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Abstract 

 The aim of this project is to use computational methods to analyze the set of 

genes expressed in response to neural activity.  When a neuron receives a stimulus from 

seizure or learning and memory, the amount of certain proteins that the cell produces 

increases through a mechanism called gene expression.  This change is governed by the 

binding of transcription factors to DNA at specific sequences near the gene.  Using a 

probabilistic model and a comparison between human and mouse, we identified a set of 

genes with CREB, zif268, and AP-1 transcription factor binding sequences. The 

presence of those sequences are known in many cases increase gene expression and 

protein amount.  This set genes provides information about the role of the transcription 

factors as well as a resource for biologists looking to build specific networks of protein 

activation.  We found that the transcription factors CREB and zif268 are likely to bind 

near genes involved in regulatory networks.  These results are compared to studies of 

gene expression following seizure.  This work is a crucial first step in using 

computational methods to study learning and memory at the level of the neuron. 

 

Introduction  

 One of the fundamental problems in neurobiology is how the properties of a 

neuron can change in response to electrical and chemical activity.  The concept of 

altering a neuron’s properties by signaling is known as plasticity.  When a neuron 

receives an electrical stimulus, particularly a strong one, chemical signals are initiated in 

the neuron.  These chemical signals cause proteins called transcription factors, such as 

CREB, zif268, and AP-1 to be activated.  An activated transcription factor can bind to 



DNA near the beginning of a gene called a promoter region and cause an increase or 

decrease in the protein that the gene encodes.  This change in protein level can then 

affect the properties of a neuron.  This process is known as activity dependent gene 

expression.  We call the set of genes altered by activity the plasticity transcriptome.  

 Elucidating the plasticity transcriptome is essential for a good understanding of 

any biological process where neuron connections and properties are altered.  The most 

widely studied examples are epileptogenesis, brain injury, and learning and memory.  

Because of the widespread increase in activity, seizure is useful model in understanding 

activity-dependent changes in gene expression.  Following seizure, changes in gene 

expression facilitate the development of epilepsy disorders (reviewed by (Elliott and 

Lowenstein 2004; Rakhade et al. 2005).  Understanding the plasticity transcriptome is 

also crucial in studying aspects of learning and memory.  For instance, mental 

retardation is linked to changes in activity-dependent gene expression, such as 

Rubenstein-Taybi syndrome, related to a mutation in the CREB-binding protein, and 

Rett syndrome, tied to a defect in a DNA-binding protein that regulates the correct 

timing of expression of many downstream genes (Hong et al. 2005).  Knowing the 

targets of activity dependent transcription factors allows researchers to build models of 

these disorders that could lead to treatments. 

Experimentally based approaches dominate the literature in identifying genes that 

are differentially expressed. Microarrays that measure the amount of specific DNA 

transcribed have been frequently employed to characterize the plasticity transcriptome by 

identifying candidate genes that are upregulated after activity (Befort et al. 2003; 

Costigan et al. 2002; Laifenfeld et al. 2002; Lee et al. 2005; Luo et al. 2001; Valerio et 



al. 2004; Yao et al. 2004), typically through pharmacologically-induced seizure (Del Rio 

and Barlow 2002; Flood et al. 2004; Hunsberger et al. 2005; Lukasiuk and Pitkanen 

2004; Tang et al. 2001; Wilson et al. 2005).  There are several reasons microarray 

technologies are insufficient for understanding activity-dependent gene expression.  The 

large amount of noise inherent to the method only allows the detection of large changes 

in gene expression.  Subtle, but important differences are lost.  This problem is amplified 

by the heterogeneity of brain tissue.  Even a large change in gene expression could be 

overlooked if it only occurred in small fraction of the neurons analyzed.  Neuron-specific 

pathways of gene expression could also make the results sensitive to slight differences in 

the location and timing of neural tissue collected for the microarray.  Furthermore, 

studies in Drosophila melanogaster suggest that the plasticity transcriptome is dependent 

on the method of seizure induction(Guan et al. 2005).  This can cause inconsistent results 

based on the methods of different research groups.  Finally, microarrays yield little 

information on which transcription factors affect which genes. 

An alternate experimentally based approach known as chromatin-

immunoprecipitation (ChIP) against specific transcription factors and determination of 

immunoprecipitated DNA binding sites by hybridization to microarrays or PCR analysis  

(Hakimi et al. 2002; Impey et al. 2004; Israsena et al. 2004; Sun et al. 2005; Vanderluit 

et al. 2004).  Unlike microarrays, ChIP is able to study the binding specific transcription 

factors to genes.  However, much like microarrays, it sufferers from tissue-specific 

occupancy of binding sites and the inherent heterogeneity of cell types in brain tissue 

(Cha-Molstad et al. 2004).  



