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Abstract

Linear logic is a refinement of a mathematical logic that disallows weak-
ening and contraction. This enables linear logic to treat propositions as re-
sources that are part of a state and are generated and consumed, thus allow-
ing modeling of state. Linear logic is useful in any realm that deals with
reasoning about state; this includes planning problems and verification of
hardware, software, and security protocols. We demonstrate two methods
for improving the speed of an automated deduction system for linear logic:
exploitation of a recently developed notion of left or right atomic bias and
filtering of sequents. Each of these methods reduces the number of facts and
iterations required by the prover to find a proof of a given theorem. Finally,
we demonstrate that the resulting reduction in facts and iterations translates
into a significant clock-time speedup, improving suitability for the various
applications outlined above.
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1 Introduction
Traditional non-linear logics are generally used to reason about truth. Most often,
we see judgments of the form A true, A knows B, and the like. An important
property of truth is that it is universal; if A is true, then it will always be true.
Thus, if we know A and A⇒ B then we can conclude that A and B are both
true. This becomes a problem, however, when we want to reason about state. If
we know have(cake) and have(cake)⇒ eat(cake), then we can have our cake and
eat it, too. Linear logic [Gir87] extends a logic to enable reasoning about state.
Linear implication, represented by(, “consumes” its assumption; thus, knowing
have(cake) and have(cake)( eat(cake) only allows us to conclude eat(cake).

This ability to reason about state enables reasoning about many different fields.
These include concurrency, verification of hardware and software systems, and se-
curity protocols. Linearity has also been suggested as a basis for a security logic
[GP06]. One of the most comprehensible examples is the domain of planning.
Planning problems tend to be easily and clearly stated and translated into lin-
ear intuitionistic logic. In addition, a proof of a theorem representing a planning
problem can easily be translated back into a plan of action. Thus, a proof-term-
generating theorem prover can be used as a planner, but with the additional ad-
vantage of a richer language that allows much more useful reasoning in addition
to the simple plan. One canonical planning problem is that of the blocks world. A
blocks world problem involves determining the steps to move a set of blocks from
one configuration into another. This example, described more thoroughly in Sec-
tion 2.2, will be used as a running example throughout this paper to demonstrate
the principles described.

Automated theorem provers play an important role in using logic to reason
about substantial problems; they can find proofs many times faster than a person
can. Even so, provers can be slower than is practical for real-world use. The
development of a focusing optimization in an inverse method theorem prover for
linear logic [CP05a] has provided a dramatic increase in the speed of linear logic
theorem proving and increased the viability of applying automated reasoning in
linear logic to the domains listed above.

The system still suffers, however, from various inefficiencies. This work seeks
to address some of these issues through several methods. The first, described
in Section 4, is to exploit the recently discovered notion of atomic bias [CPP06],
which has major effects on the structure of the proof search. The second, described
in Section 5, is recognizing facts that represent impossible situations, such as the
blocks world’s hand holding two blocks, and removing them from consideration.
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These methods have a theoretical basis for decreasing the necessary work per-
formed by the prover, and the expected result is a significant decrease in the wall
clock time required.

The remainder of this paper is organized in three main parts: Sections 2 and
3 provide theoretical background in linear logic and proof search, respectively;
Sections 4 and 5 describe the above methods for increasing efficiency; and Section
6 contains experimental results. The final section summarizes the findings and
describes future work in this area.

1.1 Definitions
The examples throughout are shown using a sequent calculus. A sequent is written
P1, . . . , Pn =⇒ Q, meaning that Q is provable under the assumptions P1, . . . , Pn.
The assumptions P1, . . . , Pn are referred to as the context, and are often abbrevi-
ated using a capital Greek letter such as Γ. Certain kinds of sequents that have
multiple contexts with different meanings will be introduced later. A sequent cal-
culus represents a proof derivation using inference rules of the form

Γ =⇒ P Γ =⇒ Q
Γ =⇒ P ∧ Q

These rules mean that a proof of the conclusion (on the bottom of the rule) can
be constructed from proofs of each the premises (on top). These rules can have
zero or more premises; a rule with zero premises means that there is an immediate
proof of the conclusion.

This paper considers a fragment of linear logic using the following connec-
tives: multiplicative conjunction and its unit, represented by ⊗ and 1, additive
conjunction and its unit, represented by & and >, additive disjunction and its unit,
represented by ⊕ and 0, the exponential, represented by !, and universal and exis-
tential quantification.

2 Linear Logic
The development of linear logic has greatly increased the ease of using logic to
reason about stateful systems. The essential difference between a linear logic and
its non-linear counterpart is that linear logic disallows weakening and contraction
rules. The result is that an assumption cannot be unused or used more than once.
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The difference can be seen clearly in a simple example:

A =⇒ A init
A =⇒ A init B =⇒ B init

A, A ⊃ B =⇒ B ⊃ L

A, A, A ⊃ B =⇒ A ∧ B ∧L

A, A ⊃ B =⇒ A ∧ B contr

A ∧ (A ⊃ B) =⇒ A ∧ B ∧L

· =⇒ A ∧ (A ⊃ B) ⊃ A ∧ B ⊃ R

It is clear in the above proof that the hypothetical assumption A is used twice,
and the contraction rule is necessary to remove the “extra” A from the set of as-
sumptions. Without contraction, as is the case in linear logic, the best we can do
is the following proof:

A =⇒ A init
A =⇒ A init B =⇒ B init

A, A( B =⇒ B (L

A, A, A( B =⇒ A ⊗ B ⊗R

A ⊗ A, A( B =⇒ A ⊗ B ⊗L

A ⊗ A ⊗ (A( B) =⇒ A ⊗ B ⊗L

· =⇒ A ⊗ A ⊗ (A( B)( A ⊗ B (R

This example uses the two linear connectives ⊗ and (. The first, ⊗ (“tensor”),
represents having resources simultaneously. The second,( (“lolli”), is like non-
linear implication except in that it “consumes” the hypothetical assumption; it
is often used to represent moving from one state to another. Thus, the above
derivation merely proves that if you have two pieces of cake, you can eat one and
have one left.

