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1 Introduction

We examine advantages of using smooth basis functions in classifying fMRI
(functional MR Imaging) data. fMRI data is a measurement of neural ac-
tivity in the brain. It allows us to see how each part of the brain responses
to stimuli. The task in which we are interested is to identify mental states
from some given fMRI data. Specifically, we want to classify between two
different states using labeled data. There are two main challenges for this
task. First, fMRI data is very noisy and high-dimensional. Second, we only
have limited amount of training data.

One of the traditional ways is to use Gaussian Naive Bayes (GNB) clas-
sifier. The Naive part means we assume that each data point, i.e. activation
at each voxel at each time point, is independent. The Gaussian part means
we also assume that each data point is drawn from a normal distribution
with parameters, µ and σ.

Technically, fMRI measures changes in the blood oxygenation level, also
known as hemodynamic response (HR) which is an indirect correlate of
neural activity in the brain. The hemodynamic response to a stimulus can
last some period of time. Therefore, it makes sense to believe that fMRI data
is composed of many HRs fired at different times. Since the HR is simply
blood flow, we should be able to model each HR with a smooth function
over time. Consequently, this idea suggests us that we should be able model
fMRI data using composition of smooth functions.

In this thesis, we modify the traditional GNB so that, instead of learn-
ing µ at each time point independently, we learn weights of smooth basis
functions and calculate µ accordingly. Furthermore, by doing so, it allows
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us to capture the time-dependence feature of the data. In addition, we also
have the benefit of having fewer parameters to estimate. In our model with
basis functions, for each voxel, we only need to estimate B × C parameters
where B is the number of basis functions we use and C is number of classes,
while the traditional GNB needs to estimates T ×C parameters where T is
the number of time points. Usually, T is greater than B.

2 Approach

Our goal is to incorporate the idea of basis functions into the traditional
GNB calculation. We design a new classifier based on the traditional GNB,
called GNB with basis functions. Most part of the calculation remains the
same. That is, at each time point, we want to find µ that maximizes the
likelihood of a class given the data. However, instead of estimating µ us-
ing the sample mean, we estimate weights of basis functions and calculate
µ based on them. We assume that data from any two different voxels is
independent, and data at different time points is also independent. Also, we
assume that data at each time points is drawn from a normal distribution.
Given labeled training examples, we can learn the weights of basis functions
for each voxel by the following calculation.

Let X be a matrix containing only training examples of class c.
For each class c,

P (c|X) =
P (X|c)P (c)

P (X)

∝ P (X|c)P (c)

Assume any two examples are independent. Suppose there are N examples
in X and each example contains T data points per voxel.

P (X|c) =

N
∏

i=1

P (Xi|c)

=
N
∏

i=1

T
∏

t=1

P (Xit|c)

Let hi(t) is the value of the i-th basis function at time point t.
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Let B be the number of basis functions.

P (Xit|c) ~ N(µc(t), σc(t))

where

σc(t) =

√

√

√

√

1

N

N
∑

i=1

(Xit − X̄t)2

µc(t) =

B
∑

b=1

w
(c)
b hb(t)

We want to find ~w(c) that maximizes P (c|X), or equivalently P (X|c).

l = lnP (X|c)

=
N
∑

i=1

T
∑

t=1

lnP (Xit|c)

=
N
∑

i=1

T
∑

t=1

ln

(

1

σc(t)
√

2π
exp

( −1

2σc(t)2
(Xit − µc(t))

2

))

∂l

∂w
(c)
k

=
N
∑

i=1

T
∑

t=1

[(

Xit − µc(t)

σc(t)2

)

hk(t)

]

Solve ∂l

∂w
(c)
k

= 0 ∀k

∂l

∂w
(c)
k

= 0

N
∑

i=1

T
∑

t=1

[(

Xit − µc(t)

σc(t)2

)

hk(t)

]

= 0

Assume that each σc(t)
2 is roughly equal. Thus,
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N
∑

i=1

T
∑

t=1

(

Xithk(t) − hk(t)
B
∑

b=1

w
(c)
b hb(t)

)