A non-genomic based approach to identifying potential activity-regulated genes 

has been to isolate specific candidates and examine changes in the abundance of their 

protein or mRNA after manipulations of activity (see, for example, Amadio et al. 2004 

and Hoffman 2003).  However, this approach is obviously limited because it must 

proceed in a highly directed, case-by-case manner, and does not accommodate the 

discovery of novel or unlikely gene candidates. 

 Identification of activity-regulated genes could be improved by genomic screens 

that are unbiased by average expression level, cell type, or target gene preselection.  The 

emergence of online databases has made large amounts of data available on transcription 

factor binding as well as promoter DNA sequences near the beginning genes where the 

transcription factors act.   Methods for locating transcription factor binding sites often 

rely upon relatively simple comparisons of a single sequences or small set of specific 

“consensus binding sites” with individual promoter regions (Bulyk 2003; Qiu 2003; 

Vavouri and Elgar 2005).  Although such searches can be productive, the use of a single 

consensus site is too simplistic.  In many cases, these searches will over- or 

underestimate the number binding sites that exist.  This results in subjective target 

identifications whose reliability is difficult to judge. 

As an alternative, we use a computationally sophisticated model of three 

transcription factor binding sites  CREB, zif268, and AP-1.  The probabilistic 

representations of these site are shown in figure 1.  These transcription factors are all 

linked to processes involving increased neural activity (Herdegen and Leah 1998).  

CREB activation is necessary for the consolidation of long-term memory (Yin et al. 1994).  

Zif268 and the components of AP-1, fos and jun, are often used as markers of increased 

activity or neural plasticity. Because activity-dependent changes in gene transcription are 



linked to memory consolidation and also occur as a response to pathological conditions 

such as seizure (Corriveau et al. 1998; Guan et al. 2005; Nedivi et al. 1993), identification 

of the downstream targets of these transcription factors remains of considerable interest. 

 

 
Figure 1.  Activity dependent transcription factor binding sites consensus sequences.  The height of the 
letters is proportional to their frequency in the data used to build the matrix.  For instance, a large “A” in 
position one means that “A” belongs to the most probable consensus for that transcription factor binding 
site.  (A) Consensus sequence given by the transfac CRE-binding matrix V$CREB_01. (B) Consensus 
sequence given by the transfac zif268 binding matrix V$EGR1_01.  (C) Consensus sequence given by the 
transfac AP-1 binding matrix V$AP1_Q2. 
 

We verified and our results using the location of transcription factor binding sites 

and improved target quality with comparative genomics.  More general algorithms have 

successfully used comparative genomics between human and mouse to identify 

transcription factor binding sites (Elemento and Tavazoie 2005).  We performed this 

search in parallel on all human and rat genes with an annotated transcription start sites. 

Dual hits from both the mouse and human genomes were considered more likely to have 

an be regulated by the transcription factor.  Our results identify 854 candidate genes with 

conserved binding sites between human and mouse (see Table 1) that may be regulated 

by activity, 21 of which were predicted to have more than one type of transcription factor 

binding site.  These results provide an important resource in understanding the regulatory 

networks that control activity-dependent programs of gene expression. 

 



Table 1. Scores of computational search for activity-dependent transcription factor binding sites

Mouse Human Homologuea

Measure Promoterb Intergenicc Scored Promoterb Intergenicc Scored Completee Conservedf Scoreg

Total genes 18071 13475 19794 15178 13365 854
CREB targets 1050 279 0.64 1389 388 0.64 830 356 0.83
zif268 targets 1382 200 0.81 1203 244 0.74 1136 166 0.56
AP-1 targets 4417 3612 -0.10 1623 1539 -0.24 3186 344 0.25
% CREB genes 5.81% 2.07% 7.02% 2.56% 6.21% 2.66%
% zif268 genes 7.65% 1.48% 6.08% 1.61% 8.50% 1.24%
% AP-1 genes 24.44% 26.81% 8.20% 10.14% 23.84% 2.57%

a The homologue dataset was contructed using the Homologene resource on the NCBI website (http://www.ncbi.nih.gov).
b The promoter region is the area from -1,000 to 200 bp relative to transcription start.
c Intergenic regions refer to an area 50,000 bp away from transcription start.  Fewer intergenic regions are available than genes because 
of gaps in sequencing.
d The score is determined by the positive predictive value which is a conservative estimate of the fraction of found transcription factor 
binding sites that are true hits.  It is calculated as (%Observed - %Intergenic)/(%Observed).
eThe complete homologue numbers refer the the number of human/mouse homologous pairs identified using the Homologene resources.
f The conserved dataset is a subset of the Homologene dataset that consists of only those genes for which homologous pairs contain a 
conserved binding site.
g The quality is determined by the positive predictive value which is a conservative estimate of the percentage of found transcription 
factor binding sites that are true hits.  It is calculated as (%Conserved Observed - %Predicted Conserved)/(%Conserved Observed).

