
The Impact of Abandonment in Multi-class Priority Queues

Gwendolyn Stockman
Advisors: Mor Harchol-Balter and Adam Wierman

1 Introduction

Scheduling in web applications has been successful and is important in applications such as
web servers and routers where policies other than first-come-first-served (FCFS) are often used.
Often size-based prority scheduling policies are used and studied in practice. [12] studied DPS
and [8] and [9] studied FB in routers. Lots of attention has been given to these policies in
theory as well, see [2], [11]. In fact, a bias towards ”small” jobs (in either age or size or
remaining size) improves response time. And since user perceived performance is related to
response time, efficiency is important. However, these policies which work to solve the problem
of small jobs getting stuck behind large jobs, present the problem of users reneging and wasted
processing time.

But in all of these, users are infinitely patient. This is not true in practice, where conges-
tion leads to reneging. Studies found that a large portion of transfered data may be comprised
of aborted transfers [1, 5, 13]. It was found that 11% of all transfers are interrupted, which
corresponds to 20% of the transfer volume [5]. There are multiple reasons users may abort
transfers; such as an incorrect file, poor performance, or a long setup time [13]. Poor per-
formance during transfer may often be the result of bad policies for bandwidth sharing on a
single bottleneck such as the link of a LAN which connects the LAN to the Internet [3].

Abandonment(user impatience) may cause problems for size-based scheduling. One of the
biggest problems is wasted service, where service is given to jobs which later renege. In priority,
class-based or size-based scheduling policies, service is often spread out over many jobs, so if a
user grows impatient and reneges a job, that job may have received some work. This work is
thrown away when the job abandons. Another type of scheduling is class-based. Where jobs
are divided into classes based on size or priority. Work is then divided among the classes in
some pre-determined way.

In many computer systems, priority queues, and size-based scheduling are used, however
abandonment is often ignored. This occurs, because abandonment is hard to model. Though
FCFS queues with abandonment can be analyzed [10], only limited work has been done outside
of FCFS. Important work on abandonment in 2-class priority queues has been done previously
(see Brandt and Brandt 2004, [4] and references therein), however this problem is not yet
solved, and has not been generalized to the n-class system. The goal of this paper is to present
an effective approximation for the multi-priority FCFS queue, where jobs of high priority are
served preemptively over jobs of lower priority, and jobs of equal priority are served in FCFS
order.

In order to develop an approximation for a multi-class priority queue, we first need an
approximation for the M/M/1 − GI FCFS queue. We start by developing an approximation
for the single-priority queue which allows abandonment after service has been recieved, and
then analyze the multi-class priority queue.

The model we examine for the the single-priority case, is the M/M/1 − GI FCFS queue,
where the first M indicates a Poisson arrival process, the second M represents an Exponential

1

service distribution, 1 server, and by the GI a general independent abandonment time distri-
bution. Where jobs are scheduled according to FCFS scheduling. We assume that jobs know
nothing about their position in the queue, and allow abandonment at the server. Note that
this model has a waiting queue of infinite length. If this queue were to have finite length we
would write M/M/1/r − GI FCFS, where there are r waiting spaces in the queue. We will
also discuss the M/M/1−M FCFS queue which is the same as the M/M/1−GI FCFS queue
except that the abandonment time distribution is now Exponentially distributed, represented
by the third M .

The model we examine is the multi-priority case is the n-priority M/M/1−GI queue, where
there are n priority classes, each priority class with their own queue as above. We assume
that jobs are preemptible. While we are only looking at an Exponential service distribution,
we think that the service can be extended to phase-type distributions.

The main focus of this paper is the problem of non-exponential abandonment time distri-
butions in multi-class priority queues. Our goal is to present an effective approximation for
calculating performance metrics in the M/M/1 − GI queue. While we only look at percent
abandoning we believe our approximation and analysis can be extended to calculate any of
the other metrics discussed in [10].

In Section 2 we describe and evaluate our approximation for the M/M/1 − GI FCFS
queue. In Section 3 we develop an approximation of the multi-priority M/M/1 − GI system,
using busy periods and our approximation from Section 2. And in Section 4 we present our
conclusions and future work.

2 The M/M/1 − GI FCFS Approximation

In order to approximate a multi-class priority queue with general abandonment, we first need
a good approximation of a single priority FCFS queue with general abandonment. In this
section we generalize the approach by Whitt in [10] in order to allow abandonment at the
server. In Section 2.1 we present background on the analysis of an M/M/1−M FCFS queue.
In Sections 2.2 through 2.5 we develope the approximation. We then validate and discuss this
approximation in Section 2.6.