= 0

N
∑

i=1

T
∑

t=1

Xithk(t) =
N
∑

i=1

T
∑

t=1

(

hk(t)
B
∑

b=1

w
(c)
b hb(t)

)

= N
T
∑

t=1

(

hk(t)
B
∑

b=1

w
(c)
b hb(t)

)

= N
T
∑

t=1

B
∑

b=1

hk(t)w
(c)
b hb(t)

= N

B
∑

b=1

T
∑

t=1

hk(t)w
(c)
b hb(t)

So
∑B

b=1

(

w
(c)
b

∑T
t=1 hk(t)hb(t)

)

=
P

N

i=1

P

T

t=1 Xithk(t)
N .

We can represent this equation in matrix form,








...
∑T

t h1(t) · hk(t) · · · ∑T
t hb(t) · hk(t)

...

















...

w
(c)
k
...









=









...
P

N

i

P

T

t
Xit·hkt

N
...









Next, we represent the preceding equation by A · ~w(c) = Z.

So ~w(c) = A−1Z

However, we can write A = R·RT where R =











h1(1) h1(2) · · · h1(T )
h2(1) h2(2) · · · h2(T )

...
...

hB(1) hB(2) · · · hB(T )











Thus ~w(c) = (R · RT )−1Z

Once we know ~w(c), we can obtain µc(t) by using this equation µc(t) =
∑B

b=1 w
(c)
b hb(t).

Next, we need to consider about choices of basis functions, hi(t). There
are two important questions we need to answer: what our basis functions
should be and how many basis functions we should use. Basis functions
can be any continuous functions. However, Gamma functions and Gaussian
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functions are commonly used to model the hemodynamic response. There-
fore, we will focus on those two in this study. From this point on, we will
look into answering the questions about basis functions and examine how
well the GNB with basis functions does. Figure 1 and 2 show examples of
possible basis functions. Figure 3 shows the output µ’s of the two classifiers.
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Figure 1: 3 Gamma functions as basis functions

3 Experiments

Basically, our experiment framework is consist of two parts: training and
testing. Both training examples and testing examples are labeled. For train-
ing, we give training examples and their labels to the classifier. After being
trained, the classifer takes in testing examples and outputs their predicted
labels. To measure the performance of the classifer, we compare the pre-
dicted labels with the true labels.

In this study, we conduct two types of experiments: experiments using
synthetic data and experiments using real data. By experimenting on the
synthetic data, we can compare the GNB with basis functions with the
traditional GNB, given that we have control of the data. In addition, by
experimenting on the real data, we will have a better idea of how the GNB
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Figure 2: 7 Gaussian functions as basis functions

with basis functions does with the real fMRI data.

3.1 Experiments with synthetic data

Working with synthetic data gives us many advantages since we can control
the true nature of the data. Moreover, we can have as many examples as
we want. The synthetic data is generated by using a set of basis functions,
gi(t). These gi(t)’s are known to the generator. Then, for each voxel and
each class, the generator randomly draws a weight for each gi(t), say zi, from
a uniform distribution from 0 to 1. Next, the generator adds some noise to
the weighted sum of gi(t). Specfically, the generator outputs f(t) which is
drawn from a normal distribution with (µ =

∑

i zigi(t), σ̄) where σ̄ is the
noise parameter.

3.1.1 Correct basis functions

For our first experiment, we generate examples using 3 Gamma functions as
basis funtions. That is gi(t) = 1

τ(n−1)!

(

(t/τ)(n−1)e−(t/τ)
)

and the parameters

(τ, n) are the following: (1.5,3), (2,5), (2.5,7). There are 2 classes. We
generate 100 available training examples and 100 available testing examples
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Figure 3: µ’s of trained classifiers of a voxel

where exactly half of them are from class 1 and the other half are from class
2. We randomly select only N examples for the actual training, but we use
all 100 testing examples for testing. Each example contains the data of 40
voxels and, in each voxel, there are 16 data points representing data at each
time point.

For this particular experiment, we set hi(t) = gi(t). That is we give the
correct information about basis functions to the classifier. However, zi is
still unknown to the classifier, and the classifier needs to estimate them.

