Senior Thesis 2006
Covert Multi-Party Computation

Yinmeng Zhang
Advisors: Manuel Blum and Luis von Ahn

Abstract

We introduce an extension of covert two-party computation (as introducted by von Ahn,
Hopper, Langford in 2005), to multiple parties. Covert computation is a stronger notion of secu-
rity than standard secure computation. Like standard secure multi-party computation, covert
multi-party computation allow n parties with secret x; through z,, respectively, to compute a
function f(z1,...,x,) without leaking any additional information about their inputs. In ad-
dition, covert multi-party computation guarantees that even the existence of a computation is
hidden from all protocol participants unless the value of the function mandates otehrwise. This
allows the construction of protocols that return f(x1,...,x,) only when it equals a certain value
of interest (such as Yes, we want to collude with each other T) but for which no party can
determine whether anyone else even ran the protocol whenever f(zi,...,x,) is not a value of
interest. Since existing techniques for secure function evaluation always reveal that all parties
participate in the computation, covert computation requires the introduction of new techniques
based on provably secure steganography. We suggest two possible generalizations of covert two-
party computation, one which is weak but achievable by a general protocol, and a stronger one
for which we claim no general protocol can exist.

1 Introduction

The basic assumption of cryptography is that other people are untrustworthy, and as little as
possible should be revealed to them. At the same time, it is often desirable to compute with other
people. Multi-party computation refers to the computation of some public function f on n inputs
by n parties, each holding one of the inputs.

A classic problem in multi-party computation is voting: here, each voter has a secret input, namely
his or her vote. The voters wish to compute the majority function on their inputs without revealing
any more information than absolutely necessary. Some information is necessarily revealed; for
example, once the winner of the vote is known, anyone can trivially see that a random vote is
more probably for the winner than for any other candidate. However, it is interesting to ask if the
computation can occur in such a way that nothing about the inputs is revealed except what can
be determined from the answer. In fact, this can be achieved for any functionality, and is what is
usually referred to by secure multi-party computation.

We can also hide other types of information. Steganography (etymologically, secret-writing) is con-
cerned with hiding the computation itself from outside observers. That is, to any outside observer
(one who does not know some secret key), all conversation will be indistinguishable from normal.
Thus, only the participants in a multi-party computation need ever know that the computation
even took place. A provably secure scheme for public-key steganography was invented by von Ahn
and Hopper in 2004.

1.1 Covert Computation

Now, when Alice sends a steganographically encoded message to Bob, Bob decodes it to read
the message. Interestingly, when Alice sends a normal message to Bob, Bob can still run the
decoding algorithm, except that he will get junk as output. By definition of steganographic secrecy,
Bob cannot distinguish between a normal message and one that contains an encoding except by
distinguishing between the decodings. This suggests an interesting variation on the steganographic
scheme.

We can modify the scheme so that the decoding of a normal messages will indistinguishable from
random. Now, if we could somehow encode the computation so that all the hidden messages look
random, Alice and Bob could run a computation together and not even be sure if the other is
computing along or just holding a normal conversation.

Why do we care? Consider the classic motivating example for secure two-party computation, dating.
The inputs are single bits; the first party’s input is 1 iff she likes the second party, and likewise
the second party’s input is 1 iff he likes the first party. The function to compute is the AND of
the inputs. Presumably, if a party did not like the other party, it will be impossible for them to
determine the preference of the other party, since in either case the output is unchanged. There is
a small problem with this example, which is that it is incriminating to initiate the computation in
the first case. As we have just observed, a party who does not like the other party already knows
what the output will be, and has no reason to compute. Thus, to truly protect the delicate feelings
of the parties involved, it would be necessary to compute in such a way that neither party could tell
if the other party was computing except if the output to the function was 1. These rather stringent
requirements are formalized in the notion of covert two-party computation, introduced by von Ahn,
Langford and Hopper in 2005. They also gave a general protocol to compute any functionality
covertly.

The purpose of this research is to extend covert computation to multiple parties.

2 Infrastructure

Since we are concerned with hiding information, it is important to clarify what is known. We
assume that all parties know a common circuit for the function that they wish to evaluate, that
they know what role they will play in the evaluation, and that they know when to start evaluating
the circuit if the computation is going to occur. Finally, we assume adversarial parties know all
such details of the protocols we construct.

To be able to hide communications, we must define ordinary channels to hide them in.

Messages are drawn from a set D of documents. For simplicity, we assume that time proceeds in
discrete timesteps. Each party P; maintains a history h;, which represents a timestep-ordered list
of all documents sent and received by FP;. We call the set of well-formed histories H. We associate
to each party P; a family of probability distributions B' = {B} },e on D.

At each timestep, each party receives the messages broadcast in the previous timestep, updates h;
accordingly, and then draws a document d « Bfli to broadcast. Note that this document could
simply be the empty message.