2.1 M/M/1-M FCFS Queue

We start with the simple case of exponential abandonment in order to illustrate the analytic
approach. If the abandonment times have an Exponential distribution, instead of a general
independent distribution, then we have the much simpler model, the M/M/1 − M FCFS,
which can be analyzed exactly. Note, when we talk about state k, we mean a total of k jobs
in the system, 1 at the server and k − 1 in the queue.

To work this out we draw a Markov chain and calculate the steady-state distribution (the
πi’s) using local balance equations. The steady state distribution can then be used to calculate
a variety of user metrics (e.g. mean response time, percent abandonment). The fact that we
can draw a Markov chain for the M/M/1 − M FCFS case is very important to our analysis,
because we will approximate the M/M/1 − GI queue with a similar Markov chain.

However, note that, approximating the M/M/1 − GI queue with a M/M/1 − M queue
where the abandonment is exponentially distributed having mean equal to that of the general
distribution is not good enough. Thus, we need to model more than just the mean of the
general distribution.

2

0 1 2 3

λ λ λ

µ µ µ

λ

µ

Figure 1: A Markov Chain with arrival rate λ and service rate µ. The number in each circle
represents the number of jobs in the system.

2.2 M/M/1 − GI FCFS Approximation

We now generalize the simple analysis of the M/M/1−M FCFS queue in order to approximate
the M/M/1−GI FCFS queue. Our approach mimics that of [10], but extends the analyss to
allow jobs to abandon while recieving service. This extension is key to allowing us to use the
approximation to model a priority queue. Let the rate of abandonment for a job at time t be
the time-to-abandon failure rate (hazard) function

h(t) =
f(t)

F̄ (t)
, t ≥ 0, (1)

where f(t), and F̄ (t) are the density and the complementary cdf respectively associated with
the time-to-abandon function F (t).

Note that the abandonment rate of a job depends on the time it has been waiting. However,
this is not tracked in our Markov Chain, so we need to estimate this quantity. To estimate
this assume that the state of a job is the length of the queue and the job’s position in the
queue. Assume that the server is busy, and that there are k jobs waiting in the queue. If there
were no abandonments then the job jth from the end of the queue would have seen exactly
j−1 arrivals while waiting. If we assume that abandonments are relatively rare then, estimate
that there were j new arrival events since that job entered the queue. We will see that this
approximation works even under high abandonment.

2.3 Markovian Approximation

We will use the above observation in order to approximate the M/M/1 − GI FCFS queue
using a Markov chain. In order to draw a Markov chain for the M/M/1−GI FCFS queue, we
need an approximation for the death rate from a state of the Markov chain. We now develope
such an approximation. Note, when we talk about state k, we mean a total of k jobs in the
system, 1 at the server and k− 1 in the queue. We let the states 1, 2, . . . represent the number
of jobs in the system (i.e. the number of jobs at the server + the number of jobs in the queue).
The arrival rate at each state is λ.

In order to determine the total death rate from a state of the Markov chain, we need to
determine the rate of abandonment from that state. To account for the non-constant hazard
rates (either increasing or decreasing) we apply a delta-approximation to the hazard rate curve.
We estimate the time between arrivals to be 1/λ, so if there were exactly j arrivals since the
job jth from the end of the queue arrived, this job has been in the queue for approximately
j/λ time. Define the abandonment rate of the jth job from the end of the queue as:

αj ≡
h((j − 1)/λ) + h(j/λ)

2
, 1 ≤ j ≤ k + 1. (2)

3

When calculating the total abandonment from the queue with k jobs in the queue and one
at the server is, we include the abandonment rate of the job at the server in addition to the
abandonment rate of each job waiting in the queue. So, the total abandonment from the
system with k is:

δk ≡

k∑

j=1

αj =
k∑

j=1

h((j − 1)/λ) + h(j/λ)

2
. (3)

Since there is abandonment in every state (even when there is only 1 job in the system,
the one at the server), we have that the total death rate from state k is:

µk = µ + δk 1 ≤ k (4)

2.4 Solve for the πis

Let πk = P (there are k jobs in the system (# at server + # in queue). Thus
∑∞

i=0 πi = 1.
We can solve for these using the local balance equations:

