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Abstract. This research aims to integrate temporal difference 
learning methods into an autonomic learning system. The 
current Rainbow architecture models an adaptation engine that 
examines the system state to assess problems and determines a 
best course of action based on pre-programmed expertise. 
However, when expert knowledge is not readily available for a 
system, learning proper actions without a priori knowledge 
would often be more useful in practical situations. This report 
characterizes initial testing of a new learning engine designed to 
learn the proper corrective actions to take in order to repair 
problems in systems.  
 
Specifically, reinforcement learning methods can enable a 
system to learn the proper actions by actually trying out actions 
and seeing how well they do. This project compares Q-learning 
and SARSA temporal difference learning algorithms with the 
existing expert algorithm on the Carnegie-Mellon designed 
Rainbow simulated system. Since they approach reinforcement 
learning in a different way, comparing the success rate and 
speed of the algorithms on various scenarios will provide 
evidence about their efficacy. My research aims to clarify the 
benefits and costs associated with these algorithms.  

 

1. INTRODUCTION 
The core problem that I address with this autonomic learner is 
how to increase the ability of systems to maintain themselves. 
Computer systems continue to become increasingly complex, 
with multitudes of new features. Furthermore, these systems are 
increasingly running in highly dynamic environments, where 
resources and requirements are often in flux. With this increase 
in complexity, systems also have an increasing variety and 
impact of possible failures and problems. Simple catch-all 
solutions such as rebooting or shutting down an offending 
program or client are often wholly unacceptable strategies for 
coping with such problems. For a system that requires 100% 
uptime to provide client services, any kind of failure can be a 
financially devastating problem. So the owners and maintainers 
of these systems often turn to human system administrators to 
apply their expertise to repair their systems after encountering 
the potential pitfalls. 
 

This paper explores the viability of autonomous self-repairing 
computer systems. Of course, many of the problems associated 
with autonomous repair fall beyond the scope of this paper. 
Here, I specifically address the question of how best to apply 
temporal difference learning algorithms to choose repairs for 
dynamic systems. A temporal difference algorithm compares 
the states of the system as time progresses with updates to the 
preference for any particular repair after each decision. The 
learner using this algorithm requires the system to provide 
options for repairs to try, as well as a meaningful representation 
of the state of the system. From these, the learner may be able to 
learn to repair the system as well as a system that uses 
preordained expert strategies for repairing problems.  
 
Expert humans can often provide degrees of precision and 
insight that are not available to computers, but computers have 
the advantage that they can always be there to address 
problems, even after hours or in a violent blizzard. Expecting 
the same level of performance from an autonomous machine as 
a human system expert is not appropriate; however, we can 
definitely produce autonomous systems that work to correct 
most of the worst problems most of the time. If the system is 
having particularly bad problems, an automatic repair 
mechanism could fail where an expert could identify some 
small but critical repair that solves the problem. However, for 
the more common case of something routine going wrong, a 
system that automatically detects the problem and fixes it pretty 
well, no matter the time or circumstances, is immensely useful. 
In addition, a computer-based repair scheme is not susceptible 
to human error from being overworked or tired. 
 
Towards this end, IBM’s research group created the Autonomic 
Computing Initiative, aiming to create entirely self-managing 
systems that can scale and learn about themselves effectively. 
The Initiative has divided the field of autonomic computing into 
four parts: self-configuration, self-healing, self-optimization, 
and self-protection [1]. The varied solutions pursued at IBM 
even include autonomous systems with processes that are the 
analogues of the human brain to model the learning process [2]. 
The work reported in this paper falls in the category of self-
healing, which addresses the detection and reaction to errors in 
systems. Specifically, I focus on learning appropriate reactions 
to system errors. By doing so, an autonomous learner such as 



this one could often replace the current human-based repair 
work and analysis. 
 
