

Extending Aura with an Augmented Reality
Interface
CHRISTOPHER PRIDE
ADVISOR: DAVID GARLAN
__

In a ubiquitous computing environment augmented reality would be an ideal choice for a display for the user.
An augmented reality display assists users by adding computer generated information to their perception of
reality, thus making it ideal for ubiquitous computing. Unfortunately augmented reality is technically difficult
and costly to implement even when the application is designed for its use from the ground up. However, many
of the necessary devices for a low fidelity implementation of augmented reality are readily available in a
ubiquitous computing environment. Our research focuses on using Aura, a ubiquitous computing framework, to
marshal the available devices in the environment. These devices can then be connected within the framework to
provide an augmented reality display to the user at the best fidelity possible, given the available resources in a
user's environment.
__

1. INTRODUCTION

In a ubiquitous computing environment ideally a user’s devices should vanish into the

background. An augmented reality display is traditionally thought of as a head mounted

display that adds real time computer generated information to the user’s view of reality.

A more general description of an augmented reality display is that it adds computer

generated information to the user’s perception of reality through whatever devices are

available. In this way it is not limited to obtrusive head mounted displays. This makes an

augmented reality display ideal for a ubiquitous computing environment.

 With today’s technology designing a program to use an augmented reality display is

expensive and restrictive. The program would need to be unique to the devices used and

would need to be built knowing ahead of time the requirements of each device you will

be working with. Additionally, as devices change or as new ones are released, the

program would need to be retooled to interface with these new devices. However in a

ubiquitous computing environment the necessary devices for this type of a display

method are already available in the environment. In a ubiquitous computing environment,

in order to provide context aware features, there is generally a device for location

detection, which is something that can be used by an augmented reality display to

determine when to update information being given to the user. Frequently a user is

carrying a device with a screen, such as a PDA or cell phone; these could also be used to

provide information to the user.

There are many challenges in bringing together an augmented reality display. Some

of the questions that arise include: How to design input methods for an augmented reality

display; how best to actually display information to the user; what method to use to

provide output on a head mounted display; how applications change in such an

environment; and, what level of detail of contact information is necessary? However the

problem that we find most intriguing, and that seems to supersede all others is how to

bring together multiple devices currently in use to establish an augmented reality display.

Some of these questions have been addressed, in part, by existing research. The

Tinmith project [1] has designed a wearable computer system for high fidelity augmented

reality. Their system, while it provides an excellent solution to providing a good

augmented reality display that is not limited by the environment, is still expensive and

requires development targeted at their platform. iCrafter, a service framework for

ubiquitous computing environments [2], addresses some of the problems of how to deal

with user interfaces in this type of environment using their framework.

We propose to use Aura [3], a ubiquitous computing framework, to marshal available

hardware into the best possible augmented reality display. Aura communicates with

hardware in the environment and selects from devices and applications available a subset

that can perform the services necessary to accomplish the user’s tasks. Thus if we give

the user a task that requires the use of an augmented reality display we can use Aura to

bring together the available resources to provide such a display.

The contributions of this thesis are threefold: We develop a new abstract view of

augmented reality appropriate for retargeting in heterogeneous pervasive computing

environments. We demonstrate that Aura can be used to marshal necessary services to

provide an augmented reality interface. We identify new capabilities needed in the Aura

system for the selection of suppliers and for the configuration of tasks to use complex

service connections.

In the remainder of this paper we review the topics of Pervasive/Ubiquitous

Computing, Augmented Reality. We introduce the Aura framework in detail. We then

discuss the design and implementation of an Augmented Reality interface under Aura.

Finally, we discuss the consequences of what we found and suggest further work.

2. CONTEXT/RELATED WORK

2.1 Ubiquitous Computing

2.1.1 Weiser’s Vision. [4] Ubiquitous or Pervasive Computing is a model for

computation where the computers have been integrated into everyday life often in a

transparent way. This vision of computing was introduced in the 1980s by Mark Weiser.

 Weiser envisioned a future of computing where computers fade into the background.