πkλ = πk+1µk+1, 0 ≤ k ≤ r (5)

When we solve for them we get:

π0 =
1

∞∑

i=0

λi

∏i
k=1 µk

=
1

∞∑

i=0

i∏

k=1

λ

µk

(6)

πi =
λi

∏i
k=1 µk

π0 = π0

i∏

k=1

λ

µk

(7)

2.5 Probability of Abandoning

In general let pa
k be the probability that there are k jobs in the system when an arrival enters

the system. We let,
pa

k = πk ∀k ≥ 0. (8)

Consider a job arriving when there are k jobs in the system, 1 at the server and k−1 waiting
in the queue. After this job’s arrival there will be k + 1 in jobs in the system. Following the
argument in [10] we consider the system starting at k + 1 jobs in the system ignoring future
arrivals. Figure 2.5 describes what the system looks like at this point.

J1 J2 J3 J4 J5 J6 Jj-1 Jj Jj+1 Jk+1

Figure 2: Job J1 is at the server and jobs J2, . . . , Jk+1 are waiting in the queue. Each job Ji

has abandonment rate αk+1−(i−1) = αk+2−i for 1 ≤ i ≤ k + 1.

Now, we need a way to estimate the time between departures. While departures are not
necessarily rare, we make the assumption that all departures up to a certain point were comple-
tions. Thus we approximate the time between successive departures as 1/λ. With time between
successive departures estimated at 1/λ, after d successive departures, d/λ time was passed. So

4

Jj Jj+1 Jj+2 Jk+1 Jj+3

Figure 3: Job Jj is at the server and jobs Jj+1, . . . , Jk+1 are waiting in the queue. Each job
Ji has abandonment rate αk+2−i+(j−1) = αk+1+j−i for j ≤ i ≤ k + 1.

the job originally jth from the end of the queue, if still present, originally had abandonment rate

αj =
h(j−1

λ
)+h(j

λ
)

2 , but now has abandonment rate αj+d =
h(j−1

λ
+ d

λ
)+h(j

λ
+ d

λ
)

2 =
h(j+d−1

λ
)+h(j+d

λ
)

2 .
Let γk,j = P (the job initially kth in line abandons in the jth departure event given that

that job has not yet abandoned), and let mk,j be the average time between the (j − 1)st and
the jth departure events.

After j − 1 departures, using the assumption that the departures were all completions, the
first j − 1 jobs in the queue (J2, J3, . . . , Jj) have gone into service, while the last k− j +1 jobs
(Jj+1, Jj+2, . . . , Jk+1) are still waiting, see Figure 2.5. Also, the job that was originally at the
server and the first j−2 jobs of the j−1 jobs which went into service (jobs J1, . . . , Jj−1), have
completed service and left the system, and job Jj is at the server.

The job originally at the server (J1) had abandonment rate αk+1 and has completed. Also,
the first j − 2 jobs in the original queue (jobs J2, . . . , Jj−1) have completed service, and their
original abandonment rates were

αk+1−((j−1)−1) = αk−(j−2−1) = αk−j+3, . . . , αk = αk+1−(2−1).

The job which is currently at the server (job Jj), originally had abandonment rate αk−(j−2) =
αk−j+2, and now has abandonment rate αk+1+j−j = αk+1 because j−1 departures, and we are
assuming that the average time between departures is 1/λ, so j−1

λ
time has passed. The remain-

ing k−j+1 jobs in the queue (jobs Jj+1, . . . , Jk+1), are still in the queue and their abandonment
rates increased from α1, . . . , αk−(j−1) = αk−j+1 to α1+(j−1) = αj . . . , αk+1+j−(j+1) = αk.

So the total remaining abandonment rate is

αk+1 +
k∑

i=j

αi =
k+1∑

i=1

αi −

j−1∑

i=1

αi = δk+1 − δj−1, (9)

and the total remaining departure rate is µ + δk+1 − δj−1.
This gives us that the probablity the job initially kth in line abandons in the jth departure

event given that that job has not yet abandoned is

γk,j =
αj

µ + δk+1 − δj−1
(10)

and the average time between the (j − 1)st and the jth departure events is

mk,j =
1

µ + δk+1 − δj−1
(11)

where 1 ≤ j ≤ k + 1 and δ0 = 0.
Note that these probabilities are the same for the system approximated in [10] where jobs

at the server do not abandon, if we let there be initially k jobs in the queue (k + 1 jobs in the
system), when an arrival occurs, and the analysis begins. (So k + 2 jobs in the system after
the arrival).