The desire to allow for autonomous recovery of systems is a 
common one. In order for a complete system of that kind to 
exist, there are two requisite components: Automatic detection 
of faults and effective forms of recovery.[3]. Each of these 
components has myriad levels of complexity to reach a fully 
autonomic system capable of functioning entirely without 
assistance. The work I am performing here is focused on only 
the “effective” part of recovery. If the detection of faults and 
choice of repairs is given, I will show that the correct choice can 
be made. 
 
A crucial part of the learner lies in its abstraction from any 
particular underlying system. My proposed learner abstracts the 
choice of repairs from any particulars about the underlying 
system. Such an abstraction can combine with other abstractions 
in this field, such as the already developed effector abstraction 
[4] that could execute the repairs on any number of subsystems. 
While developing an autonomous system for a specific task 
could provide insights, an autonomous framework with parts 
that are easy to implement or that “plug-in” to the framework 
allow for much more flexibility. 
 
Rainbow is a reusable infrastructure developed to help facilitate 
autonomic computing [5] which enables the kind of self-repair 
that this project expands. Rainbow monitors an underlying 
system with multiple probes to observe the performance of 
numerous specific parts (such as bandwidth, latency, and load in 
a client/server setup). It then compiles these raw data into a 
model of the system, which is what Rainbow will then act upon 
for its decision-making and eventual repair choice. The repair 
choice and issuance of the command to repair causes changes in 
the underlying system. Currently, the decision-making process 
for a given system is predefined, based on previous 
experimentally determined “best decisions” for given 
circumstances.  
 

 
Fig 1: The Rainbow Architecture 
 
 
In this paper, I will test the efficacy of two temporal difference 
learning algorithms constructed to learn what appropriate 

repairs to undertake for broken systems. The learner is highly 
abstracted, requiring very little from an underlying system to 
choose the best repairs. The underlying systems (here, the 
Rainbow architecture) must only implement a small number of 
core functions for the learner to function. I use the Rainbow 
framework because it is an especially useful tool with which to 
implement such functionality.  
 
Specifically, given a system state and a set of options to attempt 
to repair the problem, the algorithm will learn which is the most 
appropriate.  This project judges the merits of each algorithm by 
comparing their performance with hard-coded expert decision-
makers, aiming to achieve at least that level of performance in 
correct decisions and in timeliness. It fits into the Rainbow 
model as an adjunct to the adaptation engine, performing the 
choice of which repair to execute on the system. 
 

 
Fig 2: Where this autonomic learner fits into the Rainbow 
model. 
 
2. METHODS 
 
The purpose of the learner tested here is to replace these expert-
determined “best decisions” with better learned decisions. The 
learner itself sits on top of the Rainbow system, which provides 
the learner with a set of states and repairs that it knows how to 
execute.  The collapse of the multitude of data available to the 
underlying system into a finite set of states and the ability to 
execute repairs are the only responsibilities that lie with the 
underlying system, so any number of systems can substitute for 
Rainbow by providing the information the learner needs. 
Enabling this to happen requires reducing the level of detail the 
Rainbow model provides to a finite representation of states and 
repairs.  
  
2.1 State 
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A state is the functional element of the learner. It is an abstract 
class which requires subclasses to implement the following 
functions. In general, all instances of a state will share a 
subclass that expresses whatever learning algorithm the learner 
is using. The learner uses LearnedStateQ and 
LearnedStateSARSA objects that each extend this base class.  
 
The functions that are not simple accessors are the core of how 
the learner learns. GetBestRepair() chooses the highest-valued 
repair for this state. The values it uses to make this comparison 
arise from the historical success of using this repair from this 
state. The chooseRepair() function applies the policy of repair 
choice under whatever algorithm is running for this state. The 
updateRepairScore() function is called after a repair has finished 
and updates the state/repair pair with appropriate success values 
as indicated by whatever learning algorithm this learner uses. 
This function uses the Q-learning and SARSA algorithms 
described later. 
 