A similar effect occurs without the use of weakening. Consider the following
simple proof:

A =⇒ A init

A, B =⇒ A weak

A ∧ B =⇒ A ∧L

· =⇒ A ∧ B ⊃ A ⊃R

Without weakening, it is possible to prove A( A or A ⊗ B( A ⊗ B, but not
A ⊗ B( A. In a sense, all of the propositions must be accounted for. This re-
quirement can be circumvented by using the > connective on the right, which can
“consume” an arbitrary set of assumptions on the left (see the>R rule in Appendix
A.
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Of course, not everything is a resource. When reasoning about state, it is still
necessary to represent knowledge. This knowledge may include rules for manip-
ulating world state, among other things. This can be done in linear logic by using
the exponential connective, !. A proposition under a ! can be used an arbitrary
number of times (including zero). This can also be useful for representing an
unlimited source of some resource.

Because of this distinction between propositions that can be used arbitrarily
and propositions that must be used exactly once, a linear sequent takes the follow-
ing form, with two contexts:

Γ ; ∆ =⇒ Q

The first context, Γ, is the unrestricted context; it contains those propositions under
a !, which can be used arbitrarily often. The second context, ∆, is the restricted
context or linear context; it contains the linear propositions, which must be used
exactly once.

Linear logic also contains various other connectives that represent internal
choice, external choice, and other concepts. The connectives are all defined by
inference rules in the sequent calculus is given in Appendix A.

2.1 State Transition Systems
Most applications of linear logic use the concept of a state transition system, with
a “current” state and a set of transition rules for moving from state to state. Linear
logic represents such systems in a particularly elegant way. Propositions repre-
sent aspects of a state, and a full state description consists of a conjunction of zero
or more propositions; for example, have(cake) represents having a piece of cake,
eat(cake) represents having eaten a piece of cake, and have(cake) ⊗ have(cake) ⊗ eat(cake)
represents having eaten one piece of cake and having two left. Transition rules are
represented by a simple linear implication of the form state1( state2. Often,
these rules will be under a !, so they can be invoked arbitrarily.

Most interesting questions about these state transition systems involve the pos-
sibility of reaching a certain state from some start state. A theorem representing
this question takes the following form:

[!]transition1( · · ·( [!]transitionn( state0( state f

The proof of such a theorem actually uses the transition rules to model moving
from one state to another. A detailed account of how the process works in this
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Figure 1: Two possible blocks world states

particular proof system is given in section 4. The resulting proof actually repre-
sents the steps taken to get from state0 to state f .

This property is incredibly useful in an application like verification of a secu-
rity protocol. A theorem prover can be questioned about the possibility of reaching
some undesirable state from the initial state. Should it find a proof, it not only tells
you that your protocol is bad, it also provides a detailed account of how to get to
the undesired state.

2.2 Blocks World
The motivating example for much of this work is a particular instance of a state
transition system known as the blocks world planning problem. This problem
consists of a table, a set of blocks, and a robotic hand that can pick up and put
down a single block at a time. Each block can be directly on top of the table,
directly on top of one other block, or held by the hand. One block directly on
top of two blocks is not permitted, and two blocks directly on top of one block
is likewise not permitted. Thus, blocks are arranged in a number of one-block-
wide stacks on the table. Figure 1 diagrams two possible blocks world states. In
addition, the hand can only pick up the top block in a stack and put a block down
on top of a stack or on the table.
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As mentioned above, blocks world states can be represented using proposi-
tions in linear logic. Each block not being held by the hand must be on either
another block or on the table; these relationships are described by the propositions
on(x, y), meaning x is on y, and ontab(x), meaning x is on the table. The state of
the hand is described as holds(x), if the hand is holding x, or as empty, if the hand
is empty. In addition, clear(x) is used to denote that x has no blocks on top of it,
to avoid a complicated method of determining whether a block is at the top of the
stack (and, thus, whether the hand can pick it up). The representation of a state is
the conjunction of the applicable propositions, so the respective representations of
the states in Figures 1(a) and 1(b) are clear(a) ⊗ on(a, b) ⊗ on(b, c) ⊗ ontab(c) ⊗ empty
and clear(a) ⊗ ontab(a) ⊗ clear(b) ⊗ ontab(b) ⊗ clear(c) ⊗ ontab(c) ⊗ empty.