Methods 

Promoter Database 

 We compiled a database of gene promoter regions using sequences from mouse 

build mm6 (Waterston et al. 2002), rat build rn3 (Gibbs et al. 2004), and human build 

hg17 (Lander et al. 2001; Venter et al. 2001) of the UCSC Genome Bioinformatics 

Resource (http://hgdownload.cse.ucsc.edu/downloads.html). Transcription start sites for 

these promoters organized by mRNA accession number were found in the table 

“knownGene.txt” for each build. Where promoter regions were reported within 50 bp of 

each other, only the one earlier on the chromosome was used, as the copies were 

presumed to be duplicates of the same promoter region (derived from otherwise identical 

mRNAs of different lengths).  Incomplete promoters with missing sequence data were 

also removed from the analysis.  The full promoter list was annotated with gene name, 

symbol, and accession number using the NCBI gene resources 



(http://www.ncbi.nlm.nih.gov/) (Wheeler et al. 2005).  In total, 18,071 mouse promoters, 

19,794 human promoters, and 5,943 rat promoters were analyzed (Table 1). 

When searching for candidate genes, we defined a putative promoter to be the 

genetic sequence from –1,000 bp to +200 bp of each transcription start for human, 

mouse, and rat genes.  A set of intergenic sequences was also compiled for human and 

mouse to construct a “random” control dataset of 1,200 bp sequences using the regions 

from -51,200 bp to -50,000 bp relative to each transcription start site, where the 

transcription factors CREB, zif268, and AP-1 are not likely to have regulatory function.  

Due to a decrease in sequence quality further away from transcription start, distal 

sequence regions were available for only 77% of total genes, leaving 13,475 mouse 

intergenic regions and 15,178 human intergenic regions far analysis (Table 1).  In order 

to confirm location-specificity trends inferred from the 1,200 bp regions, an additional 

search was run for each gene on an extended promoter region (-6,000 bp to +200 bp).  

We saw no significant difference in the region between -1,000 bp and -6,000 bp 

compared to the -51,200 bp to -50,000 bp region, suggesting that the initial search had 

identified the majority of sites with likely function.  

 The Homologene database provided us with human and mouse homologous pairs 

based on gene accession number (Wheeler et al. 2005), yielding 13,365 homologous 

gene pairs (Table 1).  A binding site prediction was defined as conserved if the same 

binding site type was predicted in the promoters of both homologous genes, without 

regard for position in the promoter.   



 

Transcription Factor Binding Site Inference 

 The goal of this search is to identify a transcription factor binding site compared 

to its background.  This is the case when the probability that it is a binding site is greater 

than the probability you would observed the sequence. 
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 Position specific scoring matrices (PSSMs) or position weight matrices (PWMs), 

are a well established method of motif finding (GuhaThakurta and Stormo 2001; Stormo 

1990).  We used a variant of them to find the log probability of a sequence being a part 

of the model.  Our methods are similar to the transcription factor binding site search 

available through the database of transcription start sites (Suzuki et al. 2004).  Binding 

site frequency matrices for AP-1, CREB, and zif268 were obtained from the Transfac 

(Wingender 2004; Wingender et al. 2000) public database (see Fig. 1).  These frequency 

matrices give the frequency that each nucleotide is in each positive of the binding site.  

Scoring matrices for the present study were created from the Transfac frequency matrices 

with the following equation: 
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where S is the scoring matrix, A is the frequency matrix, n is the nucleotide, p is the 

position within each binding site.  The pseudocount, b, is set at the relatively small value 

of 0.25 to allow limited tolerance of base-pairs which have never been observed in a 

given position for a binding site.  When comparing this scoring matrix to a sequence of 



the same size, adding the scores for the nucleotide that is at that same position in the 

sequence gives you the log of probability that the sequence matches the model. 

 The probability that a sequence is part of the background, or not a binding, site is 

based on dinucleotide frequencies.  For each species individually, we went through all 

promoter and calculated the probability of each dinucleotide transition.  For instance, 
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ATObservedATP = .  We also calculated the probability of observing each 

nucleotide individually.  From those you can calculate the probability of observing any 

sequence by multiplying the probability of the first nucleotide by the probability of each 

nucleotide transition.  The log probability can be found by adding the log of each 

probability. 
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 The goal of this study is to create a comprehensive list of possible transcription 

factor targets.  In some studies, the log of the sequence length is subtracted to correct for 

the number of possible sites being searched.  While subtracting by the full log of the 

sequence length would provide a more rigorous control, we deliberately chose to 

increase the sensitivity of the method at the expense of specificity at this stage in order to 