5

The probability that the job originally kth in the queue eventually receives service is

Γr
k = (1 − γk,1)(1 − γk,2) · · · (1 − γk,k) =

k∏

i=1

(1 − γk,i). (12)

Similarly, the probability that the job originally kth in the queue eventually completes service
is

Γc
k = P (the job originally kth in the queue completes service) · Γr

k

=
µ

µ + αk+1
Γr

k =
µ + αk+1 − αk+1

µ + αk+1
Γr

k =

(
1 −

αk+1

µ + αk+1

)
Γr

k

=

(
1 −

αk+1

µ +
∑k+1

i=1 αi −
∑k

i=1 αi

)
Γr

k =

(
1 −

αk+1

µ + δk+1 − δk

)
Γr

k

=

(
1 −

αk+1

µ + δk+1 − δ(k+1)−1

)
Γr

k =
(
1 − γk,(k+1)

)
Γr

k

=
k+1∏

i=1

(1 − γk,i) (13)

Also, we must compute not only the probability that a job that enters the system even-
tually receives service, but also the probability that a job which enters the system eventually
completes service. To do this we need to look at the probability that a job arriving to the
empty system will complete service before abandoning.

It follows from above, that the probability that a job who enters the system eventually
receives service is

P (Sr) = pa
0 +

∞∑

k=0

pa
k+1Γ

r
k+1 (14)

and that the probability that a job which enters the system eventually completes service is

P (Sc) = pa
0P (X < A) +

∞∑

k=0

pa
k+1Γ

c
k+1. (15)

where P (X < A) is the probability that a job arriving to the empty system will complete
service before abandoning.

So the probability that a job abandons given that it entered the system is

P (A) = 1 − P (Sc). (16)

Summary of Approximation for the M/M/1 − GI FCFS Queue:

We approximate and M/M/1−GI queue with arrival rate λ, service rate µ, and abandonment
distribution with hazard rate h(t) and mean E[A]. To do this, first recall from equations (2),
(3) that

αj =
h((j − 1)/λ) + h(j/λ)

2
, 1 ≤ j ≤ k + 1

and

δk ≡

k+1∑

j=1

αj =
k+1∑

j=1

h((j − 1)/λ) + h(j/λ)

2
.

6

Using equations (6) and (7) we get

πi =

∏i
k=1

λ
µk

∞∑

i=0

λi

∏i
k=1 µk

further, we have

Γc
k =

k+1∏

i=1

(
1 −

αi

µ + δk+1 − δi−1

)

and

P (Sc) = pa
0P (X < A) +

∞∑

k=0

pa
k+1Γ

c
k+1.

from equations(13), (10), and(15). Note that pa
i = πi.

Note that the two summations in these formulas need to be truncated, and for any trun-
cation the error can be easily understood. Also note that we believe that this approximation
is extendable to ther metrics.

Remark 1 The main change from the approximation in [10] is to allow abandonment at the
server, which results in several specific changes overall. First, to calculate the total abandon-
ment from a state of the queue, we must include the rate of abandonment from the job at the
server. In order to to calculate the probability that a job abandons given that it entered the sys-
tem, we need to know the probability that it completed service not just that the job in question
recieved service. So we must calculate P (Sc) not just P (Sr), and thus we get P (A) = 1−P (Sc)
not P (A) = 1 − P (Sr).

Also, we need to estimate P (X < A), that is the probability that a job arriving to the empty
system will complete service before abandoning, in order to calculate the the probability that a
job which enters the empty system completes service, and thus, the probability that a job which
enters the system at all completes service. Another change caused by allowing abandonment
at the server, is the need to use a delta-approximation instead of just taking the right endpoint
of the interval of the hazard rate curve. This is needed to account for the non-constant hazard
rates (either increasing or decreasing), especially for cases where there is a very steep increasing
or decreasing portion of the hazard rate curve, for example the very steep decreasing hazard
rate at the beginning of a Weibull curve. Another change is the total remaining abandonment
as seen in equation (9), where we once more must include the abandonment of the job currently
at the server, not just the abandonment of the jobs in the queue.

Remark 2 This approximation would work also in the case of a finite queue, with at most r
waiting spaces, where only several changes would be necessary.