Again, as mentioned above, transition rules are represented by linear impli-
cations with the starting state as the antecedent and the ending state as the con-
sequent. The following four implications represent the possible transitions in the
blocks world, where x and y represent any block:

!∀x. clear(x) ⊗ ontab(x) ⊗ empty( holds(x) (1)
!∀x. holds(x)( clear(x) ⊗ ontab(x) ⊗ empty (2)

!∀x. ∀y. clear(x) ⊗ on(x, y) ⊗ empty( holds(x) ⊗ clear(y) (3)
!∀x. ∀y. holds(x) ⊗ clear(y)( clear(x) ⊗ on(x, y) ⊗ empty (4)

Rule 1 represents picking a block up from the table, Rule 2 represents placing a
block on the table, Rule 3 represents picking a block up from another block, and
Rule 4 represents placing a block on another block.

To put it all together, the problem of going from the state in Figure 1(a) to the
state in Figure 1(b) is represented by the following theorem:

(!∀x. clear(x) ⊗ ontab(x) ⊗ empty( holds(x))(
(!∀x. holds(x)( clear(x) ⊗ ontab(x) ⊗ empty)(

(!∀x. ∀y. clear(x) ⊗ on(x, y) ⊗ empty( holds(x) ⊗ clear(y))(
(!∀x. ∀y. holds(x) ⊗ clear(y) − pclear(x) ⊗ on(x, y) ⊗ empty)(

clear(a) ⊗ on(a, b) ⊗ on(b, c) ⊗ ontab(c) ⊗ empty(
clear(a) ⊗ ontab(a) ⊗ clear(b) ⊗ ontab(b) ⊗ clear(c) ⊗ ontab(c) ⊗ empty

The proof for this theorem that is returned by the prover will be translatable into
a plan for actually using the hand to move the blocks between the two states.
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3 Focused Inverse Method
In general, proof search proceeds in one of two ways: backward, breaking a
goal into subgoals and recursively attempting to prove those, or forward, start-
ing from simple axioms and building more facts in the hope of generating a fact
that matches the goal. Each of the two strategies has drawbacks. Backward search
proceeds like a depth-first search of a graph, losing information if it pursues a dead
end and has to backtrack. Forward search, on the other hand, never loses informa-
tion, but it also generates many facts that are not along the path to the goal.

The inverse method [DV01] is one algorithm for forward-reasoning proof
search. A basic implementation of the inverse method starts with an axiom of
the form p =⇒ p for each atom p that appears in the goal theorem and appears
both positively and negatively. Each of the axioms starts in the set of support,
which is the database of known facts that are awaiting actions. Next, a set of rules
is generated, with each rule being derived from the sequent calculus of the logic.
The algorithm then proceeds with the OTTER loop, named for the OTTER the-
orem prover, which first implemented it [McC94]. The OTTER loop consists of
the following steps:

1. Select a sequent from the set of support and move it to the active set

2. Apply derived rules to sequents in the active set to generate new sequents

3. Check whether each new sequent subsumes or is subsumed by other known
sequents

4. Check if any new sequent subsumes the goal

5. Add new sequents to the set of support

There are, of course, many more considerations and details within each step, but
the basic idea is in these five steps.

A simple example should clarify the algorithm. Suppose we are attempting to
prove A( B( A ⊗ B. The axioms are · ; A =⇒ A and · ; B =⇒ B, and there are
various rules such as the following:

Γ ; ∆1, A =⇒ A Γ ; ∆2, B =⇒ B
Γ ; ∆1,∆2, A, B =⇒ A ⊗ B

Γ ; ∆, B =⇒ A ⊗ B
Γ ; ∆ =⇒ B( A ⊗ B

Because there are no exponentials in this example, the unrestricted context will
always be empty and will be omitted for the remainder of the example. At the be-
ginning, the active set is empty, and the set of support contains the three axioms;
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the algorithm then proceeds in the method stated above.
Iteration Selected Active Generated Set of support

0 A =⇒ A, B =⇒ B
1 A =⇒ A A =⇒ A B =⇒ B
3 B =⇒ B B =⇒ B; A =⇒ A A, B =⇒ A ⊗ B A, B =⇒ A ⊗ B
4 A, B =⇒ A ⊗ B A, B =⇒ A ⊗ B; . . . A =⇒ B( A ⊗ B A =⇒ B( A ⊗ B
5 A =⇒ B( A ⊗ B A =⇒ B( A ⊗ B; . . . · =⇒ A( B( A ⊗ B · =⇒ A( B( A ⊗ B

The sequent generated in iteration 5 matches the goal we are trying to achieve,
so the proof search terminates successfully. Of course, more complex examples
will generate many more sequents, with multiple new sequents from each itera-
tion. In addition, subsumption occurs in most reasonably complicated examples.
Subsumption is when a stronger sequent makes a weaker sequent redundant; for
example, ∀x. f (x) is a much stronger statement than f (a), so ∀x. f (x) subsumes
f (a). If ∀x. f (x) is generated and f (a) is in the set of support, then f (a) will be
removed because it is no longer necessary.

3.1 Focusing
An important step to improve the efficiency of backward search was the idea of fo-
cusing, orginally developed for logic programming by Andreoli [And92]. A sim-
plistic backward search has a huge number of choice points. For example, when
considering the sequent A ⊗ B,C ⊗ D, E ⊗ F =⇒ P ⊗ Q, the prover can proceed
by decomposing any of the four conjunctions; if that particular route does not
lead to success, the prover will then try decomposing another of the four and fol-
low a path that is largely redundant with that of the first decomposition. The basic
idea behind focusing is to perform such decompositions in a deterministic fashion,
reducing the total number of choices the prover must make, thus reducing the size
of the search space.