Developing appropriate states for an existing system require 
some degree of knowledge of how the underlying system 
functions. A developer seeking to generate states for the learner 
to use would need to identify which properties of the system 
and what kinds of combinations are meaningful. In general, 
someone familiar with the system knows how to categorize its 
operating behavior into a few differing categories. The goal in 
state generation is for the properties that define a state to be 
interrelated in a sensible fashion and somehow different from 
the other defined states. Generating too many states slows 
learning down tremendously because each state needs to be 
visited a fair amount to obtain good learning. For example, 
defining a different state for every increment of 1 ms of latency 
over a connection is going to generate too many states that 
could have reasonably been combined. Generating too few 
states hinders repair effectiveness. Consider a system with only 
‘good’ or ‘bad’ as states. A learner would learn the best average 
action to take to fix the system but would be ignoring the 
advantages it could gain from knowing why the system is in a 
bad state. Generation of states is a balancing act between 
making too many or too few. 
 
2.2 Repair 
  

 
 
The execute() function takes an ID for the broken component in 
the system. This allows for a repair like “Fix the client’s 
bandwidth” to specify which client is broken. The system, e.g., 
the Rainbow model, provides the details of how to actually 
execute the repair. 
 
2.3 Q-Learning [6] 
 
Q-learning is one learning algorithm used to update the 
state/repair pair values of the learner. This algorithm is an off-
policy temporal difference learner. Off-policy means that its 
predictions about future actions are independent of the actual 
policy that makes those decisions. Specifically, each time a 
repair is executed, the current state/repair pair corresponding to 
that state will update based on the following update formula: 
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2.4 SARSA [7] 
 
SARSA is an on-policy learning algorithm. An on-policy 
algorithm uses the same policy that makes choices of repairs to 
predict what choices will be made in the future. This operates 
very similarly to Q-Learning; but, the algorithm uses the 
defined policy of choosing a State (chooseRepair()) to predict 
future actions instead of assuming a greedy choice in the way 
that Q-learning does. Past research indicates that, over time, 
SARSA will produce the same results as Q-learning, but its 
patterns of learning are different. In general, SARSA is more 
measured, choosing states with better expected cost instead of 
best-case cost. Its update formula is: 
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3. IMPLEMENTATION 
 
State 
# 

Client latency Client 
bandwidth 

Client’s 
server’s 
load 

Client 
alternative 
viability 

0 1 0 or 1  0 or 1 0 or 1 
1 0 1 1 0 or 1 
2 0 1 0 1 
3 0 1 0 0 
4 0 0 0 or 1 1 
5 0 0 0 or 1 0 
Figure 3: State definitions (1 means it is within the acceptable 
range for that property, 0 means it is in violation of the acceptable 
range) 
 

public abstract class State{ 
 
public abstract int getID(); 
public abstract double getReward(); 
public abstract boolean isAGoal(); 
public abstract boolean compareState(State s);  
public abstract RepairScore 
getRepairScore(Repair r); 
public abstract Repair getBestRepair(); 
public abstract Repair chooseRepair(); 
public abstract void updateRepairScore(Repair 
r,State s); 
 
} 

public interface Repair { 
 
public int id () ; 
public int type (); 
public void execute(String elemID) ; 
} 



The simulation system used here creates six states at its 
initialization, one goal state and five error states (Fig. Y). This 
is the only part of the learner that requires that a user provides 
some information to the learner. The information needed is in 
the state objects gathered from collapsing the system’s internal 
state into one of these six. For the purposes of this experiment, 
the goal state has a reward value of 1.0, while each error state is 
equally weighted with -1.0 as a reward. This means that 
algorithms will optimize patterns that achieve the one non-
erroneous goal state, with shorter predicted paths accruing less 
negative reward. This favors shorter and generally faster repairs. 
The learner was run on nine system failures for 500 iterations 
for each learning algorithm. 
 