1. In equations (3) and (4) the finite queue case, k is bounded by the number of jobs allowed
in the system.

2. The sums in equations (6), (14), and (15) include only a finite number of terms.

3. Also, in equation 8 we need to know the probability that a job is rejected from the system
when it arrives. This occurs if there are r + 1 jobs in the system when it arrives (r in
the queue, and 1 at the server), so the probability that a job is rejected is

P (reject) = πr+1. (17)

7

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Sim.: A~Exp(0.05)
Approx.: A~Exp(0.05)
Sim.: A~Exp(1)
Approx.: A~Exp(1)
Sim.: A~Exp(40)
Approx.: A~Exp(40)

(a) Percent Abandoning

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

%
 e

rr
or

A~Exp(0.05)
A~Exp(1)
A~Exp(40)

(b) Absolute error

Figure 4: Percent abandoning for the M/M/1 − M queue, with E[X] = 1, for several dif-
ferent abandonment distributions. For A ∼ Exp(0.05), A ∼ Exp(1), A ∼ Exp(40), we have
E[A] = 20, E[A] = 1, and E[A] = .025, respectively, corresponding to low, medium, and high
abandonment

and
pa

k =
πk

1 − P (reject)
=

πk

1 − πm+1
for 0 ≤ k ≤ r + 1, (18)

2.6 Validation and Discussion

Before moving to the analysis of priority queues, we will first validate the FCFS approximation
and investigate the impact of non-exponential abandonment distributions. We start with the
simplest case: the M/M/1−M . Note that in this case we can calculate the πi’s, γk,j ’s exactly
and therefore Γc

k’s exactly. This implies that every term in the sum to get P (Sc) is exact, also
P (X < A) and therefore P (Sc) is exact.

Therfore we can use this to validate our simulator and to understand baseline simulation
error. The simulations were run for 3 iterations each with a total of 100,000 jobs entering the
system. The results of these simulations where then averaged. As seen in figure 2.6 the error
is very close, in fact it is within 2% at all times, which validates our similator.

We now move to validating our approximation under general abandonment distributions.
We look at the Weibull which can have increasing, constant, and decreasing hazard rates. The
distribution for the Weibull(a, b) is

F (x) = 1 − e−(t
a
)b

and the hazard rate function is

h(t) = b
tb−1

ab
.

We focus on 3 cases:

1. Increasing hazard rate with b = 2

2. Constant hazard rate, which was already discussed, because is equivalent to an Expo-
nential hazard rate.

3. Decreasing hazard rate with b = 0.5

8

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Sim.: E[A]=1
Approx.: E[A]=1
Sim.: E[A]=10
Approx.: E[A]=10
Sim.: E[A]=40
Approx.: E[A]=40

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

E[A]=1
E[A]=10
E[A]=40

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Sim.: E[A]=1
Approx.: E[A]=1
Sim.: E[A]=10
Approx.: E[A]=10
Sim.: E[A]=40
Approx.: E[A]=40

(a) Percent Abandoning

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

E[A]=1
E[A]=10
E[A]=40

(b) Absolute error

Figure 5: In the top row we look at the case of a decreasing time-to-abandon function.
The means of 1, 10, and 40 correspond to Abandonment ∼ Wei(0.5, 0.5), Wei(5, 0.5), and
Wei(20, 0.5) respectively. In the bottom row we have an increasing time-to-abandon func-
tion. The means of 1, 10, and 40 correspond to Abandonment ∼ Wei(2√

π
, 2), Wei(20√

π
, 2), and

Wei(80√
π
, 2) respectively.

We fixed the mean across comparisons. For each case we let the mean of the abandonment
vary across 1, 10, and 40, which corresponds to high, medium, and low abandonment situations.

A large part of the error is from the fact that we are not constantly updating the rate of
abandonment, we only do this when a job arrives or departs. We can see this in Figure 2.6
where we underestimate for the most part in the case of a decreasing hazard rate, and we
overestimated for the most part in the case of an increasing time-to-abandon function. These
errors are due in large part to the shape of the hazard curve of the Weibulls.

We believe that this approximation would work in the M/GI/1−GI case, by approximating
the service distribution by an exponential service distribution with an equal mean, so if the
service distribution has mean E[X] then we would set µ = 1

E[X] . However, more work is
necessary to verify this.

9

3 Priority Queue Approximation

We now build on our M/M/1 − G FCFS approximation in order to approximate the perfor-
mance of M/M/1−G priority queues. Tthe n-priority queue is makde up of n seperate queues,
labeled 0, 1, . . . , n − 1, where jobs of priority i go straight into priority queue i. Within each
queue jobs are served in FCFS order, and jobs in queue i are served only when the queues
labeled 0, 1, . . . , i − 1 are empty.