Consider an attempt to prove A ⊗ B(C( D. An unfocused proof search
would first decompose the top-level implication, getting the sequent A ⊗ B =⇒ C( D.
At this point, the prover could proceed by decomposing the ⊗ on the left or the
( on the right. Suppose the prover decomposes the ⊗ first. When that branch
of the search fails, the prover will then try composing the ( first. A focusing
prover treats the two decompositions as part of a single phase in which order is
immaterial. Thus, only a single ordering will need to be considered. On a simple
example such as this one, focusing cuts the amount of work required by a prover
almost in half. It is easy to see how focusing can drastically cut down the work
required for a more complex theorem with many more choice points.
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The focusing sequent calculus uses four different sequent forms to ensure de-
terminism. In these sequents, Ω is called the the active context and consists of
formulas that are awaiting decomposition. A and Q are arbitrary formulas:

1. Γ ; ∆ =⇒ Q, a neutral sequent;

2. Γ ; ∆ ;Ω =⇒ Q, an active sequent;

3. Γ ; ∆�Q, a right-focused sequent; and

4. Γ ; ∆ ; A�Q, a left-focused sequent.

From a neutral sequent, some formula is selected to be under focus. The system
then enters a focused phase, in which it decomposes the formula under focus as
long as it is synchronous. The left-synchronous connectives are &, >,(, and ∀.
The left-synchronous connectives are ⊗, 1, ⊕, 0, !, and ∃. When an asynchronous
connective is under focus, the systems enters an active phase, wherein all asyn-
chronous connectives in the active context and on the right side are decomposed
(left-synchronous connectives are right-asynchronous and vice versa); the order
of decomposition in the active phase is unimportant. When the asynchronous
decompositions are complete, the system reaches another neutral sequent, where
another choice is made for a proposition to receive focus.

The full set of rules for the focusing sequent calculus for intuitionistic linear
logic is reproduced in Appendix A.

3.2 Focusing the Inverse Method
While it was developed for backward search and inherently involves decomposing
a goal formula to subgoals, focusing has also been applied to the inverse method
[CP05b]. To generate the rules that are used to generate new facts, a focusing
inverse method prover selects a proposition to receive focus and simulates a back-
ward focusing phase on that proposition. The leaves of the simulated backward
phase become the premises for a large-step rule. For example, focusing on the
proposition ∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x) results in the following
rule, where a can be any block:

Γ ; ∆, holds(a) =⇒ Q
Γ ; ∆, ontab(a), clear(a), empty =⇒ Q

This is a fairly straightforward interpretation of the transition rule. It is possi-
ble to go from a state with a clear on the table and an empty hand to a state with
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a in the hand; thus, if there is a path from the state of holding a to some state Q,
then there is a path from the state with a clear on the table and an empty hand to
that state Q (namely, invoking the transition and then following the given path).
The interested reader can refer to Appendix B for a more thorough description of
how focused phases work to generate large-step rules.

The use of focusing in the inverse method for linear logic is a relatively re-
cent development. The present work examines and refines the proof system and
implementation presented in [CP05a]. The full sequent calculus for the focusing
system on which the implemented prover is based can be found in Appendix A.

4 Atomic Bias
An interesting property of the focusing sequent calculus is the way it treats atomic
propositions under focus. When running a backward search, if an atomic propo-
sition is under left focus, then the right side must be the same proposition; other-
wise, that branch of the proof search fails. If the atomic proposition is under right
focus, then focus is immediately lost. This is represented by the following two
rules from the focusing sequent calculus:

Γ ; · ; p� p rinit
Γ ; ∆ ; · =⇒ p
Γ ; ∆� p rb∗

There is a symmetrical and equally valid system that does the opposite. If an
atomic proposition is under right focus, then the linear context must be a singleton
containing the same proposition, or the branch fails. If the atomic proposition is
under left focus, then focus is immediately lost. This is represented by the two
alternative rules below:

Γ ; p� p linit
Γ ; ∆ ; p =⇒ R
Γ ; ∆ ; p�R lb∗

These two different systems are called right-biased and left-biased, respec-
tively. Because of the domain for which focusing was originally developed (logic
programming), the former behavior has always been historically chosen. How-
ever, the choice turns out to be nontrivial, but deserves much more careful consid-
eration.

Despite the seemingly minor change in the system, the choice of bias has an
extraordinary impact on the operation of proof search. This is especially apparent
in linear logic encodings of state transition systems, because many branches in the
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large-step rule derivations terminate with initial sequents. The previously shown
rule that is derived from focusing on ∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x)
assumes that all atoms are left-biased. It is reproduced below, along with the rule
that is derived under the assumption that all atoms are right-biased.

Γ ; ∆, holds(a) =⇒ Q
Γ ; ∆, ontab(a), clear(a), empty =⇒ Q

Γ ; ∆1 =⇒ ontab(a) Γ ; ∆2 =⇒ clear(a) Γ ; ∆3 =⇒ empty
Γ ; ∆1,∆2,∆3 =⇒ holds(a)

There is a very clear and elegant symmetry between these two derived rules.
With left-biased atoms, the relevant changes in state occur on the let side of the
sequent, and the rule works backward relative to the direction of the transition.
With right-biased atoms, the rule works forward and operates on the right side of
the sequents.