We run the experiment in different settings. We vary the noise, σ̄, and
number of training examples used, N . In each setting, we repeat the exper-
iment 30 times. The result is shown in Table 1 and 2.

We can see a significant improvement when there is enough training
examples, and it depends on how much noise in the data. Hence we can
conclude from this experiment that the GNB with basis functions performs
better than the traditional GNB when the classifier knows exactly what
gi(t)’s are.
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σ̄
N 0.1 0.2 0.3 0.4

10 0.869 ± 0.068 0.633 ± 0.067 0.563 ± 0.055 0.546 ± 0.037
20 0.997 ± 0.006 0.789 ± 0.052 0.640 ± 0.064 0.605 ± 0.044
30 1.000 ± 0 0.879 ± 0.032 0.707 ± 0.046 0.642 ± 0.053
40 1.000 ± 0 0.922 ± 0.027 0.721 ± 0.037 0.669 ± 0.050
50 1.000 ± 0 0.945 ± 0.031 0.741 ± 0.045 0.699 ± 0.043
60 1.000 ± 0 0.961 ± 0.015 0.775 ± 0.032 0.702 ± 0.031
70 1.000 ± 0 0.972 ± 0.012 0.799 ± 0.031 0.721 ± 0.034
80 1.000 ± 0 0.975 ± 0.011 0.814 ± 0.027 0.734 ± 0.029

Table 1: Accuracies of the traditional GNB

σ̄
N 0.1 0.2 0.3 0.4

10 0.903 ± 0.068 0.657 ± 0.062 0.567 ± 0.052 0.546 ± 0.042
20 0.999 ± 0.003 0.838 ± 0.044 0.647 ± 0.052 0.608 ± 0.038
30 1.000 ± 0 0.925 ± 0.027 0.738 ± 0.052 0.659 ± 0.050
40 1.000 ± 0 0.952 ± 0.023 0.761 ± 0.037 0.683 ± 0.046
50 1.000 ± 0 0.969 ± 0.017 0.795 ± 0.046 0.704 ± 0.038
60 1.000 ± 0 0.976 ± 0.012 0.822 ± 0.032 0.726 ± 0.032
70 1.000 ± 0 0.986 ± 0.009 0.847 ± 0.028 0.750 ± 0.033
80 1.000 ± 0 0.982 ± 0.008 0.864 ± 0.022 0.764 ± 0.026

Table 2: Accuracies of the GNB with correct basis functions

3.1.2 Sensitivity tests

Now, let’s consider the following questions. What would happen when the
classifier does not have prior knowledge about correct basis functions? How
sensitive is the accuracy we change the number of basis functions or the
shape of basis functions? The setup of this experiment is the same as the
previous, except that we are not going to tell the classifier what the gi(t)’s
are and how many there are. In addition, we fix σ̄ = 0.3 for this experiment.
The result is shown in Table 3, 4 and 5.

N
Basis functions 20 40 60 80

traditional GNB 0.635 ± 0.045 0.722 ± 0.043 0.780 ± 0.028 0.815 ± 0.025

Table 3: Accuracy of the traditional GNB
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N
Basis functions 20 40 60 80

1 Gamma fn
(2,5) 0.582 ± 0.042 0.620 ± 0.044 0.658 ± 0.043 0.694 ± 0.027
2 Gamma fns
(1.5,3)(2,5) 0.653 ± 0.054 0.754 ± 0.035 0.826 ± 0.032 0.848 ± 0.026
3 Gamma fns
(1.5,3)(2,5)(2.5,7) 0.655 ± 0.046 0.761 ± 0.041 0.818 ± 0.029 0.856 ± 0.019
3 Gamma fns
(2,2)(3,4)(2.5,6) 0.661 ± 0.047 0.750 ± 0.039 0.809 ± 0.034 0.834 ± 0.023
3 Gamma fns
(1,5)(1,7)(1,9) 0.649 ± 0.052 0.750 ± 0.032 0.805 ± 0.029 0.841 ± 0.025
3 Gamma fns
(2,1)(3,3)(4,5) 0.640 ± 0.048 0.742 ± 0.039 0.802 ± 0.033 0.835 ± 0.020
5 Gamma fns
- correct ones incl 0.656 ± 0.048 0.744 ± 0.034 0.817 ± 0.033 0.855 ± 0.018
5 Gamma fns
- no correct ones 0.654 ± 0.058 0.748 ± 0.045 0.812 ± 0.029 0.848 ± 0.026
7 Gamma fns
- correct ones incl 0.632 ± 0.051 0.755 ± 0.042 0.791 ± 0.030 0.832 ± 0.029
7 Gamma fns
- no correct ones 0.650 ± 0.039 0.744 ± 0.042 0.783 ± 0.030 0.845 ± 0.025