Of course, our real concern is not the ordinary communication but the hidden messages. It is our
goal to make these hidden messages appear random to the parties computing until the end of the
computation. Rather whimsically, we can picture the world as a room full of sleeping people snoring
strings which are indistinguishable from random.

3 Formal Definitions (Semi-Honest Model)

Formally, an n-party protocol is the vector of programs I = (P, ..., P,). The computation of II is
as follows: at each round, each P; is run on its input x;, the security parameter 1%, a state s;, and
the history of messages exchanged so far. A message (possibly the empty message) is then broadcast
and added to the history of messages. The transcript of the computation consists of all messages
exchanged, each labeled with their timestamp and author. At the end of the computation, each
party P; halts with some output, call it II;(x). We say that II correctly realizes the functionality f
if for some i, Pr{Il;(z) > 1 —v(k)].

For each party P; we define a view, VZH(:E) consisting of everything P; sees: the input x;, private
random bits, and the transcript. We also define the view of the eavesdropper, Vf(:ﬁ) consisting
solely of the transcript.

Secure multi-party computation makes it possible to privately compute f. Intuitively, this means
any subset of the parties I that follow protocol cannot, even by pooling their resources, learn
anything about the inputs of parties not in I. Let x; be the vector of all the inputs of parties in 1.

We say that II privately computes f if there exists a probabilistic polynomial-time algorithm S
such that, for any subset of the parties I,

{S(I, Iy, f(f))}fe({o,l}*)m ~ {VIH(E)a f(j)}a'ze({(],l}*)m

Steganography guarantees that the eavesdropper cannot distinguish the computation from normal
computation,

{V¢H(f)}aze({0,1}*)m ~ B

In the framework of covert two-party computation, this guarantee was referred to as external
covertness, as it guarantees that external adversaries, i.e. those who do not participate in the
computation, cannot determine if a computation occured.

Covert two party computation additionally guarantees internal covertness, where the other partic-
ipant in the computation cannot tell if the computation is occuring during the computation. Let
II : B; denote the two-party computation where the ith party communicates as normal instead of
following the protocol. Let Vin’" the view of party P; at the nth step. For any input Z, at any step
n excluding the final communication,

VH,n ~ VHIBM—U T

K3 K3

In a two-party computation, once a non-random answer is revealed, it is obvious that the other party
must have been computing along. We express this by saying that for any probabilistic polynomial-
time algorithm D, there is a corresponding probabilistic polynomial-time algorithm D’ such that
if D gives party P; an advantage in distinguishing the view when the other party is participating
and the view when the other party is not participating, D’ gives the negligibly less than the same
advantage in distinguishing the output of the computation from random bits. In symbols, for any
1 and distribution on Py’s inputs X,

D D’
A_d’UVIH(XO’xl)’V;H:B(X(Lwl)(k) S Advf(X(),l‘1),Ul (k) + V(k;)

and similarly for party Py with input x¢ on any distribution of P;’s inputs Xj.

4 Weak Extension

We can simply carry the definitions from two-party computation over to multi-party computation.
We guarantee

1. External Covertness. To any outside observer ¢, for any input z,
{V¢H(f)}aze({0,1}*)m ~ B

2. Internal Covertness. To any coalition of parties I, for any input Z, at any step n excluding

the final communication,
n | IB >, N
‘/[R [/i 1%

3. Final Covertness. To any coalition of parties I, for any PPT D there exists a PPT D’ and a
negligible function v such that for any z; and distribution on the other inputs X,

D D’
AdUVIH(ch,:vf),VIH:B(ch,II)(k) < Advf(chfoI%Ul(k) +v(k)

4.1 Weaknesses

The key difference between two-party computation and multi-party computation is that in the first,
computation is a binary occurence. There are either 0,1, or 2 parties actually participating in the
computation; if the number is less than 2, certainly no computation is occuring; if it is 2, then

the computation is occuring. For multiple parties, this distinction is not so clear. In many cases
it would be useful for the protocol to be tolerant to a minority of the parties not participating.
For example, if 99% of the parties are participating in a vote, then we would like the vote to go
through. Here, though, while we guarantee very complete security, the protocol will give random
output except in the case all parties are computing.

4.2 Application

This can still be useful in all-or-nothing circumstances where it is desirable that 100% of the parties
are computing. Suppose Company A has been attacked by a hacker. Company A has strong
incentive not to reveal their weakness, but preferably they would like to catch the hacker. Suppose
rumor has it that m — 1 other companies were also attacked; if the companies pool resources,
the hacker is caught. Company A can initiate a covert multi-party computation which returns a
long string of ones when all the inputs are verifiable data logs from the hacker’s attacks, and a
random number otherwise. If even one company does not cooperate, no one, inside or outside the
computation can distinguish if the computation even occured. If everyone cooperates, the hacker is
caught, and presumably, since all the companies are in the same boat, having the other companies
be aware of the computation is acceptable.