His vision included three unique computer interfaces: tabs, pads, and boards. Where tabs

are effectively post-it notes, pads are sheets of paper, and boards are whiteboard sized.

The user interacts with the interfaces as they would interact with non-computing devices,

requiring no unusual or new skill-sets. The devices all work together in a seamless

manner and fade into the background; thus their ubiquity.

2.1.2 Applications. The field of ubiquitous computing research topics is very broad so

there are many different applications. Some well known applications in ubiquitous

computing are the smart home projects. [5] The applications of RFID tags are often in the

realm of ubiquitous computing. [6]

2.2 Augmented Reality

The concept of augmented reality is that a user’s experience of an environment can be

augmented with computer generated information. The most commonly discussed form of

augmented reality is overlaying 3D information using some form of head mounted

display. In this paper we consider a more general form of augmented reality.

2.2.1 Applications. Much research has been devoted to very specific applications of

augmented reality. There is a large body of research on using augmented reality

visualizations in medicine. For example, this class of application often uses an

augmented reality display to add visualizations of sensor data on patients (Ultra sound 3D

overlays [7] and similar applications [8]). Another large field of research involves the

use of augmented reality displays for manufacture and repair. These applications provide

schematic overlays for technicians (Airplane engine plans [9], building schematics [10],

and printer maintenance [8]). There are a large number of projects that work on outdoor

modeling and exploration [10] [11] [12] [13].

2.2.2 Implementation. There are many different styles of implementation. The style of

augmented reality that is most often discussed, where 3D images are overlaid on top of

regular vision, is implemented using a head mounted display. There are two main

methods to implement this. In one method a camera is coupled with a closed pair of

goggles where the overlay is added to the camera images and then displayed on the

goggle’s lenses. The second method makes use of a semi-transparent head-mounted

display and the computer generated information is displayed directly on that. [8]

Recently several toolkits have been released for the implementation of augmented

reality applications. Some of the toolkits work with the use of markers. They use visual

recognition for markers that are placed in and can be recognized in the environment. [14]

[15] Other solutions use cameras which must be calibrated to the environment. This

requires programming to establish objects that are in the physical world and then allow

for the addition of other virtual objects. [16] The Tinmith project uses orientation and

location sensors to adjust the overlay which they generate in a variety of ways. [17]

2.3 Aura [3]

The Aura ubiquitous computing framework is designed with the idea that the user’s

attention is the most valuable resource in a system [18]. Since advances in computing

technology have not changed a user’s ability to pay attention, the framework attempts to

eliminate extraneous distractions of computer interaction as much as possible.

Aura is a task-oriented system. It is built around the concept that the user wants to

accomplish tasks rather than run programs. To accomplish a task a user must employ a

number of services. A service is something like text editing; this could be provided by

Emacs, MSWord, or any number of programs. Each service is supplied by a supplier.

More than one service could be provided by one supplier.

Fig. 1. Aura Architecture

Displayed in Figure 1 is a diagram of the Aura Architecture. Described in the

continuing sections are

2.3.1 Prism. Prism

Environment Manager

correct suppliers for ea

The Prism compon

the user to select task
 many of the principal components in the Aura Architecture.

 is the component that the user utilizes for task management. The

 is what keeps track of the available suppliers and marshals the

ch task that Prism asks for.

ent of Aura allows the user to configure his or her tasks. It allows

s and setup what services are needed for each task. It allows for

multiple configurations of services for each task and maintains a feasibility rating for

each task. It also contains some context awareness control for switching between tasks.

Prism requests a set of suppliers for a task from the Environment Manager and when

it returns a list it considers the preferences of the user about what type of suppliers they

prefer and uses that to choose what set of suppliers to use. Once it has a set of suppliers it

can set the configuration of the suppliers to the correct settings for the user’s task. [19]

2.3.2 Environment Manager. The Environment Manager controls and/or selects from

available suppliers. Prism requests a set of services for a task from the Environment

Manager. The Environment Manager considers the available suppliers and then proceeds

to choose the best available suppliers for the task. It then contacts the suppliers telling

them to activate and sets up the connections. It keeps track of the status of the suppliers

and will notify Prism if there are problems with a supplier. [19]

2.3.3 Supplier. With Aura, a supplier is the front end for a device or application. The

supplier needs to be able to manage (or manipulate) the settings of the device or

application for the user and communicates with Prism and the Environment Manager.