allow us to better take advantage of homology to enhance specificity in subsequent 

analysis.  To analyze the quality of the data in response to decreasing the specificity, we 

use comparative genomics and a measure called the positive predicted value.  Intuitively, 

it is the probability that an observed site is true positive.  The positive predictive value is 



defined as 
vesTruePositiivesFalsePosit

vesTruePositi
+

 .  In terms of our data, the positive predictive 

value is 
tesObservedSi

tesExpectedSitesObservedSi - .  The expected number of sites is the number of 

sites expected to be conserved if there was no association between a binding site existing 

in mouse its human homologue.  A series of possible correction terms are plotted against 

the positive predicted value (Figure 2).  Because it is the point at which CREB and 

zif268 plateau, we chose to use a correction of three hundred.  The final positive 

predictive value based on comparative genomics is found in Table 1 under homologues. 

 
Figure 2.  Fraction of binding sites expected to true positives.  The specificity is a correction, the log of 
which is subtracted to arrive at the final score for a transcription factor binding site.  The positive predicted 
value is calculated as shown in the methods.  It represents the fraction of binding sites that are expected to 
be true positives based on a comparison between binding sites in human/mouse homologues.  Values for 
CREB, zif268, and AP-1 are given. 
 
 A binding site is considered a hit if the final calculated score is above zero.  The 

equation used to determine the final score is given below: 

)log())(log())(log( correctionBackgroundPModelPScore --=  



 

Global Data Analysis 

 The positive predictive values for the individual species is calculated by 

comparing the promoter region to the intergenic region (see Table 1).  It is still calculated 

as 
tesObservedSi

tesExpectedSitesObservedSi - , but the observed sites is now the percentage of 

promoter targets with a binding site and the expected sites is the percentage of intergenic 

regions with that binding site. 

Associations between co-occurring binding sites were analyzed by applying a 2-

tailed Fisher’s exact test (Agresti 1992), using a web-based calculator 

(http://www.matforsk.no/ola/fisher.htm), to the 2 by 2 contingency table of counts of 

occurrence of either, both, or neither site. 

Analysis of the function of the activity-dependent transcription factor targets was 

done using GOstat (http://gostat.wehi.edu.au/), an online tool for finding overrepresented 

ontologies in a set of genes (Beissbarth and Speed 2004).  The list of targets for each 

transcription factor binding site and species was searched against the entire list of 

promoters for overrepresentation of different gene ontology classes. 

The rat microarray data used was obtained from the NCBI Gene Expression 

Omnibus (Barrett et al. 2005).  The database describes how seizure was induced in rat at 

p15 using kainite.  The mice were sacrificed at 1 hour, 6 hours, 24 hours, 72 hours, and 

240 hours post-seizure and hippocampal tissue was examined.  Three control and three 

experimental trials were done for each time point.  Significance was calculated as a 

function of the database by comparing the intensity across trials (Barrett et al. 2005). 

 



Results 

 Our research uses computationally advanced techniques to identify targets of 

activity-dependent transcription factors.  Because these transcription factors have large 

roles in neural plasticity, we assume that many of them are members of the plasticity 

transcriptome.  Our method may overestimate the transcriptome, but still has advantages 

over other methods that can miss important targets.  We used a form of position specific 

scoring matrices or PSSMs to develop model for transcription factor binding sites.   

Using those models, we searched the promoter regions of human, mouse, and rat.  

Location specificity, or the tendency of valid binding sites to be close to transcription 

start was used to assess the accuracy of these models.  Comparative genomics between 

human and mouse was used to find binding sites likely to be functionally conserved and 

important between the two species.  Analysis of transcription factor targets shows that 

CREB and zif268, particularly if located on the same promoter, tend to regulate genes 

involved in regulatory network. 

 

Developing binding site models 

 Several possible models exist for transcription factor binding sites.  We wanted to 

avoid using a consensus sequence, which would be likely to miss many subtle targets.  

Sufficiently stringent criteria was also used to avoid the possibility of finding ten or more 

transcription factor binding site of one type in the same promoter, which is highly 

unlikely to occur naturally (James et al. 2005).  Our binding site models were built from 

known examples of high quality, functional binding sites catalogued in the Transfac 

Database (Wingender et al. 2000).  We also used frequency matrices that have been 



experimentally developed for zif268 (Swirnoff and Milbrandt 1995; Wingender et al. 

2000) and CREB (Benbrook and Jones 1994; Wingender et al. 2000).  A schematic of 

the consensus sequences used is shown in Figure 1. 

 Another important aspect of this transcription factor binding site search is the 

correction for GC content.  Mammalian promoters are known to have regions where the 

nucleotides G and C occur at a very high frequency.  Certain pairs of nucleotides are also 

more likely to found within promoter regions.  To distinguish the transcription factor 

binding sites from normal promoter sequence, it was necessary add these aspects of the 

promoter the background sequence model. 