Table 4: Accuracies of the GNB with basis functions using Gamma functions
as basis functions

The result shows that when we have enough expressive power, i.e. enough
number of basis functions, we can get a comparable accuracy to the tradi-
tional GNB by using Gamma functions or Gaussian functions with reason-
able parameters. However, if we want get higher accuracy than what the
traditional GNB does, we need to be very careful about choosing basis func-
tions. Having too many basis functions results in a drop in accuracy. In one
of the cases shown in Table 4, although the set of 7 Gamma basis functions
contains the correct basis set, the accuracy in this case is lower than the case
where we use 5 Gamma functions with none of the correct basis as its subset.
Having too few basis functions also results in a drop in accuracy because of
the lack of expressive power. In conclusion, we need to have enough basis
functions so that we have enough expressive power, but we cannot have too
many of them. This experiment suggests a way to find the correct basis set
for the data. First, we try to find out how many basis functions should we
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N
Basis functions 20 40 60 80

3 Gaussian fns 0.652 ± 0.044 0.734 ± 0.035 0.809 ± 0.032 0.836 ± 0.025
5 Gaussian fns 0.650 ± 0.054 0.731 ± 0.031 0.792 ± 0.032 0.829 ± 0.023
7 Gaussian fns 0.664 ± 0.051 0.748 ± 0.041 0.790 ± 0.035 0.835 ± 0.026

3 Linear fns 0.636 ± 0.050 0.736 ± 0.036 0.794 ± 0.031 0.825 ± 0.022
4 Linear fns 0.638 ± 0.041 0.735 ± 0.044 0.789 ± 0.031 0.823 ± 0.028

Table 5: Accuracies of the GNB with basis functions using other kind of
basis funtions

use for the given data. We can use any reasonable functions, Gamma or
Gaussian, for the first step. Keep in mind that the functions should be ex-
pressive enough to be able to represent the true basis functions. Next, once
we know how many basis function are there, we fine-tune the form and the
parameters of the basis functions to get the best performance. Although this
method does not guarantee the best basis set, it is a fast and deterministic
way to obtain a reasonable basis set. Figure 4 shows accuracies of the GNB
with correct basis set at when we vary the number of training examples.
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Figure 4: Comparison of accuracy between the two classifiers
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3.2 Experiments with real data

Now, we are going to conduct an experiment using real fMRI data. The data
is obtained from a study called ”‘StarPlus”’. On each trial, the subject was
presented a sentence and a picture. Our goal is to identify if the subject is
looking at a picture or a sentence. There are total of 80 labeled examples we
can use. Half of them are from the picture class, and the rest are from the
sentence class. We only consider the data from 40 most active voxels. The
images were taken every 500 ms for 8 seconds. That means we have 16 data
points for every voxel. We only use N examples to train the classifiers, and
use the rest to test. We use the method suggested in the previous experiment
to find the number and parameters of basis functions. The result is shown
in Table 6-9.