Repair # Action taken 
0 Do nothing 
1 Add server 
2 Move client 
Figure 4: Repair definitions 
 
The learner used three repair actions to attempt to repair the 
system. These repairs were executed by a simulated Rainbow 
system. Each repair’s execution was allowed to finish (as 
defined on a per-repair basis) before re-polling the system state 
to determine the outcome of the repair. 
 
4. EXPERIMENTAL DESIGN 
 
Each algorithm as described above was implemented with 
gamma = 0.3 and alpha = 0.4*(100/99+n) where n is the number 
of times this state/action pair has been visited. Each also used an 
epsilon-greedy policy to choose repairs in each step, given by 
the following: 
 

With probability (100/99+n) choose repair action 
at random, otherwise choose the highest valued 
action in this state. 

 
The underlying system was a Rainbow-based simulation 
designed by S. Cheng at Carnegie Mellon University. It 
modeled the effects of repairs on a simulated underlying system. 
It also reported the system’s state for the learner as specified 
above. 
 
5. RESULTS 

 
State # Expert System Q-learning SARSA 
1 0 2 2 
2 1 or 2 2 2 
3 1 1 1 
4 2 0 0 
5 0 0 0 
Figure 5: Expert repair strategy and optimal repair number 
determined by each approach after 500 iterations 
 
The algorithms each produced the same results as each other by 
the end of the run. The patterns of these scores over time were 
similar for each of the learner’s algorithms as well. I will 

address each state’s learning individually. I will show only one 
graph for each state because the other one that is not shown 
looks very similar in all cases. For all the charts, repair 0 is a 
dotted line, repair 1 is a solid line, and repair 2 is a dashed line. 
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Figure 6: Repair values for state 1 (Q learning) over time. 
The upper line is repair 2. 
 
In state 1, something has negatively affected the client’s latency 
but its bandwidth and server load are well within expectations. 
The expert system suggests taking no action, while each learner 
shows a strong preference for the ‘move client’ action. While 
doing nothing could certainly allow an aberrant network hiccup 
that affects latency to clear out, moving the client to a new 
server sets it up on an entirely new connection which is unlikely 
to be in a failure state as well.  
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Figure 7: Repair values for state 2 (Q learning) over time. 
The upper line is repair 2 and the middle is repair 1 
 
In state 2, the client is connected to a server group that is 
overloaded. However, alternate server groups are available to 
switch. The expert system will choose either repair, while the 
learners each settle on ‘move client.’ This is not a clear decision 
in either case, with the ‘add server’ repair being very close in 
preference throughout the learning period. 
 



State 3 Repair Values
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Figure 8: Repair values for state 3 (SARSA) over time. The 
upper line is repair 1. 
 
In state 3, the state is similar to state 2, except there is no 
alternate group to move to. This eliminates the ‘move client’ 
option, making the expert prefer the ‘add server’ repair to fix 
the problem. The learners each come to the same conclusion as 
the expert system, although the difference between this repair 
and the other ones is not high. Often repair 1 here would fail, 
however it will fail less than the other options, giving it only a 
small advantage above the others in value. 
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Figure 8: Repair values for state 3 (Q learning) over time. 
At the end all of the values are precisely equal. 
 
In state 4, the bandwidth and latency available to this client are 
bad, but there is an alternative group. While it makes sense that 
moving the client would fix this problem, neither learner found 
any evidence that any repair strategy ever works. This could be 
a specific issue with the training set or the simulation, but this is 
the only state where the learners and the expert disagree. 
Interestingly enough, should the expert attempt to follow its 
strategy here, it will do no better than the learner’s strategy 
because no repair actually fixes the system from this state. 
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Figure 8: Repair values for state 3 (Q learning) over time. 
At the end all of the values are precisely equal. 
 
In state 5, the client has the bad values of state 4 but there are no 
alternatives to move to. The expert suggests doing nothing 
because no repair really makes sense when there everything for 
this client is broken and there is nowhere to go. The learners 
arrive at the same conclusion, finding no evidence that any 
repair is useful. 
 