In addition to affecting the shapes of derived rules, atomic bias also changes
the initial set of axioms used by the inverse method. In a non-focused inverse
method, there is an axiom p =⇒ p for every p in the formula that appears both
positively and negatively. In the focused inverse method, a left-biased atom ap-
pears only if it appears negatively directly under a right-synchronous connective
(⊗, 1, !), and a right-biased atom appears only if it appears positively directly un-
der a left-synchronous connective (&,>,(). These differences are once again
illustrated clearly by the blocks world example. With right-biased atoms, there
is an axiom for each of the five atoms (on, ontab, clear, empty, holds). With
left-biased atoms, there are no such axioms; the only sequent initially in the set of
support actually comes from a derived rule with zero premises.

It should be readily apparent from the large operational differences caused by
atomic bias selection that there are likewise large differences in running times.
Looking at the blocks world example in particular, the derived rules with a single
premise are preferable to the derived rules with multiple premises. Those with
many premises arbitrarily combine the contexts of multiple sequents, resulting
in many useless sequents that do not correspond to actual blocks world states.
The single-premise rules show a much clearer correlation with the actual state
transitions in the blocks world problem. Thus, the left-biased system starts with
the end state and works backward to other reachable states until it finds the start
state. This functionality is not only conceptually cleaner but also reduces the
number of sequents under consideration. Because there are fewer sequents to deal
with, the clock time for the actual proof search should be greatly reduced.
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Actual experimental results for several different classes of problems are shown
in Section 6.1.

5 Filtering
Another interesting tactic for improving proof search efficiency comes not from
purely practical, rather than theoretical, observations. In examining the list of
sequents generated by the prover under consideration, one can find interesting
contexts that include the both holds(a) and empty or three instances of on with
a two-block world. Such sequents represent situations that are impossible in a
particular blocks world.

Returning to our right-biased derived rule for ∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x)
(shown again below), it is clear how these strange contexts come about.

Γ ; ∆1 =⇒ ontab(a) Γ ; ∆2 =⇒ clear(a) Γ ; ∆3 =⇒ empty
Γ ; ∆1,∆2,∆3 =⇒ holds(a)

Rules such as this one combine three contexts arbitrarily, without regard to the
result. Thus, impossible situations, such as having a hand that is both empty and
holding a block, are considered by the proof system. A large number of generated
spurious sequents contributes to the difference in real time of finding a proof for a
blocks world problem in the left- and right-biased systems.

Unfortunately, there is no easy theoretical solution to the problem. Rather, it
is possible to introduce hand-made filters that remove the spurious sequents from
consideration when they are generated. This avoids the cost in time of considering
sequents that do not correspond to “real” situations. Such filtering, however, is on
theoretically shaky ground. An important consideration is that linear logic proofs
of the encoding of a state transition problem, such as those of the blocks world,
correspond to actual plans in the original domain. It is reasonable, then, to assume
that a proof containing “impossible” sequents, which would translate to a plan
containing impossible states, cannot exist, or that if such a proof exists, there is
also a proof that does not use impossible sequents. For this reason, despite the
lack of a formal proof, we contend that an implementation that includes filtering
remains complete (that is, if a proof exists, it can be found even with the filter in
place).

Filtering also has an interesting interaction with atomic bias. In the blocks
world problems, for example, it is shown above how a system with right-biased
atoms generates spurious sequents. Filtering is expected to be highly effective
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when used with such a system. On the flip side, a system with left-biased atoms
does not generate any impossible sequents. In this case, filtering requires compu-
tation time without providing any useful benefit. However, filtering is expected
to represent a relatively insignificant portion of the total computation time, and
should thus be a practical strategy overall. Of course, the computation time re-
quired by the filter depends on its complexity, so it may be that some filters do
substantially more harm than good. Experimental results for filtering can be found
in Section 6.2.

6 Experimental Results

6.1 Atomic Bias
The following experiments were originally performed for a related work by Chaud-
huri, Pfenning, and the author [CPP06], and the problem descriptions and tables
of results are adapted from that work. These experiments were run on a 3.4GHz
Pentium 4 machine with 1MB L1 cache and 1GB main memory; the provers were
compiled using MLTon version 20060213 using the default optimization flags. In
the tables, iters is the number of iterations of the OTTER loop required to find a
proof, gen is the number of sequents generated during the proof search, subs is the
number of generated sequents that are subsumed, and time is the wall-clock time
in seconds, including garbage collection time.

Stateful system encodings In these examples, we encoded the state transition
rules for stateful systems such as a change machine, a blocks world problem with a
fixed number of blocks, a few sample Petri nets. For the blocks world example, we
also compared a version that uses the CLF monad [CPWW02] and one without.

right-biased left-biased
name iters gen subs time iters gen subs time
blocks 20 43 18 0.001 12 84 61 0.001
blocks-clf 27 65 26 0.002 5 24 7 <0.001
change 16 22 7 0.001 11 20 6 0.001
petri-1 23 38 23 0.001 284 1099 921 0.062
petri-2 57 133 105 0.003 393 1654 1433 0.068

Graph exploration algorithms In these examples we encode the algorithm for
exploring graph for calculating Euler or Hamiltonian tours. The problems have an

15



equal balance of proofs (i.e., a tour exists) and refutations (i.e., no tour exists).

right-biased left-biased
name iters gen subs time iters gen subs time
euler-1 6291 11853 5565 9.010 6291 11853 5565 8.570
euler-2 15640 34329 18689 152.12 15640 34329 18689 145.9
euler-3 64360 159194 94834 3043.35 64360 159194 94834 2938.55
hamilton 708 911 185 0.11 165 178 0 <0.001

The Euler tour computation uses a symmetric algorithm, so both backward
and forward chaining generate the same facts, though, interestingly, a left-biased
search performs slightly better than the right-biased system. For the Hamiltonian
tour examples, the left-biased search is vastly superior.