 

Computational genomic analysis: mouse, rat, and human genomes 

 Because binding sites are less likely to be similar in unrelated species, we analyzed 

the promoters of the mammals mouse, human, and rat.  Although a comparative genomic 

analysis could have been conducted on rat, there were only 5,943 annotated promoters.  

The 18,071 mouse genes and 19,988 human genes allowed for a greater number of 

conserved targets (see Table 1).  This represents all the annotated promoters from these 

species (approximately two-thirds of the total estimated distinct human and mouse 

genes; (Lander et al. 2001; Ota et al. 2004; Venter et al. 2001).  Due to the amount and 

quality of data available, many of our analyses are restricted to mouse and human. 

 CREB binding sites were predicted in 6% of mouse promoters, 7% of human 

promoters, and 11% of rat promoters (Figure 3a).   Zif268 binding sites were predicted in 

8% of mouse promoters, 6% of human promoters and 5% of rat promoters (Figure 3b). 

AP-1 sites were the most common of the both the human and mouse datasets, with 



predicted frequencies of approximately 24%, 8%, and 11% in mouse, human and rat 

promoters (Figure 3c).  Although this number is high, it may be partly attributable to 

artificially high degeneracy of the AP-1 search consensus sequence, which stems in part 

from the diversity of AP-1 family members that can bind this sequence (Hai and Curran 

1991).  The large difference in AP-1 frequency could be due to differences in 

dinucleotide between human and mouse.  An overcorrection for a high GC content in 

human promoters could easily have increased the frequency of the AT rich AP-1 

transcription factor binding site. 

 

Figure 3.  Relative frequency of transcription factor binding sites within promoter regions across species.  
(A) – (E) gives the number of percentage of promoters with a transcription factor binding site.  For (F), the 
values shown are (# of promoters with a binding site x 100)/(# of human and mouse homologous pairs).  
Panels show (A) CREB, (B) zif268, (C) AP-1 frequency in promoters.  A comparison of (D) mouse and (E) 
human binding site frequencies in promoter and intergenic regions is given.  (F) shows the frequency of 
conserved activity-dependent transcription factor binding sites in the homolog dataset. 
  
Estimation of search quality 

 To develop a rigorous estimate of the quality of our hits, calculated the positive 



predictive value.  This was accomplished by examining the location and conservation of 

binding sites.  This is a conservative estimate of the percentage of identified transcription 

factor binding sites that we expect to be functional binding sites.  In individual species, 

we compared predicted transcription factor binding site frequencies within gene 

promoters to those for  control sequences selected from intergenic regions (see Methods).  

Our analysis showed that CREB and zif268 binding sites were more likely to be found in 

our 1,200 bp promoter region (Figure 3d and 3e).  A more detailed analysis shows that 

the frequency of these binding site increases relative to how close to transcription start 

site you are (Figure 4a and 4b).  This translated to a positive predictive value of for 

CREB 0.64 in human and mouse.  Zif268 had a slightly higher positive predictive value 

of 0.81 in mouse and 0.74 in human (Table 1). 

 Comparative genomics was also used a method of obtaining the positive predictive 

value.  To identify the homologous mouse/human pairs, we used the Homologene 

database (Homologene; Wheeler et al. 2005).  This dataset was found to have a similar 

frequency of transcription factor binding sites (Table 1).  We then examined the 

conservation of each type of transcription factor binding for each mouse/human pair.  In 

the set of mouse-human homologues, 2.7% have a conserved CREB site, 1.2% have a 

conserved zif268 site, and 2.6% of promoters have a conserved AP-1 site (Figure 3f).  

These binding sites that existed in a mouse-human homologue pair were considered to be 

true positives.  The positive predictive value was calculated by comparing this number to 

the number of binding sites one would expect to find if there was no evolutionary 

pressure for site conservation.  Unlike using the location specificity, the positive 

predictive value was higher for CREB than zif268.  We predicted it as 0.83 for CREB 



and 0.56 in zif268.  This difference is most likely to due change in zif268 targets 

between species. 

  

Location specificity within the promoter 

 Based on the observation that more binding sites were found the promoter regions 

for CREB and zif268, we conducted a more complete analysis of binding site location 

(Figure 4).  The frequency of CREB (Figure 4a) and zif268 (Figure 4b) binding sites 

were observed to increase close to transcription start, especially the –100 bp region.  In 

the –900 to –600 bp region, the frequency was no different from the intergenic regions. 

The same location specificity exists in the conserved dataset (Fig. 4d and 4e).  The high 

quality of the conserved dataset for CREB sites is supported by an observable increase in 

the peak at –100 bp as opposed –900 bp. 