5.1 Discussion 
 
The results of the program are encouraging in that the learner 
very accurately identified appropriate repair methods on the 
given client-server system. The results were not perfect, but 
they showed a great deal of potential in learning the relevant 
solutions in a situation. In each case where any repair was 
useful, the system settled on a decisive solution which was 
sensible. In fact, in every case where it came up with an answer, 
the results matched those determined by expertise. SARSA and 
Q-Learning generated basically the same estimates of repair 
value—any differences were small and did not show substantial 
patterns of bias. 

 
Future runs of the algorithm would do well to integrate more 
ways to perturb the state to present a wider variety of 
underlying problems with the system that map to the same state. 
Probably some of these changes would produce results 
analogous to those the expert system has hard-coded for state 4 
in particular. While ‘move client’ never worked in this iteration, 
that strategy probably works for some different underlying 
system states, while ‘add server’ never does. Such an effect 
observed enough during training would correct the relative 
levels of preference for the ‘move client’ repair.  

 
A number of limitations and additional opportunities for 
enhancement are apparent. The actual expert learner used in 
Rainbow has systems for which a failed repair will trigger an 
attempt at the second-best repair, which the learner currently 
does not. This strategy offers a substantial advantage in many 
cases, and we should modify this learner to allow testing of 
second-best repairs. The other advantage of Rainbow is its 
knowing when to quit. This learner will continually try to 
execute repairs until time runs out. This can be very costly for 
certain repairs (such as adding a server). The notion of cost is 



not one that this learner addresses very well because the learner 
erroneously acts as if repeatedly trying to add a server and 
failing is no more costly than doing nothing for the same length 
of time. For example, in state 5 where no solution is possible, 
simply stopping would be more efficient in a real system. 
 
Another potential limitation is the number of runs necessary to 
learn the best options. This run took around 100 iterations in 
each state before a best repair began emerging, and in some 
cases (state 2) the best repair was still not totally clear after 500 
iterations of running. For a system that is costly to operate or 
cannot simulate a large number of runs, this learner will not be 
appropriate. However, since one can seed the repair values with 
whatever values one wants, one can pre-seed the repair values 
appropriately and save some time if needed. The exploratory 
nature of the learning process will make mistakes and poor 
choices to learn what not to do, so systems with high costs of 
failure would need to require a simulation to get an adequate 
time period in which to learn. 
 
The learner system also has a narrow scope and requires some a 
priori information, which might eventually be generated by 
bootstrapping. For example, the scheme of state collapse from 
the underlying system to a state object is one that a learner 
could conceivably bootstrap, but the associated complexity 
would be enormous.  
 
What the learner requires now is only for users of the learner to 
be able to answer the question, “What are the important 
properties of the underlying system?” This question is much 
simpler than what the expert system requires, which is an 
answer to “What are the important properties of the underlying 
system and how exactly do we react to them effectively?” 
Therefore, this learner requires a simpler set of information than 
one wholly reliant on expertise in order to function effectively. 
What this learner loses over the current expertise-oriented 
Rainbow model in raw hard-coded efficiency, it gains in 
adaptability to new situations. 
 
6. CONCLUSION 
 
The results are very promising: this work shows that using 
temporal difference learning as a replacement for strict expert 
methods is reasonable. In order to function at the level of an 
expert model, the learner requires only methods to implement 
repairs to its system and a mapping from the system to states. In 
addition, its abilities are independent of how the underlying 
system actually functions. As a proof of concept, these data 
definitely demonstrate feasibility. The independence from the 
underlying system allows the learner to work with multiple 
environments, from simple client-server systems to system 
security or databases. Conveniently, each algorithm performed 
basically the same, meaning that one could use either one in 
future work of this kind. 
 
All further changes to the learner’s capabilities build on the 
assumption that the underlying algorithms learn accurately. 