Affine logic encoding Linearity is often too stringent a requirement for situa-
tions where we simply need affine logic, i.e., where every hypothesis is consumed
at most once. Affine logic can be embedded into linear logic by translating every
affine arrow A→ B as either A( B ⊗ > or A & 1( >. Of course, one might se-
lect complex encodings; for example choosing A & !(0( X)( B (for some arbi-
trary fresh proposition X) instead of A & 1( B. Even though the two translations
are equivalent, the prover performs dismally on the former.

right-biased left-biased
encoding iters gen subs time iters gen subs time
A( B ⊗ > 38 108 73 0.003 34 107 73 0.002
A & 1( B 252 1103 828 0.098 62 229 126 0.019
A & !(0( X)( B 264 7099 6793 2.028 235 841 578 0.042

Quantified Boolean formulas In these examples we used two variants of the
algorithm from [?] for encoding QBFs in linear logic. The first variant uses expo-
nentials to encode reusable “copy” rules for the input branching in the computed
circuit; this variant performs very well in practice, so the table below collates the
results of all the example QBFs in one entry. The second variant is completely
non-exponential and explicitly copies the signals in the circuit as needed. This
variant produces problems that are considerably harder, so we have divided the
problems in three sets in increasing order of complexity.
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right-biased left-biased
encodings iters gen subs time iters gen subs time
qbf-exp 1508 1722 140 0.13 7948 17610 9590 2.69
qbf-nonexp-1 1457 5590 4067 0.54 1581 4352 2612 0.58
qbf-nonexp-2 15267 517551 502174 368.92 9469 49777 37716 29.55
qbf-nonexp-3 28556 990196 961494 2807.64 21233 89542 115917 308.24

For these examples, when the number of iterations is low (i.e., the problems
are simple), the right-biased search appears to perform better than the left-biased
system. However, as the problems get harder, the left-biased system becomes
dominant.

First-order stateful systems The first experiments were with first-order encod-
ings of various stateful systems. We selected a first-order blocks world encoding
(both with and without the CLF monad), Dijkstra’s Urn Game, and an AI planning
problem for a certain board game. The left-biased system performs consistently
better than the right-biased system for these problems.

right-biased left-biased
problem iters gen subs time iters gen subs time
blocks 58 530 396 0.15 32 484 421 0.04
blocks-clf 81 872 515 0.33 19 102 87 0.007
urn 37 91 34 0.30 17 73 69 0.14
board 437 8777 3923 4.08 208 6621 2191 1.10

Purely intuitionistic problems The prover was tested on some problems drawn
from the SICS benchmark [SFH92]. These intuitionistic problems were trans-
lated into linear logic in two different ways– the first uses Girard’s original encod-
ing of classical logic in classical linear logic where every subformula is affixed
with the exponential, and the second is a focus-preserving encoding as described
in [CP05b]. ] denotes inability to find a proof within one hour.
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right-biased left-biased
problem iters gen subs time iters gen subs time
SICS1-gir 451 2435 1743 1.64 461 3622 2727 0.78
SICS1-foc 70 457 392 0.07 81 620 519 0.05
SICS2-gir 3794 20489 14666 13.8 4326 33990 25487 7.32
SICS2-foc 612 3917 3361 0.59 770 5841 4878 0.47
SICS3-gir 26198 1414779 1012607 952.89 16156 1269440 951897 273.39
SICS3-foc 4222 27074 23308 41.37 2875 21831 18712 29.12
SICS4-gir ] ] ] ] ] ] ] ]

SICS4-foc 11121 71320 61309 108.98 7680 58523 49992 77.80

Horn examples from TPTP The final test consisted of 20 non-trivial Horn
problems selected from the TPTP version 3.1.1 [SS98]. The selection of prob-
lems was not systematic but was not constrained to any particular section of the
TPTP. Translation was performed as described in [CPP06]. The list of selected
problems can be found from Chaudhuri’s web-page.1

right-biased left-biased
iters gen subs time iters gen subs time
5170 331201 302110 487.22 6620 741560 553903 672.44

6.2 Filtering
The following experiments used simple hand-coded constraints to filter sequents.
The constraints limit the number of times a resource can occur in the linear con-
text of a sequent. If the constraint is not met, then a sequent is removed from
consideration. An example constraint for a blocks world problem dealing with
two blocks is on ≤ 2 ∧ empty + holds ≤ 1; with only two blocks, the atom on can
only occur twice, and only one of empty or holds can occur.

These experiments were run on a 1GHz PowerPC G4 machine with 1GB main
memory; the provers were compiled using MLTon version 20051202 using the
default optimization flags. In the tables, iters is the number of iterations of the
OTTER loop required to find a proof, gen is the number of sequents generated
during the proof search, filt is the number of sequents filtered by the specified
constraint, subs is the number of generated sequents that are subsumed, and time
is the wall-clock time in seconds, including garbage collection time.