4.3 Implementation

Since we already have the powerful tool of two-party covert computation on hand, it is actually
quite simple to achieve the multi-party case.

In the usual secure multi-party computation, the protocol is roughly as follows
1. Split each secret input into m random parts and share among the parties.
2. Two-party compute on the random shares.

3. Recombine.

The protocol works because, once the secrets are split, all intermediate results are random, and
thus no information is revealed until the final recombination. This can be simply modified to read
1. Split each secret input into m random parts and share among the parties.
2. Covert Two-party compute on the random shares.
3. Recombine.
If all messages are steganographically encoded, we will have external covertness for mpc. Here,
again, all intermediate results are random, and thus, by the final covertness guarantee of two-party

computation, no party can ascertain if the other party is really computing with him. This guarantees
that the computation is covert at least until the answer is revealed. If all parties are computing,

then once the computation ends, if the answer is non-random, all parties will know all other parties
were computing along. However, if even one party was simply communicating as normal, all results
of “computations” with him will be indistinguishable from random and independent of the other
results. Thus, the final result will be random.

5 Strong Extension

Multiple parties raises the tantalizing possibility that it could never be necessary to reveal exactly
who participated in the computation. That is, could we strengthen final covertness to say that,
once we see a non-random answer, we only know that some proportion of the parties participated
(for example, 99 of 100), but negligibly more?

First notice, that it is sufficient to consider the case of three parties. If a protocol existed for
more parties, then the parties could use that protocol, modeling the excess parties themselves and
computing a functionality that ignores those excess parties’ inputs.

5.1 Three People Puzzle

Returning to the whimsical view of the world, we are now concerned with a room full of sleeping
people, some of whom are actually sleeping. The conundrum is that, to protect the identities of
those who are only faking being asleep (i.e. really computing), it is necessary to do the complement,
that is, make it equally hard to guess who is really sleeping (i.e. communicating as normal). We
give an informal proof that a general protocol for multi-party computation cannot exist.

Imagine we have three people, a Fuker2, a Fakerl, and a Snorer. Fakerl has an input and wants
to send it to Waker2 without admitting that he’s awake (this is basically an anonymous broadcast
to Faker2, except harder than usual because Sleepers don’t cooperate with the protocol, and yet
their identity must be protected). In this very pared down version of the original problem, assume
Fakerl knows who Faker2 is, so our only concern in this problem is Faker2's view.

5.2 Sketch Proof

The intuition is that if the protocol existed something special must happen in the last round of
messages.

e Assume for contradiction there exists an algorithm that both hides guilt and produces an
answer. Then there exists one that works in the minimum number of rounds (expected
time?).

e Consider the last round of communication: Faker2 sees either two random outputs, or one
random and the another encoding something important.

6

e Consider the following alternative algorithm: run all but the last round of the original al-
goirthm, then make up random numbers for the last line. If this algorithm fails on more than
a negligible amount of the time, we can break the original algorithm.

e Run the original algorithm; then, Foker2 can substitute something random for first one party
and then the other party’s output. It shouldn’t matter if we change the Snorer’s output, but
apparently a non-negligible amount of the time we will be unable to retrieve the answer if we
model Faker! with a random beacon. Fakerl is caught; the original algorithm does not work.

e But, if we can always shrink a correct protocol, eventually we get to a single line protocol,
and that simply doesn’t work. Contradiction.

Open Questions

It still remains to be seen if the informal proof outlined above can be formalized. We would also
like to ask if there exists an interesting stronger extension of multi-party computation different
from the one proposed here. Especially interesting would be security against malicious adversaries,
which the current protocol is not secure against.

References

1]

L. von Ahn and N. Hopper. Public-Key Steganography. In: Advances in Cryptology —
Proceedings of Eurocrypt '04, pages 323-341, 2004.

L. von Ahn, N. Hopper and J. Langford. Covert Two-Party Computation In: Thirty-Seventh
Annual ACM Symposium on Theory of Computing ’05, pages unknown, 2005.

C. Cachin. An Information-Theoretic Model for Steganography. Information Hiding, 2nd
International Workshop, pages 306-318, 1998.

N. Dedic, G. Itkis, L. Reyzin and S. Russell. Upper and Lower Bounds on Black-Box Steganog-
raphy. To appear in Theory of Cryptography Conference (TCC), 2005.

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. Nineteenth Annual
ACM Symposium on Theory of Computing, pages 218-229.

N. Hopper, J. Langford and L. Von Ahn. Provably Secure Steganography. Advances in
Cryptology — Proceedings of CRYPTO ’02, pages 77-92, 2002.

A. C. Yao. Protocols for Secure Computation. Proceedings of the 23rd IEEE Symposium on
Foundations of Computer Science, 1982, pages 160-164.