Note that priority 0 jobs experience a FCFS system with arrival rate λ0, and the approx-
imation from Section 2 applies immediately. However, for jobs of lower priority we need to
use more information. In order to determine the time a job j of priority i has been waiting,
we need to take into account not only the jobs in priority queue i in front of the job in ques-
tion, but also the jobs in the higher priority queues both when the job, j, enters the system,
and those high-priority jobs which arrive while the job is in the system. The key idea of our
approximation is to approximate the experienced service distribution of these lower priority
jobs using busy periods. In Section 3.1 we explain the general setup and assumptions we are
making about the priority queue. Next in Section 3.2 we develope the approximation. Finally,
in Section 3.3 we validate and discuss this approximation.

3.1 The Setup

Assume that there is a priority queue with n priority classes, labeled 0, 1, . . . , n− 1, where the
highest priority class is labeled 0 and the lowest priority class is labeled n − 1. So a job of
priority class i has greater priority than a job of priority class i+1. When we refer to priority
queue i we mean the queue of jobs of priority class i. Also, assume that jobs enter the system
with a priority of 0, 1, . . . , n−1 already assigned. Jobs in priority class i enter the system with
rate λi. So the total rate of jobs entering the system is λ =

∑n−1
i=0 λi.

We assume the n priority classes have service distributions with means E[X0], E[X1], . . . E[Xn−1],
loads ρ0, ρ1, . . . , ρn−1, and abandonment distributions with time-to-abandon hazard functions
h0(t), h1(t), . . . , hn−1(t), and means E[A0], E[A1], . . . , E[An−1], respectively.

Let

ρ =
n−1∑

i=0

ρi (19)

and let qi be the probability that a job entering the system is of class i, so the arrival rate
of jobs with priority i is λi = λqi, and ρi = λqiE[Xi]. Now for 0 ≤ i ≤ n − 1, ρi = λqiE[Xi]
implies

λ =
ρi

qiE[Xi]
(20)

and
qi =

ρi

λE[Xi]
. (21)

Note that
∑n−1

i=0 qi = 1, so

1 =
n−1∑

i=0

qi =
n−1∑

i=0

ρi

λE[Xi]
=

1

λ

n−1∑

i=0

ρi

E[Xi]

λ =

n−1∑

i=0

ρi

E[Xi]
(22)

10

And by equation (20) we have

ρj

qjE[Xj]
= λ =

n−1∑

i=0

ρi

E[Xi]

so,

qj =
ρj

E[Xj]
∑n−1

i=0
ρi

E[Xi]

for 0 ≤ j ≤ n − 1. (23)

3.2 The Approximation for priority class i

In this section we show how we use busy periods to approximate the mean of the experienced
service distribution of priority i jobs, which we will call E[X̃i]. Using this estimated experienced
service distribution of priority i jobs, we use the approximation for the single priority M/M/1−
GI FCFS queue, see the summary of the approximation in Section 2.5, with arrival rate λi

and service distribution with mean E[X̃i] to approximate user metrics.

3.2.1 How it works

Clearly, the behavior of jobs in priority class 0 can be approximated by the M/M/1 − GI
FCFS approximation given above, with arrival rate λ0, service distribution with mean E[X0],
and time-to-abandon function h0(t). However, for jobs in priority classes i for i > 0, this is
not the case, because they may have to wait while jobs of higher priority classes are served.

A priority i job waits behind k other jobs of the same priority. Each job can only complete
when the system is empty of higher priority jobs, so the time for a low priority job to complete
is a busy period composed of jobs of classes higher than i, started by a job in class i.

So for priority classes i > 0, we estimate the experienced service time of a job of that class
using a busy period started by a job of class i, containing jobs of higher priority classes. By
definition of a busy period, see [6] and [7], we see that

E

[
length of a busy period of jobs of priority
higher than i, started by a job of priority i

]
=

E[Xi]

1 − ρi−1
. (24)

However, since jobs of the higher priority classes also experience abandonment, the actual
load experienced by a priority queue j, for 0 ≤ j < i, is less then the load calcualted by just
using the arrival rate and the service rate. To account for this, we estimate the experienced
load of queue j, call it ρ∗j . Let ρ̃i = λiE[X̃i], and ρ̃∗i = 1 − π̃0,i where π̃0,i is π0 for the single

priority M/M/1 − GI FCFS queue with arrival rate λi service distribution with mean E[X̃i]
and abandonment distribution with mean E[Ai]. The idea behind using an estimate for the
experienced load of a queue i, instead of the value calculated using the arrival and service
distributions, is that abandonment in a queue decreases the experienced load. And since load
is defined to be the proportion of time that the server is busy, the experienced load is 1− the
proportion of time there are no jobs at the queue. This lowers our estimate of E[X̃i] and makes
it more accurate.