1http://www.cs.cmu.edu/∼kaustuv/papers/ijcar06
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right-biased left-biased
problem iters gen filt subs time iters gen filt subs time
blocks-filt 276 9982 6093 3615 13.835 152 14892 462 14351 11.194
blocks-nofilt ] ] ] ] ] 214 24727 n/a 24582 93.682

7 Conclusion
As was expected, the left-biased system significantly outperforms the right-biased
system for the blocks world problems. The same holds true for other state transi-
tion systems, such as encodings of a coin-changing machine. Interestingly, there
are also classes of problems for which the right-biased system performs better
than the left-biased system, so the left-biased system is not universally superior.

In addition, filtering successfully increased speed for both the left- and right-
biased system. However, no gain was expected for the left-biased case; a cursory
examination of the prover’s output indicates that the implementation may not ex-
actly match the theoretical operation of the system. Nonetheless, filtering showed
particularly impressive results for the right-biased system; the prover went from
being unable to prove the theorems in under an hour (vs. about 90 seconds for the
left-biased system) to taking a mere 24 percent longer.

Unfortunately, it is still necessary to construct filters and select bias by hand.
We have shown here that, for state transition systems like the blocks world, left
bias is the clear winner. When considering other classes of problems, the derived
rules, axioms, and/or actual sample results are necessary to determine the proper
bias. The fact that atomic bias can be ascribed to individual atoms rather than just
to the system as a whole also complicates the matter. Instead of just 2 options,
there are 2n for a theorem with n distinct atoms.

Thus, the most interesting future work arising from this is finding a better
theoretical grounding for the practical concerns seen herein. First, it is desirable
to have a proof of the completeness of a filtering system. Currently, it may be
possible to prove that the particular filters used for the blocks world problem do
not affect the completeness of the system. To generalize the completeness proof to
all problems, it will likely be necessary to find some automatic way of generating a
filter from a problem. Of course, this also has the desired effect of eliminating the
work required in writing a filter by hand. In the same vein, it would be extremely
useful to have an algorithm for automatically selecting bias on a per-atom basis.
This would again greatly reduce the amount of human time necessary to prepare
for the most efficient proof search.
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One other interesting possible method for increasing proof search efficiency
is the use of heuristics to determine which fact to select from the set of support.
The order in which facts are selected can have a huge impact on how quickly a
proof is found. Proof search is similar to traversing a tree with high degree; the
difference in number of nodes visited is hugely different between finding a direct
path and a breadth-first search. Using a smart heuristic will allow a prover to
perform much more closely to finding a direct path than to breadth-first search.
This advancement will further increase the prover’s speed and make it an even
more viable option for reasoning about stateful systems.
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A Focusing Calculus
Γ ; ∆� A right-focal

q left-biased
Γ ; q� q linit

Γ ; ·� 1 1R
Γ ; ∆1� A Γ ; ∆2� B
Γ ; ∆1,∆2� A ⊗ B ⊗R

Γ ; ∆� Ai
Γ ; ∆� A1 ⊕ A2

⊕Ri
Γ ; ∆� [t/x]A
Γ ; ∆�∃x. A ∃R

Γ ; · ; · =⇒ A
Γ ; ·� ! A ! R
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Γ ; ∆ ; A�Q left-focal