N
Basis functions 10 15 20 25

normal GNB 0.688 ± 0.069 0.717 ± 0.053 0.754 ± 0.059 0.782 ± 0.054

1 Gamma fn 0.674 ± 0.087 0.730 ± 0.086 0.809 ± 0.055 0.806 ± 0.056
2 Gamma fns 0.682 ± 0.081 0.731 ± 0.069 0.780 ± 0.059 0.793 ± 0.053
3 Gamma fns 0.692 ± 0.086 0.752 ± 0.057 0.797 ± 0.053 0.809 ± 0.053
5 Gamma fns 0.691 ± 0.074 0.761 ± 0.045 0.773 ± 0.059 0.795 ± 0.059
7 Gamma fns 0.674 ± 0.058 0.736 ± 0.072 0.762 ± 0.065 0.793 ± 0.047

Table 6: Accuracies from the classifiers using fMRI data, varying the number
of basis functions

N
Basis functions 30 35 40

normal GNB 0.759 ± 0.059 0.747 ± 0.061 0.778 ± 0.067

1 Gamma fn 0.814 ± 0.051 0.797 ± 0.057 0.803 ± 0.058
2 Gamma fns 0.817 ± 0.063 0.822 ± 0.062 0.811 ± 0.080
3 Gamma fns 0.801 ± 0.055 0.807 ± 0.052 0.803 ± 0.060
5 Gamma fns 0.801 ± 0.045 0.810 ± 0.055 0.809 ± 0.065
7 Gamma fns 0.773 ± 0.047 0.780 ± 0.050 0.785 ± 0.070

Table 7: Accuracies from the classifiers using real fMRI data, varying the
number of basis functions (continued)

In general, we can see improvement over the traditional GNB. Especially,
when N = 35, we have a clear improvement with 3 Gamma functions over
the traditional GNB. As we can see from the result, we have comparable or
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N
Basis functions 10 15 20 25

3 Gamma fns
(2,2)(3,4)(2.5,6) 0.678 ± 0.063 0.750 ± 0.053 0.766 ± 0.058 0.793 ± 0.056
3 Gamma fns
(1,5)(1,7)(1,9) 0.689 ± 0.078 0.751 ± 0.062 0.773 ± 0.061 0.773 ± 0.063
3 Gamma fns
(2,1)(3,3)(4,5) 0.673 ± 0.080 0.760 ± 0.071 0.783 ± 0.050 0.804 ± 0.068
3 Gaussian fns 0.659 ± 0.076 0.731 ± 0.055 0.783 ± 0.064 0.805 ± 0.060

Table 8: Accuracies from the GNB with basis functions, varying the form
of basis functions

N
Basis functions 30 35 40

3 Gamma fns
(2,2)(3,4)(2.5,6) 0.786 ± 0.077 0.802 ± 0.050 0.806 ± 0.069
3 Gamma fns
(1,5)(1,7)(1,9) 0.811 ± 0.048 0.830 ± 0.062 0.815 ± 0.060
3 Gamma fns
(2,1)(3,3)(4,5) 0.805 ± 0.047 0.807 ± 0.055 0.804 ± 0.062
3 Gaussian fns 0.791 ± 0.065 0.825 ± 0.058 0.809 ± 0.051

Table 9: Accuracies from the GNB with basis functions, varying the form
of basis functions (continued)

better results when we use the GNB with basis functions. An explanation
for this phenomenon is that the GNB with basis functions needs fewer pa-
rameters to estimate, compared to the traditional GNB. The result suggests
that, in the case of limited training examples, the GNB with basis functions
is a better choice for this learning task. Nonetheless, from a theoretical point
of view, this should apply only when we have a small N . When N is large
enough, the traditional GNB should be able to estimate all the parameters
it needs, and it should be able to perform at the same or higher level as
the GNB with basis functions. Figure 5 compares the accuracies of both
classifiers when we vary the number of training examples.
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Figure 5: Accuracies of the two classifiers on real data, using 3 Gamma
functions as basis functions

4 Conclusion and future work

Motivated by the hemodynamic response, we extend the traditional GNB by
adding smooth basis functions. There are two main benefits of using basis
functions. First, basis functions can help capture the smoothness feature in
the time-series data. Second, we reduce the number of parameters we need
to estimate. As the result of the experiments, we see improvement with the
GNB with basis functions over the traditional GNB when the number of
training examples is small. However, we need to consider about the number
and the shapes of basis functions for each data set. We suggest a fast and
deterministic method to find out what they are, but it does not guarantee
the best set of basis functions. One suggestion is to estimate the number
and the parameters of basis functions by using EM algorithm. The idea of
using basis functions is not limited only to fMRI data. We can apply the
GNB with basis functions with other time-series data as well.
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