 

 



Figure 4. Histograms of CREB and zif268 binding are grouped by position relative to transcription start, 
showing pronounced location specificity within the promoter.  All histograms were created using a bin size 
of 50 bp.  The total number of binding sites in each 50 bp region was divided by the total number of 
promoters for that dataset.  Shown are both human and mouse and promoters.  For the intergenic dataset, 
the area shown is from -51,200 bp to -50,000 bp relative to transcription start.  The binding sites analyzed 
are (A) CREB, (B) zif268, and (C) AP-1.  Histograms for the conserved human and mouse datasets are 
given in for (D) CREB, (E) zif268, and (F) AP-1 transcription factor binding sites.  The percentage of 
promoters with a binding site is calculated relative to the total number of homologous pairs.  The mouse 
dataset is the location of mouse binding sites when the homologous gene also has a binding site of the same 
type.  The human dataset is the location of human binding sites when the homologous gene also has a 
binding site of the same type. 
 
 Unlike CREB and AP-1, the location specificity of zif268 was different between 

mouse and human.  The most likely explanation is the higher GC content in human.  

Certain GC rich sequences that would be recognized in mouse would be recognized in 

humans.  Both transcription factor binding sites and GC rich regions are likely to be 

close to transcription start (Vinogradov 2005).  It remains a mystery whether the 

decrease in the strength of the peak in human is a significant reduction of false positives 

or true positives.  In the human, mouse, and conserved datasets, AP-1 did not have any 

location specificity (Fig 4c and 4f).  One hypothesis is that there are more false positives 

for AP-1 that overwhelm the true hits.  This could be due to a poor data that the binding 

site model was constructed from.  Another explanation is that it is not optimal for AP-1 

to be located within a specific region of the promoter. 

 

Overlap of CREB, zif268, and AP-1 target genes 

 Co-regulation of promoters, or two transcription factor binding sites regulating the 

same genes, is a relatively frequent occurrence.  However, it has not been studied with 

regards to activity-dependent gene regulation and these transcription factors.  If co-

regulation does occur, you would expect the two transcription factor binding sites to be 

often found in the same promoter region.  The amount of overlap between zif268 and 



CREB targets was greater than would be expected by chance (Table 2, highlighted in 

yellow), suggesting that at least a subset of target genes may be regulated by both CREB 

and zif268.  

 

Table 3. Significance of CREB and zif268 binding site colocalization

CREB and zif268 CREB and AP-1 zif268 and AP-1
Mouse 0.023a      b 0.236 0.013

Positive c Negative Negative
Human 0.180 0.141 0.007

Positive Negative Negative
Rat <.001 0.538 0.708

Positive Positive None
a The p-value was calculated using Fisher's exact test (see methods). 
b The positve association between CREB and zif268 is highlighted for mouse, human, 
and rat.
c A positive direction of the association means that the two binding sites are are more 
likely to be found on the same promoter than if they were randomly distributed.

 

 We found a significant negative association between the transcription factors 

zif268 and AP-1.  This is particularly peculiar because of AP-1 low positive predictive 

value and estimated binding site quality.  The most straightforward explanation is that 

zif268 and AP-1 are purposely activating distinct subsets of genes.  Another hypothesis 

is that zif268, as GC rich binding site, is more likely to be found in GC rich promoters, 

while AP-1, an AT rich binding site, is more likely to be found in AT rich promoters. 

 

Analysis of specific target genes:  CREB and zif268 targets 

 The analysis of the CREB/zif268 overlap led to identify the targets of this 

possible co-regulation.  To leave only the highest quality targets, we decided to include 

on those genes with both a conserved CREB and zif268 binding site between mouse and 

human.  FosB (Figure 5A), Jund1 (Figure 5B), and Maff (Figure 5C) are all members of 



the AP-1 family of transcription factors.  The Skil (Figure 5D) transcription factor is a 

member of the SKI/SNO/DAC family which are known in some cases to attach to the 

same protein complex as AP-1 (Xu et al. 2000).  The observation that a specific group of 

transcription factors can be regulated by both CREB and zif268 implicate these genes in 

transcriptional networks of activity-regulated gene expression.  Neuronal pentraxin 1 is 

an interesting in neural-specific target.  It is known to be expressed in response BDNF, a 

chemical stimulant of neurons important in plasticity (Ring et al. 2006), as well as brain 

injury (Hossain et al. 2004). 