p right-biased
Γ ; · ; p� p rinit

Γ ; ∆ ; Ai�Q
Γ ; ∆ ; A1 & A2�Q

&Li

Γ ; ∆1 ; B�Q Γ ; ∆2� A
Γ ; ∆1,∆2 ; A( B�Q (L

Γ ; ∆ ; [t/x]A�Q
Γ ; ∆ ; ∀x. A�Q ∀L

focus

Γ ; ∆ ; P�Q
Γ ; ∆, P =⇒ Q lf

Γ ; ∆ ; p�Q p right-biased
Γ ; ∆, p =⇒ Q lf∗

Γ ; ∆�Q
Γ ; ∆ =⇒ Q rf

Γ ; ∆� q q left-biased
Γ ; ∆ =⇒ q rf∗

Γ, A ; ∆ ; A�Q
Γ, A ; ∆ =⇒ Q

copy

Γ ; ∆ ;Ω =⇒ R ; · right-active

Γ ; ∆ ;Ω =⇒ A ; · Γ ; ∆ ;Ω =⇒ B ; ·
Γ ; ∆ ;Ω =⇒ A & B ; · &R

Γ ; ∆ ;Ω =⇒ > ; · >R

Γ ; ∆ ;Ω · A =⇒ B ; ·
Γ ; ∆ ;Ω =⇒ A( B ; · (R

Γ ; ∆ ;Ω =⇒ [a/x]A ; ·
Γ ; ∆ ;Ω =⇒ ∀x. A ; · ∀Ra

Γ ; ∆ ;Ω =⇒ · ; Q
Γ ; ∆ ;Ω =⇒ Q ; · ract

Γ ; ∆ ;Ω =⇒ · ; p p right biased
Γ ; ∆ ;Ω =⇒ p ; · ract∗

Γ ; ∆ ;Ω · L ·Ω′ =⇒ γ left-active

Γ ; ∆ ;Ω · A · B ·Ω′ =⇒ γ
Γ ; ∆ ;Ω · A ⊗ B ·Ω′ =⇒ γ ⊗L

Γ ; ∆ ;Ω ·Ω′ =⇒ γ
Γ ; ∆ ;Ω · 1 ·Ω′ =⇒ γ 1L

Γ ; ∆ ;Ω · A ·Ω′ =⇒ Q Γ ; ∆ ;Ω · B ·Ω′ =⇒ γ
Γ ; ∆ ;Ω · A ⊕ B ·Ω′ =⇒ γ ⊕L

Γ ; ∆ ;Ω · 0 ·Ω′ =⇒ γ 0L

Γ ; ∆ ;Ω · [a/x]A ·Ω′ =⇒ γ
Γ ; ∆ ;Ω · ∃x. A ·Ω′ =⇒ γ ∃La Γ, A ; ∆ ;Ω ·Ω′ =⇒ γ

Γ ; ∆ ;Ω · ! A ·Ω′ =⇒ γ ! L

Γ ; ∆, P ;Ω ·Ω′ =⇒ γ
Γ ; ∆ ;Ω · P ·Ω′ =⇒ γ lact

Γ ; ∆, q ;Ω ·Ω′ =⇒ γ q left-biased
Γ ; ∆ ;Ω · q ·Ω′ =⇒ γ lact∗

blur

Γ ; ∆ ; L =⇒ · ; Q
Γ ; ∆ ; L�Q lb

Γ ; ∆, q ; · =⇒ · ; Q q left-biased
Γ ; ∆ ; q�Q lb∗

Γ ; ∆ ; · =⇒ R ; ·
Γ ; ∆�R rb

Γ ; ∆ ; · =⇒ p ; · p right-biased
Γ ; ∆� p rb∗
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B Derived Rules
As described in Section 3.2, large-step rules for the inverse method are generated
by focusing on a subformula and decomposing it. The mini-proof search actually
undergoes one focused phase and one active phase. When it reaches a neutral
sequent, the search terminates. Thus, the leaves of this backward search are initial
or neutral sequents. The neutral sequents are then treated as the premises of a
large-step rule. The intermediate steps in the generation of a large-step rule are
unimportant, thus reducing the search space for the inverse method. An example
of a simulated phase appears below for a blocks world transition rule:

Γ ; ∆1, holds(a) =⇒ γ
Γ ; ∆1, holds(a) ; · =⇒ γ
Γ ; ∆1 ; holds(a) =⇒ γ
Γ ; ∆1 ; holds(a)� γ

Γ ; ∆2� ontab(a)
Γ ; ∆3� clear(a) Γ ; ∆4� empty
Γ ; ∆3,∆4� clear(a) ⊗ empty

Γ ; ∆2,∆3,∆4� ontab(a) ⊗ clear(a) ⊗ empty
Γ ; ∆1,∆2,∆3,∆4 ; ontab(a) ⊗ clear(a) ⊗ empty( holds(a)� γ
Γ ; ∆1,∆2,∆3,∆4 ; ontab(a) ⊗ clear(a) ⊗ empty( holds(a)� γ
Γ ; ∆1,∆2,∆3,∆4 ; ∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x)� γ

Γ = Γ′,∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x) ; ∆1,∆2,∆3,∆4 =⇒ γ

In order for this proof to succeed, ∆2 must be the singleton ontab(a). Other-
wise, Γ ; ∆2� ontab(a) is not a valid initial sequent, and this branch of the proof
search immediately fails. Likewise, ∆3 must be the singleton clear(a), and ∆4

must be empty. Thus, the generated rule is

Γ ; ∆1, holds(a) =⇒ Q
Γ ; ∆1, ontab(a), clear(a), empty =⇒ Q

The focusing phase shown above is under left bias; for the same formula in a
right-biased system, the backward phase appears as follows:

Γ ; ∆1 ; holds(a)� γ

Γ ; ∆2 =⇒ ontab(a)
Γ ; ∆2 ; · =⇒ · ; ontab(a)
Γ ; ∆2 ; · =⇒ ontab(a) ; ·
Γ ; ∆2� ontab(a)

Γ ; ∆3 =⇒ clear(a)
Γ ; ∆3 ; · =⇒ · ; clear(a)
Γ ; ∆3 ; · =⇒ clear(a) ; ·
Γ ; ∆3� clear(a)

Γ ; ∆4 =⇒ empty
Γ ; ∆4 ; · =⇒ · ; empty
Γ ; ∆4 ; · =⇒ empty ; ·
Γ ; ∆4� empty

Γ ; ∆3,∆4� clear(a) ⊗ empty
Γ ; ∆2,∆3,∆4� ontab(a) ⊗ clear(a) ⊗ empty

Γ ; ∆1,∆2,∆3,∆4 ; ontab(a) ⊗ clear(a) ⊗ empty( holds(a)� γ
Γ ; ∆1,∆2,∆3,∆4 ; ontab(a) ⊗ clear(a) ⊗ empty( holds(a)� γ
Γ ; ∆1,∆2,∆3,∆4 ; ∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x)� γ

Γ = Γ′,∀x. ontab(x) ⊗ clear(x) ⊗ empty( holds(x) ; ∆1,∆2,∆3,∆4 =⇒ γ
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In order for this proof to succeed, Γ ; ∆1 ; holds(a)� γ must be a valid initial
sequent, so ∆1 must be empty, and γ must be holds(a). Thus, the derived rule is
the following:

Γ ; ∆2 =⇒ ontab(a) Γ ; ∆3 =⇒ clear(a) Γ ; ∆4 =⇒ empty
Γ ; ∆2,∆3,∆4 =⇒ holds(a)
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