To calculate user metrics for priority class i, use the approximation for the single priority
M/M/1 − GI FCFS queue with arrival rate λi, service distribution with mean E[X̃i] and
abandonment distribution with mean E[Ai].

E[X̃i] =

E[Xi] i = 0
E[Xi]

1 − ρ̃∗i−1
1 ≤ i ≤ n − 1.

The overall percent abandoning is just
∑n−1

i=0 qi(percent abandoning from class i).

11

3.3 Validation and Discussion

We now move to validating the priority queue qpproximation and illustrating the effect of
abandonment in realistic senarios. We start with the simple case of exponential abandonment
in all priority classes and then move to the more realistic settings.

In the simple case of Exponential abandonment in all priority classes the only error results
from the busy period approximation, since the approximation is exact for priority class 0 and
if the busy period estimation of the experienced service distribution of the priority class i
jobs was exact, then the estimate for the jobs of priority i would be exact, for i > 0. For
the non-exponential abandonment case, the error also comes from the M/M/1 − M FCFS
approximation.

We tested this approximation in the 2-priority cases. We ran several different cases

1. E[Xi] = E[Xj] and E[Ai] = E[Aj] ∀i, j ∈ [0, n − 1]

2. E[Xi] < E[Xj] for i < j, i, j ∈ [0, n − 1]

(a) E[Ai] = E[Aj] for i < j, i, j ∈ [0, n − 1]

(b) E[Ai] < E[Aj] for i < j, i, j ∈ [0, n − 1]

(c) E[Ai] > E[Aj] for i < j, i, j ∈ [0, n − 1]

In each case we look at low, medium, and high abandonment. We look at all cases for complete-
ness but case, 2b is the most pratical because the smaller higher priority jobs have a smaller
mean abandonment time, which approximates the case where abandonment is proportional
to size. Also, this is the case we are best at. The simplest case is case 1 where everything
is the same. Another simple case is 2a where although the means of the service distributions
are different, the means of the abandonment distributions are equal. Finally, we thought we
would do badly in case 2c, but we do well.

In our simulations we ran 3 iterations over 100,000 arrivals, and averaged the results. We
will call jobs of priority class 0, high priority jobs, and jobs of class 1, low priority jobs. We
let E[X0] = 0.1 and E[X1] = 1. We ran simulations for all combinations of E[A0] = 1, 10, 20
and E[A1] = 1, 10, 20.

The most pratical setting is when the low priority jobs really do see a busy period, this is
seen when E[X0] = 0.1 and E[X1] = 1, and E[A0] = 1 and E[A1] = 20, which is shown in Figure
3.3 and 3.3. In fact this is the case where we are the most accurate. Note that capturing the
busy period approximation is not very important in this setting because, high priority jobs
are very small, and therefore they have a low impact on the experienced service time of low
priority jobs. Also, high priority jobs are not abandoning much. This is a realistic setting and
leads to situations where our approximation is accurate. It is natural to think that there are
setting where the approximation is inaccurate, however these are mainly non-realistic settings.

Note that our absolute error stays within a margin of 2 in all but one case where it is within
a margin of 6. Also we are almost always underestimating the percent abandoning, however
the error does not seem to increase with load.

Note that the most abandonment is in the case where E[XH] = 0.1 and E[XL] = 1 and
E[AL] = E[AH].

4 Conclusion

We give a new approximation for priority queues, that is simple and accurate, especially
in realistic settings. The key idea of the approximation is the discretizing of the general
independent abandonment times, through the hazard rate function of the time-to-abandon

12

1. E[X0] = E[X1] = 1 and E[A0] = E[A1]

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

(a) Percent Abandoning

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

(b) Absolute error

Figure 6: Row 1 shows the case where E[A0] = E[A1] = 20, that is AbandonmentẼxp(0.05).
Row 2 shows the case where E[A0] = E[A1] = 1, that is AbandonmentẼxp(1). Row 3 shows
the case where E[A0] = E[A1] = 0.05, that is AbandonmentẼxp(20). Also note that ρ0 = ρ1.