[19]

 2.3.4 Connections. The connections infrastructure establishes and maintains the

connections between suppliers, the Environment Manager, and Prism. There is also a

specification for connections between suppliers. Suppliers are connected to each other by

the Environment Manager and manage the connections on their own. [19]

2.3.5 Aura Operations. So to give an idea of how this works, we will go through the

operations involved in a user reviewing a video. The user would create a task, review

video. This task would need a text editor and video player. The user could then set up

preferences for those services including the video to play and the file to save the review

to. Then the user would focus the task and Prism would request suppliers for those

services from the Environment Manager. The Environment Manger would check the

suppliers in the environment and choose suppliers for the text editor and video player

services and start these services. The Environment Manager will tell these suppliers to

start and tell Prism who they are. Prism will send the initial configuration to the suppliers

and then the user can interact with the suppliers.

 3. WHY AURA?

In a ubiquitous computing environment augmented reality is an amazing tool. It is,

however, still difficult to marshal the necessary devices, and Aura is, by design, very

good at this type of support. In particular; the Environment Manager is very good at

selecting the most preferable suppliers in the environment; the concept of suppliers

meshes very well with assembling an augmented reality display in a heterogeneous

scenario; and Prism allows the user to specify preferences for one device over another.

In our design we discuss: How to model an augmented reality display as a collection

of services; How an augmented reality display can be degraded to different fidelities; The

reason we focused on thinking through only one type of content to display; and how

suppliers can be set up to support degrading to different fidelities of augmented reality.

 4. DESIGN

To extend Aura with an augmented reality display we needed to break down the concept

of an augmented reality display into a set of services. In the end we decided on breaking

it down into three classes of services: input services, content services, and output

services.

When working on this design, rather than focusing just on implementing augmented

reality at the highest fidelity, we focused on designing a solution that would allow a best

attempt augmented reality interface. Thus if the necessary suppliers for high fidelity

augmented reality are not available then we would employ the best suppliers available to

deploy the best quality augmented reality possible in the situation, even if it is not ideal.

Thus if we don’t have sensors that can accurately track head movement to keep an

overlay aligned, we can instead use a lower fidelity augmented reality display.

While designing this it became clear to us that to work this through properly we

needed to focus on a single type of application. We chose to work with path guidance

because this is one application where it is easy to consider different levels of fidelity. For

example the highest fidelity level could be done with 3D arrows interwoven with the

landscape, mid level fidelities could include: compass based navigation, map with a

marker, or text step–by-step instructions. The lowest fidelity level could be a map with

the path overlaid or textual instructions from the beginning to the end.

One of the major challenges was determining how to set up the display components

such that it was capable of degrading in this fashion. We considered a number of different

methods for determining this. The method of output selected would depend on what

output methods are available and what types of input devices will be utilized. One

possible method was to have a different supplier for each display at each level of

augmented reality fidelity. This would necessitate a large overhead to support so many

different fidelities for each class of display. Another possible solution was to have a

translation supplier, which would be informed of the different types of input suppliers

and the output suppliers in use and then would determine the correct type of output. This

turned out to be unfeasible under the current Aura architecture, as Aura lacks a method

for a supplier to be informed of the different types of suppliers available. The method

that we adopted involved a mix between the two types of suppliers. The design we settled

on was to have one translation supplier for each type of augmented reality fidelity due to

limitations in the current design of Aura.

5. IMPLEMENTATION

We decided to simulate the suppliers as the effort of assembling programming the actual

physical devices necessary for augmented reality was beyond the scope of this project.

