hard-coded for state 4
in particular. While ‘move client’ never worked in this iteration,
that strategy probably works for some different underlying
system states, while ‘add server’ never does. Such an effect
observed enough during training would correct the relative
levels of preference for the ‘move client’ repair.

A number of limitations and additional opportunities for
enhancement are apparent. The actual expert learner used in
Rainbow has systems for which a failed repair will trigger an
attempt at the second-best repair, which the learner currently
does not. This strategy offers a substantial advantage in many
cases, and we should modify this learner to allow testing of
second-best repairs. The other advantage of Rainbow is its
knowing when to quit. This learner will continually try to
execute repairs until time runs out. This can be very costly for
certain repairs (such as adding a server). The notion of cost is

not one that this learner addresses very well because the learner
erroneously acts as if repeatedly trying to add a server and
failing is no more costly than doing nothing for the same length
of time. For example, in state 5 where no solution is possible,
simply stopping would be more efficient in a real system.

Another potential limitation is the number of runs necessary to
learn the best options. This run took around 100 iterations in
each state before a best repair began emerging, and in some
cases (state 2) the best repair was still not totally clear after 500
iterations of running. For a system that is costly to operate or
cannot simulate a large number of runs, this learner will not be
appropriate. However, since one can seed the repair values with
whatever values one wants, one can pre-seed the repair values
appropriately and save some time if needed. The exploratory
nature of the learning process will make mistakes and poor
choices to learn what not to do, so systems with high costs of
failure would need to require a simulation to get an adequate
time period in which to learn.

The learner system also has a narrow scope and requires some a
priori information, which might eventually be generated by
bootstrapping. For example, the scheme of state collapse from
the underlying system to a state object is one that a learner
could conceivably bootstrap, but the associated complexity
would be enormous.

What the learner requires now is only for users of the learner to
be able to answer the question, “What are the important
properties of the underlying system?” This question is much
simpler than what the expert system requires, which is an
answer to “What are the important properties of the underlying
system and how exactly do we react to them effectively?”
Therefore, this learner requires a simpler set of information than
one wholly reliant on expertise in order to function effectively.
What this learner loses over the current expertise-oriented
Rainbow model in raw hard-coded efficiency, it gains in
adaptability to new situations.

6. CONCLUSION

The results are very promising: this work shows that using
temporal difference learning as a replacement for strict expert
methods is reasonable. In order to function at the level of an
expert model, the learner requires only methods to implement
repairs to its system and a mapping from the system to states. In
addition, its abilities are independent of how the underlying
system actually functions. As a proof of concept, these data
definitely demonstrate feasibility. The independence from the
underlying system allows the learner to work with multiple
environments, from simple client-server systems to system
security or databases. Conveniently, each algorithm performed
basically the same, meaning that one could use either one in
future work of this kind.

All further changes to the learner’s capabilities build on the
assumption that the underlying algorithms learn accurately.

From this base, additions such as a GUI or the smaller
improvements described below are straightforward. The proof
of concept of the algorithm’s successes demonstrates adequate
baseline performance to justify further work in specific
applications and enhancements.

6.1 Future work

Avenues to expand on this research split into two categories.
Firstly, some methodological improvements would the
functionality of this particular learning tool. Secondly, some
work would facilitate self-healing repair for all systems.

The possible functionality improvements for this particular
learner are numerous, depending upon the scope of
development. The simplest improvements would improve the
accuracy and real-world implications of the existing algorithms.
Slightly more complex changes involve expanding the learner to
perform the “state collapse” automatically, as well as learning
the appropriate time to wait for a repair to execute before
examining the result. Much larger in scope are the ideal changes
of allowing for a history of repairs and states to be incorporated
cumulatively to define otherwise inaccessible repair strategies.
For example, if no single “repair X” can repair a problem,
maybe combining “repair X” with “repair Y” and applying them
successively can fix the system. Such an idea is well beyond the
complexity of this Q-learning algorithm, although the
framework provides a starting place.

A first and very important improvement would be learning the
proper length of time for a repair to execute. If you reexamine
the system too quickly, a repair may simply have had not
enough time to execute, giving an erroneous impression that the
repair was a failure. Even worse, future repairs may
inappropriately register as having fixed the problem, when
correct attribution would identify the latent effects of the prior
repair. Such results break the algorithm, as the results are no
longer attributable to the correct causes. Having extremely long
wait times wastes time because the repair has finished executing
long ago. In addition, intervening problems with the system
would again mislead the algorithm in attributing success or
failure to the repair. Accurately learning precisely when a repair
has ‘finished’ would be very useful for future work.

In line with the above, other systems have pursued the idea of
cost for repairs through a two-part system [8]. Firstly, the
system can perform “test actions” that incur no cost. These
actions are meant to give the learner accurate information about
how likely certain repairs are to work. However, it can also
perform the same repairs as “repair actions” which weigh the
associated cost of the repair when determining which choice to
make. This allows quick or simple repairs to have preference in
some cases because, even if they fail, they don’t take up a lot of
time or resources to attempt.