From this base, additions such as a GUI or the smaller 
improvements described below are straightforward. The proof 
of concept of the algorithm’s successes demonstrates adequate 
baseline performance to justify further work in specific 
applications and enhancements. 

 
6.1 Future work 
 
Avenues to expand on this research split into two categories. 
Firstly, some methodological improvements would the 
functionality of this particular learning tool. Secondly, some 
work would facilitate self-healing repair for all systems.  
 
The possible functionality improvements for this particular 
learner are numerous, depending upon the scope of 
development. The simplest improvements would improve the 
accuracy and real-world implications of the existing algorithms. 
Slightly more complex changes involve expanding the learner to 
perform the “state collapse” automatically, as well as learning 
the appropriate time to wait for a repair to execute before 
examining the result. Much larger in scope are the ideal changes 
of allowing for a history of repairs and states to be incorporated 
cumulatively to define otherwise inaccessible repair strategies. 
For example, if no single “repair X” can repair a problem, 
maybe combining “repair X” with “repair Y” and applying them 
successively can fix the system. Such an idea is well beyond the 
complexity of this Q-learning algorithm, although the 
framework provides a starting place. 

 
A first and very important improvement would be learning the 
proper length of time for a repair to execute. If you reexamine 
the system too quickly, a repair may simply have had not 
enough time to execute, giving an erroneous impression that the 
repair was a failure. Even worse, future repairs may 
inappropriately register as having fixed the problem, when 
correct attribution would identify the latent effects of the prior 
repair. Such results break the algorithm, as the results are no 
longer attributable to the correct causes. Having extremely long 
wait times wastes time because the repair has finished executing 
long ago. In addition, intervening problems with the system 
would again mislead the algorithm in attributing success or 
failure to the repair. Accurately learning precisely when a repair 
has ‘finished’ would be very useful for future work. 
 
In line with the above, other systems have pursued the idea of 
cost for repairs through a two-part system [8]. Firstly, the 
system can perform “test actions” that incur no cost. These 
actions are meant to give the learner accurate information about 
how likely certain repairs are to work. However, it can also 
perform the same repairs as “repair actions” which weigh the 
associated cost of the repair when determining which choice to 
make. This allows quick or simple repairs to have preference in 
some cases because, even if they fail, they don’t take up a lot of 
time or resources to attempt. 
 
Another simple improvement would be to bar trying a particular 
repair after it has failed once for a current instance. This 



requires building in the assumption that whatever is preventing 
this state from being fixable by the failed repair is indigenous to 
the full underlying system state instead of the collapsed state 
reported by the system.  
 
A logical extension of this property, albeit one much larger in 
scope, would be amending the collapsing process to include 
whatever is making this state unique. For example, if a certain 
state/repair combination either works very well or not at all, the 
state representation for it is likely to not capture everything 
important about the underlying system. Having the learner 
communicate with the system to pick out another important 
attribute in the underlying state in order to generate a new state 
for the learner to examine would be quite useful.  

 
The addition of a memory for past failed state/repair pairs is a 
very useful opportunity for further research. This provides 
another approach towards the state collapsing problem 
described above. Basically, one would aim to teach the learner 
the correct actions to take by integrating past failed attempts 
with its existing knowledge about what states and repairs are 
appropriate in the current state. If a repair fails using the 
information the learner has for the current state, it could look 
backwards to see if past repair/state combinations are indicative 
of a repair being unable to succeed currently. 

 
The most involved and complex avenue for future work is for 
the learner to be able to utilize the full decision trees developed 
for Rainbow [9]. These trees combine large numbers of smaller 
repairs into a comprehensive strategy of repair. These mixes of 
repair have considerable power to fix problems in a system, so 
bootstrapping them as well would be a remarkably efficient step 
forward. Such an approach provides an extremely powerful 
method for systems to be able to learn about themselves. As 
long as a learner is not entangled with the specific details of an 
underlying system, it will have a flexibility of application that 
makes it very useful. The learner that I present in this paper 
requires just a few abstractions from the system. Any system 
can produce these abstractions and thereby allow the learner to 
apply.  
 