Aura already has a p

other applications. To

are called, to support

in Aura run a script

received is based on

were sent either to

extended this to allow

Fig. 2. Supplier Layout

 Implementing a

fidelity level has its

only offers a static se

for every compatible

configuration was as

Currently Aura la

used. In particular t

around this by addin

editing by a user.
rovision for simulating an application as has been demonstrated in

 meet our needs for this simulation we extended the “stubs,” as they

 connections between suppliers. The current implementation of stubs

 that has three types of actions: send, receive, and sleep. What is

 Aura message types. The send action uses prebuilt messages that

Prism or the Environment Manager based on message type. We

 the supplier stub to send messages to other suppliers.

set of stubs based on the design, where each augmented reality

own display generator stub was not difficult. However since Aura

rvice selection in the configuration we had to write a configuration

 type of input and output stub for each display generation. Each

signed a weight based on the perceived value of the configuration.

cks the ability for the user to configure some of the features that we

he user cannot set up connections between suppliers. We worked

g the connections to underlying configuration files not intended for

6. DISCUSSION

In this section we revisit some of the design decisions that we mentioned in Section 3 in

more detail and explain our design choices. We also discuss the available alternatives and

introduce some suggested changes to Aura, which are discussed further in Section 7.

We were considering the augmented reality interface to be a single composite service,

which is defined in the Aura Software Architecture specification [19]. This however was

not actually implemented in the current version of Aura. We worked around this by

bringing the three classes of services to the top level. The abstraction of the three classes

or services (input, content, and output) worked very well with Aura as it is currently

implemented. A different service grouping might have worked better if the composite

service architecture was working. A possible configuration with that functionality would

be having all the support services for an augmented reality display bundled into one

composite service and having the content separate, with hooks for the content to get

location information.

A major challenge in the development of our solution was the fact that only a static

configuration of service could be selected. The language that Prism uses to request

suppliers from the Environment Manager could be extended to allow for a more dynamic

supplier selection where some suppliers are chosen based on the other suppliers available.

Even a simple language that only allows for “if/ then” clauses would have made service

selection a useful tool for configuration. A principle design decision in Aura is the

concept of “Quality of Service” parameters for each supplier. In the Aura design two

suppliers of the same service that have different quality of service parameters have to be

completely interchangeable. What would have been more useful would be to control the

selection of suppliers via quality of service parameters or by feature set. For example MS

Word is a text editor, yet it has features in addition to text editing. It provides spell

checking and formatting as well as text editing. In contrast to this, MS Notepad only has

text editing. Despite the obvious differences in the available features of each editor, if

they were both registered as providing a text editor service then Aura would consider

them the same. Having some type of feature set in addition to the service type and then

having the ability to dynamically pick which services or feature sets you want would

have made the selection of a display generator much easier.

Another solution that would be useful for this application would be to have a query to

ask about the other suppliers that are currently in use. Then the display generator could

use the quality of service information from the other suppliers to choose which type of

output to use. This would permit (or support) a much more general service that fits many

suppliers. The display generation service would then choose what type of display to use

based on the quality of service of the other suppliers. This would increase the flexibility

of the service by permitting suppliers to be totally interchangeable.

In our implementation we assumed that the data was sufficiently rich to be able to

choose different levels of display. A very interesting question along these lines is what is

there about a content supplier that could change the type of content it provides based on

the type of display that will be in use. Currently this would require a huge number of

additional configurations to be generated. There are a number of ways this could be made

more convenient. The method of having different display generation services and a

service selection language that allows for conditional service selection statements would

allow for such a content supplier to also select that based on the display generation

service in use. The other solution of the display generation supplier taking in the quality

of service terms could be that there is a connection available for a supplier to query the

display generation supplier about what style of display will be used.

Possible future work could include replacing some of the stubs in our work with real

applications. For the sensor input a solution like the context information service [20]

could be used. Replacing the display stub with a real supplier is another option. Looking

at this from a human-computer interaction standpoint would also be interesting.

Questions to consider are how the user best provides input to the system and at what

point is the system more obtrusive than ubiquitous? The challenge of data representation

between the components and the content is another interesting problem.