 



 
Figure 5.  Binding site location in CREB/zif268 double hits.  Promoter regions for the genes on the line to 
the left are from -1000 bp to 200 bp relative to transcription start, which is denoted by the arrow.  The red 
blocks above represent CREB binding sites, the green blocks represent zif268 binding sites, and the blue 
blocks represent AP-1 binding sites.  Mouse transcription factor binding sites are found on top of the line 
while human sites are below.  A non-allignment method was used to identify promoter regions, so 
homologous binding sites might not be at the same location.  Gene symbols shown are those for mouse.  
Promoter regions shown are for (A) FBJ osteosarcoma oncogene B/FosB, (B) Jun proto-oncogene related 
gene d1 (C) v-maf musculoaponeurotic fibrosarcoma oncogene family, protein F (avian), (D) SKI-like, (E) 
neuronal pentraxin 1, and (F) tropomyosin 4. 
 

 Because our analysis of this co-regulation was encouraging, we attempted to 

develop broader roles of CREB and zif268 by examining the function of their targets.  

The GoSTAT web resource allowed us to look for functions in a set of genes that are 



over and under-represented (Beissbarth and Speed 2004).  This program was used to 

compare the set of CREB, zif268, and AP-1 targets to the set of all genes studied in a 

species (Table 3).  Interestingly, genes with CREB consensus sites showed significant 

overrepresentation for targets involved in transcription and RNA processing, but 

underrepresented in more obvious important neural targets, receptors and channels.  

However, it could be the case that the few targets predicted are functional important.  

RNA processing genes, such as those the facilitate RNA splicing, have important effects 

of neuron-neuron communication (Zhong et al. 2006). Along with CREB, zif268 targets 

were strongly enriched for transcription factors, but only in mouse.  This lack of 

overrepresented function in human may correspond to the location specific decrease in 

the peak close to transcription start for zif268.  The overrepresentation of transcription 

factors for both binding sites is consistent with the prior analysis of the putative high-

quality hits generated by searching for CREB/zif268 co-regulated genes among the 

Homologene set.  To further support this hypothesis, the CREB/zif268 targets in human 

and mouse were analyzed for over and underrepresented functions.  Transcription factor 

binding sites were overrepresented in both species.  Only one class, immune response, 

was significantly enriched for AP-1, a fact that underscores the significance of the 

observations for CREB and zif268. 

 



Table 4. Over and underrepresented functions in transcription factor binding site candidates

Human p-valuea Mouse p-valuea

Overrepresented Category b

     CREB
Nucleus 5.97E-06 Nucleus 8.62E-07
Transcription 0.000966 Dephosphorylation 0.0014
Primary Metabolism 0.00158 Biopolymer Metabolism 0.00312
RNA Processing 0.00229 Nucleotide Binding 0.0111
Regulation of Physiological Process 0.00274 RNA Processing 0.0236
Mitosis 0.0114 Protein Dimerization Activity 0.0309
Microtubuole Cytoskeleton 0.0143 Cell Cycle 0.0495
RNA Splicing 0.0265
Phosphate Metabolism 0.0492
     zif268
None Nucleus 0.00117

Zinc Ion Binding 0.00117
Transcription, DNA Dependent 0.004
Leading Edge 0.00926
Cellular Physiological Process 0.0139
Cellular Metabolism 0.019
Cell Development 0.0425

     AP-1
Immune Response 0.0132 None
     CREB/zif268
Protein Dimerization Activity 0.00235 Protein Dimerization Activity 0.0134
Transcription Factor Binding 0.00677 Membrane-bound Organelle 0.0134
Transcription Corepressor Activity 0.0122 Regulation of Epidermis Development 0.0134
Activation of MAPKK Activity 0.0122 Protein Serine/Threonine Phosphotase 0.0144

Regulation of Transcription 0.0433

Underrepresented Category b

     CREB
Intrinsic to Membrane 8.10E-07 Organismal Physiological Process 0.000289
Receptor Activity 0.00158 Intrinsic to Membrane 0.0083
Ion Transporter Activity 0.00821 Neurophysiological Process 0.0083
Sensory Perception 0.0469 Transmembrane Receptor Activity 0.0086

Sensory Perception 0.0129
     zif268
None Olfactory Receptor Activity 0.00117

G-protein Coupled Receptor Activity 0.00277
Organismal Physiological Process 0.0132
Transmembrane Receptor Activity 0.019
Neurophysiological Process 0.0275
Defense Response 0.0481

     AP-1
None None
     CREB/zif268
None None
a This shows p-values for all gene ontologies signaficantly over and under-represented using the goSTAT application at 

(http://gostat.wehi.edu.au/) (Biessbarth and Speed).
b  Similar categories are listed together.  More information about the gene ontology catagories can be found at 
(http://www.informatics.jax.org/searches/GO_form.shtml).