13

2. E[X0] = 0.1, E[X1] = 1 and E[A0] = 10

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

(a) Percent Abandoning

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

(b) Absolute error

Figure 7: Row 1 shows case 2b where E[A1] = 20, that is A1Ẽxp(0.05). Row 2 shows the case
2a where E[A1] = 10, that is A1Ẽxp(0.1). Row 3 shows the case 2c where E[A1] = 1, that is
A1Ẽxp(1). Note that ρ0 = ρ1.

14

2. E[X0] = 0.1, E[X1] = 1 and E[A0] = 1

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

0 0.5 1 1.5 2
0

20

40

60

80

100

Load

P
er

ce
nt

 A
ba

nd
on

in
g

Simulation Overall
Simulation High priority jobs
Simulation low priority jobs
Approximation Overall
Approximation Low priority jobs
Approximation High priority jobs

(a) Percent Abandoning

0 0.5 1 1.5 2
−10

−5

0

5

10

Load

A
bs

ol
ut

e
E

rr
or

Overall error
Low priority error
High priority error

(b) Absolute error

Figure 8: Row 1 shows case 2b where E[A1] = 20, that is A1Ẽxp(0.05). Row 2 shows the case
2b where E[A1] = 10, that is A1Ẽxp(0.1). Row 3 shows the case 2a where E[A1] = 1, that is
A1Ẽxp(1). Note that ρ0 = ρ1.

15

distribution. This allows the abandonment times to be used in a queue with time-varying
service. We use this discretization to approximate the M/M/1 − GI FCFS queue, then we
build on it to approximate a multi-class priority queue. The key idea in the priority queue
approximation is to use busy periods to capture the interaction between high and low priority
jobs.

We have performed computer simulations to validate the performance of these approxima-
tions, and the examples we have considered cover a wide variety of scenarios. The absolute
error between the simulation and approximation is within 6 everywhere, and within 2 in most
cases, including the most realistic settings. In fact our approximation works best in the most
realistic settings.

While we are only examining the user metric of percent abandoning, we believe that our
approximation can be extended by using our approximation in to the equations in [10]. Another
important note is that we believe our approximation can be extended to the M/GI/1 − GI
case, however more work is necessary to check this. Future work will also include testing
the n-priority approximation in the case where E[Xi] > E[Xj] for i < j, and verifying the
approximation with more priority classes.

References

[1] M. Arlitt and C. Williamson. Web server workload characterization: the search for invariants. In
Proc. of ACM Sigmetrics, 1996.

[2] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairness. In
Proceedings of ACM Sigmetrics, 2001.

[3] J. Boyer, F. Guillemin, P. Robert, and B. Zwart. Heavy tailed M/G/1-PS queues with impatience
and admission control in packet networks. In IEEE Infocom, 2003.

[4] A. Brandt and M. Brandt. On the two-class M/M/1 system under preemptive resume and impa-
tience of prioritized customers. Queueing Systems, 47, 2004.

[5] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich. Performance of web proxy
caching in a heterogeneous bandwidth environment. In Proc. of IEEE INFOCOM, 1999.

[6] L. Kleinrock. Queueing Systems, volume I. Theory. John Wiley & Sons, 1975.
[7] L. Kleinrock. Queueing Systems, volume II. Computer Applications. John Wiley & Sons, 1976.
[8] I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS scheduling for job size distributions

with high variance. In Proceedings of ACM Sigmetrics, 2003.
[9] I. A. Rai, G. Urvoy-Keller, M. Vernon, and E. W. Biersack. Performance modeling of LAS based

scheduling in packet switched networks. In Proc. of ACM Sigmetrics-Performance, 2004.
[10] W. Whitt. Engineering solution of a basic call-center model. Management Science, 51(2):221–235,

Feb 2005.
[11] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness in

an M/GI/1. In Proceedings of ACM Sigmetrics, 2003.
[12] S. Yang and G. de Veciana. Size-based adaptive bandwidth allocation: optimizing the average qos

for elastic flows. In Proc. of IEEE INFOCOM, 2002.
[13] S. Yang and G. de Vecianca. Bandwidth sharing: the role of user impatience. In Proc of Globecom,

2001.

16