Other future work could include developing a full package of suppliers for different

fidelity levels. This could be put together with work on the data representation between

the content and the display to provide an augmented reality tool kit for the development

of content that would work with an augmented reality interface on Aura. If developing

augmented reality applications for Aura were easy, then work could also be done to look

into using Aura task management capabilities and context aware functionality to mix

tasks, and switch between them. For example a user could be performing one task using

an augmented reality display and need to receive some notification about another task.

How best Aura could be used to give the user the notification without interrupting his

existing task.

7. AURA CHANGES

In my work with Aura I found a number of features that were either unimplemented or

underspecified. There were several features that I identified that would allow for

development of more powerful and flexible applications. There were some problems with

the Prism user interface lacking some of the necessary capabilities for advanced features.

Connections between suppliers lacked robustness. The task descriptions language lacked

power.

In Prism there was no way to configure a task that needs connections between

services. There are a couple ways that this could have been represented in the user

interface. A section could be added to the task description where there is an option to add

a connection. Then a configuration screen could be displayed for the connection where

the user could select the components to connect and the details of the type of connection.

Then back on the task description panel the user could select which configurations would

use that connection.

The specification for connections between suppliers is robust but the implementation

of connections in the existing Aura codebase was incomplete. Currently since there was

no user interface for the addition of connections there was difficulty configuring the

connections behind the scenes. This could be solved by a more complete implementation

of the specification.

Currently there is no specified protocol for inter-supplier communication. I feel that

having some specification for the format in which they should send messages between

components would encourage development of interoperable suppliers. I also feel that

having some set of defined message classes would be of great value. Specifically a

standard for requesting details about the other supplier would help the development of

suppliers designed to communicate. Depending on what type of suppliers are connected

together the suppliers may want to send very different types of information based on what

the other suppliers is. Having a standard in place for this either at the supplier level or

between the suppliers and the Environment Manager would ease the development of such

suppliers.

An extension of the task description language is something that would help development

of the type of application of Aura that I desired. As it stands two suppliers of a service

must be completely interchangeable though one may be more preferable than the other.

An extension of the task description language that allowed specification of configurations

based on the supplier’s quality of service would have made development of an

application such as mine much easier. Another possible way of implementing this would

be to add a new concept. Each supplier of a service would have its quality of service and

also a feature set. A feature set would be additional features above and beyond those

indicated by the type of service. So Microsoft Word and Notepad could both be services

of type “text editor” but Microsoft Word could also have features: formatting, and spell

checking. This would allow for some applications to have all services of the same type be

interchangeable. This could then be used to implement a task description language that

allows logic statements that limit configurations based on the feature set of the suppliers

available.

8. CONCLUSION

The expense of developing an application explicitly to use an augmented reality interface

means that the applications are very specific and limited. The Aura framework can be

used to help, by marshaling the necessary devices to make a best effort attempt at an

augmented reality interface. The contributions of this thesis are threefold: We presented a

conceptual breakdown of augmented reality into components suitable for use in a diverse

ubiquitous computing environment. We showed that Aura is capable of initializing a mix

of components into a configuration appropriate for an augmented reality display. We

specified capabilities in the Aura system that currently lack the necessary sophistication

for development of this style of application.

9. ACKNOWLEDGMENTS

I would like to thank the many people that supported my work on this project. Thanks go

to: David Garlan, Vahe Poladian, Bradley Schmerl, and the ABLE Research Group. I

would like to give additional thanks to David Garlan as he has been a great source of

direction and guidance through the course of the project. I would also like to thank Vahe

Poladian for his immeasurable help in patching bugs in Aura, guidance about the inner

workings of Aura, and helping determining what parts of the Aura architecture are not yet

implemented as laid out in the Aura Software Architecture [19] document. I am grateful

for the questions and insight I received at the mid-semester presentations from other

Carnegie Mellon School of Computer Science undergraduate senior thesis students and

their advisors. I would also like to thank Cyndi Pride for her assistance in proofreading

and revision.