 

Experimental Validation of Targets 

 Experimental validation of the transcription factor binding site targets is difficult 

because our method was developed in response to a perceived weakness the current 



experimental methods.  We believe that the changes in gene expression measured by 

microarrays are mostly due to networks of transcription.  However, one would expect to  

observe an increase (or decrease) in the predicted CREB and zif268 targets in response to 

increased activity.  To test this hypothesis, we looked at the percentage of targets in rat 

genes differentially expressed after seizure compared with the entire rat promoter dataset 

(Figure 6).  No binding site is extremely overrepresented in the rat seizure data.  The 

CREB and zif268 targets both increase until the 240 hour time point.  This could be 

noise, but it could also indicate a binding site specific in crease mRNA post-seizure. 

Figure 6. Binding site frequencies in genes responding to seizure.  The rat microarray data used was 
obtained from the NCBI Gene Expression Omnibus.  Seizure was induced in rat at p15 using kainite.  The 
mice were sacrificed at 1 hour, 6 hours, 24 hours, 72 hours, and 240 hours post-seizure.  Hippocampal 
tissue was examined for three control and three experimental trials for each time point.  Significance was 
calculated as a function of the database by comparing the intensity across trials (Barrett et al. 2005).  The 
differentially expressed genes in include those that are downregulated.  These promoters of the 
differentially expressed genes were scanned for (A) CREB, (B) zif268, and (C) AP-1 transcription factor 
binding sites.  The dark line shows the frequency of the transcription factor binding site in all rat promoters 
 
Discussion 

We have carried out our computational approach to identifying the plasticity 

transcriptome by identifying the targets of the transcription factors CREB, zif268, and 

AP-1.  Location of the binding sites was used to get a measure of binding site quality.  

The comparative genomics approach gave an independent measure of quality as well as a 

method of decreasing the frequency of false positives.  Further verification of 

transcription factor binding sites was carried out in rat by comparing gene activity to our 



targets list.  This study is the first computationally rigorous sequence-based analysis of 

genes that are likely to be regulated by neural activity.  Our methods are not dependent 

on unreliable tissue collection or limited to a handful of testable targets which may bias 

most studies of the transcriptome.  It has the added advantage of being easy to run and 

cost-effective.  This analysis predicts CREB and zif268 are targeting another level of 

regulation and, in general, not genes important to plasticity. 

 

New methods for evaluating target quality 

It is not surprising that the transcription factor binding sites are most likely found 

in promoter regions.  This location specificity has been anecdotally noted in previous 

work (Elemento and Tavazoie 2005).  The incredibly strong location specificity of 

CREB and zif268 was unexpected.  A huge difference between the number of sites found 

at –100bp compared to –600bp suggests that there is evolutionary pressure for a binding 

to be located very close to transcription start.  It follows that these sites are more likely to 

be functional than sites found farther away.  Perhaps better annotated transcription starts 

and perfect binding sites models could reveal a distinct window in which a transcription 

factor must operate.  Another possibility is that there is a peak region for binding site 

function surrounded by sites that only have a small influence on the gene. 

 

Transcriptional networks triggered by neural activity 

Although we understood that CREB and zif268 have a role in activity-dependent 

gene expression, we were not sure what that role was.  This study developed two related 

functions for CREB and zif268 in relation to the plasticity transcriptome.  First, guided 



by their co-occurrence in the same promoter, they seem to be co-regulating member of 

the AP-1 family of transcription factors.  Second, on a broader scale, they seem to be 

targeting transcription factors and other gene involved in regulatory networks.  This 

knowledge could direct biologists to study other transcription factors as targets of CREB 

and zif268 instead of the more interesting important neural candidates that are singled 

out when using the individual gene approach to identifying the plasticity transcriptome. 

  

Future improvements 

Our success in validating transcription factor binding site targets by using both 

location specificity and comparatives genomics leaves many avenues of research open. 

Homology methods for improving specificity of binding site prediction (Elemento and 

Tavazoie 2005) have already been explored.  However, to our knowledge, location 

specificity of binding sites has not been formally used in motif discovery.  More research 

could also be conducted on binding site co-occurrence (Bulyk et al. 2004; Luscombe et 

al. 2004).  Our analysis currently uses location specificity, comparative genomics, and 

response to seizure independently to verify targets.   A Bayesian model would be able to 

take each of these factors into account and improve the search for binding sites.   

 

Conclusion 

This research is an important step in the use of sequence based methods to study 

the plasticity transcriptome.  Our initial goal was to simply provide a list of possible 

candidates.  Through our attempts to rigorously validate these candidates, we were able 

to discover interesting properties such as location specificity, binding site associations, 



and possible networks of gene regulation.    Each of these factors suggests that activity-

dependent gene expression requires a very complex model to understand.  The weakness 

of this sequence-based method, along with the current experimental methods, is that it is 

unable to understand the intricate system that the transcriptome is a part of.  The strength 

of the sequenced-based methods is it able to discover where in the system the complexity 

lies in an unbiased way. 
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