Another simple improvement would be to bar trying a particular
repair after it has failed once for a current instance. This

requires building in the assumption that whatever is preventing
this state from being fixable by the failed repair is indigenous to
the full underlying system state instead of the collapsed state
reported by the system.

A logical extension of this property, albeit one much larger in
scope, would be amending the collapsing process to include
whatever is making this state unique. For example, if a certain
state/repair combination either works very well or not at all, the
state representation for it is likely to not capture everything
important about the underlying system. Having the learner
communicate with the system to pick out another important
attribute in the underlying state in order to generate a new state
for the learner to examine would be quite useful.

The addition of a memory for past failed state/repair pairs is a
very useful opportunity for further research. This provides
another approach towards the state collapsing problem
described above. Basically, one would aim to teach the learner
the correct actions to take by integrating past failed attempts
with its existing knowledge about what states and repairs are
appropriate in the current state. If a repair fails using the
information the learner has for the current state, it could look
backwards to see if past repair/state combinations are indicative
of a repair being unable to succeed currently.

The most involved and complex avenue for future work is for
the learner to be able to utilize the full decision trees developed
for Rainbow [9]. These trees combine large numbers of smaller
repairs into a comprehensive strategy of repair. These mixes of
repair have considerable power to fix problems in a system, so
bootstrapping them as well would be a remarkably efficient step
forward. Such an approach provides an extremely powerful
method for systems to be able to learn about themselves. As
long as a learner is not entangled with the specific details of an
underlying system, it will have a flexibility of application that
makes it very useful. The learner that I present in this paper
requires just a few abstractions from the system. Any system
can produce these abstractions and thereby allow the learner to
apply.

Looking at the larger picture, this kind of learner is a small part
of an eventual goal of being able to trust autonomic systems to
run entirely on their own. Ideally, developers will keep such
systems abstract so that users can integrate any newly created
system with the autonomic learner and have the learner discover
how to run it effectively. The major limiting factor for many
algorithms that attempt to tackle the generalizability problems
associated with much of autonomic research is that of
scalability. It is simple to imagine defining states for a single
continuous variable (e.g., server load) by finding ranges where
certain results seem more likely to occur. However, one has to
add another variable like bandwidth. Not only is there an
entirely different scale to discover for bandwidth, but also a
scale to handle the interaction between bandwidth and load.
Each new property greatly increases complexity. Most solutions
simply do not scale.

The problems associated with complexity and scale are very
important to solve for an ideal autonomous system. However, in
the meantime, one can attack the problem by coming up with
approximations that simplify things for a learner. Assuming
approximations like the state collapse I used for this learner
allows for a great deal of progress because it assumes that some
other agent will handle complexity and scalability. In this case,
that agent is a human who knows something about what makes
a state interesting. Should we arrive at an algorithm that can
make that decision on its own, our learners should be abstract
enough to be able to just use that algorithm as the agent instead
of a human. Maintaining the independence of a learner with
respect to the underlying system while focusing improvements
on the real-world modeling of the learner will preserve its
generalizability. Making the real-world improvements will
increase the power and applicability of this kind of learner to
the problems we face today. Doing both lays the groundwork
for integrating future advances while providing useful results in
the present.

REFERENCES

[1] Bantz, D. F. et. al. Autonomic Personal Computing. IBM Systems

Journal, 42(1), 165-176, 2003.

[2] Norman, D. A, Ortony, A., & Russell, D. M. Affect and Machine

Design: Lessons for the Development of Cognitive Machines.
IBM Systems Journal, 42(1), 38-44, 2003.

[3] Candea, G., Kiciman, E., Kawamoto, S., & Fox, A. Autonomous

Recovery in Compnentized Internet Applications. Cluster
Computing, 9(2), 175-190, 2006

[4] Valetto, G., Kaiser, G., & Phung, D. A Uniform Programming

Abstraction for Effecting Autonomic Adaptations onto Software
Systems. Proceedings of the International Conference on
Autonomic Computing (ICAC ’05), Seattle, WA, June 13-16,
2005

[5] Cheng, S, et. al. Rainbow: Architecture-based Self-adaptation with

Reusable Infrastructure. Proceedings of the International
Conference on Autonomic Computing (ICAC ’04), New York,
NY, May 17-18, 2004.

[6] Watkins, C. J. (1989). Models of Delayed Reinforcement Learning.

Ph.D. thesis, Psychology Department, Cambridge University,
Cambridge, United Kingdom.

[7] Sutton, R.S. (1996) Generalization in reinforcement learning:

Successful examples using sparse coarse coding. In Advances in
Neural Information Processing Systems 8, Cambridge, MA: MIT
Press.

[8] Littman, M. L., et al. Reinforcement Learning for Autonomic

Network Repair. Proceedings of the International Conference on
Autonomic Computing (ICAC ’04), New York, NY, May 17-18,
2004.

[9] Cheng, S., Garlan, D., & Schmerl, B. Architecture-Based Self-

Adaptation in the Presence of Multiple Adapatations. To appear in

Proceedings of the ICSE 2006 Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS),
Shanghai, China, May 21-22, 2006.