WORKS CITED
[1]. Designing Backpacks for High Fidelity Mobile Outdoor Augmented Reality.
Piekarski, W., Smith, R. and Thomas, B. H. Arlington, VA : s.n., October 2004, 3rd
Int'l Symposium on Mixed and Augmented Reality.
[2]. ICrafter: A Service Framework for Ubiquitous Computing Environments.
Ponnekanti, Shankar R., et al. Atlanta, Georgia : Springer Berlin/Heidelberg, 2001.
Ubicomp 2001: Ubiquitous Computing: Third Internation Confrernce. Vol. 2201/2001, p.
56.
[3]. Project Aura. [Online] http://www.cs.cmu.edu/~aura/.
[4]. Weiser, Mark. The Computer for the 21st Century. Pervasive Computing. January-
March 2002.
[5]. A Survey of Research on Context-Aware Homes. Meyer, Sven and Rakotonirainy,
Andry. [ed.] Chris Johnson, Paul Montague and Chris Steketee. Adelaide, Australia :
s.n., 2003. Conferences in Research and Practice in Information Technology. Vol. 21.
[6]. Bridging Physical and Virtual Worlds with Electronic Tags. Want, Roy, et al. s.l. :
ACM Press, 1999. Proceedings of CHI'99.
[7]. Merging Virtual Objects with the Real World: Seeing Ultrasound imagery within the
Patient. Bajura, Michael, Fuchs, Henry and Ohbuchi, Ryutarou. 2, Chicago : s.n.,
July 1992, Computer Graphics, Vol. 26, pp. 203-210.
[8]. Azuma, Ronald T. A Survey of Augmented Reality. Presence: Teleoperators and
Virtual Environments. August 1997, Vol. 6, 4, pp. 355-385.
[9]. A mobile application of augmented reality for aerospace maintenance training.
Haritos, T. and Macchiarella, N. D. 2005. The 24th Digital Avionics Systems
Conference, 2005. Vol. 1, pp. 5.B.3 - 5.1-9.
[10]. Azuma, Ronald, et al. Recent Advances in Augmented Reality. IEEE Computer
Graphics and Applications. November/December 2001, pp. 34-47.
[11]. Integrating Virtual and Augmented Realities in an Outdoor Application. Piekarski,
W., Gunther, B. and Thomas, B. San Francisco, Ca : s.n., Oct 1999. 2nd Int'l Workshop
on Augmented Reality. pp. 45-54.
[12]. A Wearable Comput System with Augmented Reality to Support Terrestrail
Navigation. Thomas, Bruce, et al. Pittsburgh, PA : IEEE Computer Society, 1998. 2nd
Internation Symposium on Wearable Computers.
[13]. A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for
Exploring the Urban Environment. Feiner, Steven, et al. Cambirdge, MA : IEEE, 1997.
Proceedings International Symposium on Wearable Computing 1997. pp. 74-81.
[14]. Fiala, Dr. Mark. ARTag marker system and SDK. [Online] http://www.artag.net/.
[15]. Augmented Reality Toolkit. [Online] http://artoolkit.sourceforge.net/.
[16]. Mixed Reality Toolkit (MRT). [Online] University College London.
http://www.cs.ucl.ac.uk/staff/r.freeman/.
[17]. Piekarski, Wayne. Tinmith Augmented Reality Project. [Online] University of
South Australia. http://www.tinmith.net/.
[18]. Project Aura: Toward Distraction-Free Pervasive Computing. Garlan, D.,
Siewiorek, D., Smailagic, A., Steenkiste, P. April-June 2002, IEEE Pervasive
Computing, pp. 22-31.
[19]. Sousa, J. and Garlan, D. The Aura Software Architecture: an Infrastructure for
Ubiquitous Computing. s.l. : Carnegie Mellon Technical Report, CMU-CS-03-183, 2003.
[20]. An Integrated Contextual Information Service for Pervasive Computing
Applications. Judd, Glenn and Steenkiste, Peter. Dallas-Fort Worth, TX : s.n., 2003.
First IEEE Internation Conference on Pervasive Computing and Communications.

cpride@andrew.cmu.edu

	WORKS CITED