Looking at the larger picture, this kind of learner is a small part 
of an eventual goal of being able to trust autonomic systems to 
run entirely on their own. Ideally, developers will keep such 
systems abstract so that users can integrate any newly created 
system with the autonomic learner and have the learner discover 
how to run it effectively. The major limiting factor for many 
algorithms that attempt to tackle the generalizability problems 
associated with much of autonomic research is that of 
scalability. It is simple to imagine defining states for a single 
continuous variable (e.g., server load) by finding ranges where 
certain results seem more likely to occur. However, one has to 
add another variable like bandwidth. Not only is there an 
entirely different scale to discover for bandwidth, but also a 
scale to handle the interaction between bandwidth and load. 
Each new property greatly increases complexity. Most solutions 
simply do not scale.  

 
The problems associated with complexity and scale are very 
important to solve for an ideal autonomous system. However, in 
the meantime, one can attack the problem by coming up with 
approximations that simplify things for a learner. Assuming 
approximations like the state collapse I used for this learner 
allows for a great deal of progress because it assumes that some 
other agent will handle complexity and scalability. In this case, 
that agent is a human who knows something about what makes 
a state interesting. Should we arrive at an algorithm that can 
make that decision on its own, our learners should be abstract 
enough to be able to just use that algorithm as the agent instead 
of a human. Maintaining the independence of a learner with 
respect to the underlying system while focusing improvements 
on the real-world modeling of the learner will preserve its 
generalizability. Making the real-world improvements will 
increase the power and applicability of this kind of learner to 
the problems we face today. Doing both lays the groundwork 
for integrating future advances while providing useful results in 
the present. 
 
REFERENCES 
 
[1]   Bantz, D. F. et. al. Autonomic Personal Computing. IBM Systems 

Journal, 42(1), 165-176, 2003. 
 
[2]  Norman, D. A, Ortony, A., & Russell, D. M. Affect and Machine 

Design: Lessons for the Development of Cognitive Machines. 
IBM Systems Journal, 42(1), 38-44, 2003. 

 
[3] Candea, G., Kiciman, E., Kawamoto, S., & Fox, A. Autonomous 

Recovery in Compnentized Internet Applications. Cluster 
Computing, 9(2), 175-190, 2006 

 
[4] Valetto, G., Kaiser, G., & Phung, D. A Uniform Programming 

Abstraction for Effecting Autonomic Adaptations onto Software 
Systems. Proceedings of the International Conference on 
Autonomic Computing (ICAC ’05), Seattle, WA, June 13-16, 
2005 

 
[5] Cheng, S, et. al. Rainbow: Architecture-based Self-adaptation with 

Reusable Infrastructure. Proceedings of the International 
Conference on Autonomic Computing (ICAC ’04), New York, 
NY, May 17-18, 2004.  

 
[6]  Watkins, C. J. (1989). Models of Delayed Reinforcement Learning. 

Ph.D. thesis, Psychology Department, Cambridge University, 
Cambridge, United Kingdom. 

 
[7] Sutton, R.S. (1996) Generalization in reinforcement learning: 

Successful examples using sparse coarse coding. In Advances in 
Neural Information Processing Systems 8, Cambridge, MA: MIT 
Press. 

 
[8] Littman, M. L., et al. Reinforcement Learning for Autonomic 

Network Repair. Proceedings of the International Conference on 
Autonomic Computing (ICAC ’04), New York, NY, May 17-18, 
2004. 

 
[9]  Cheng, S., Garlan, D., & Schmerl, B. Architecture-Based Self-

Adaptation in the Presence of Multiple Adapatations. To appear in 



Proceedings of the ICSE 2006 Workshop on Software 
Engineering for Adaptive and Self-Managing Systems (SEAMS), 
Shanghai, China, May 21-22, 2006. 

 
 
 


