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Tracking for a Roboceptionist 

 
Abstract 

 
 Currently, the roboceptionist’s ability to decide whether or not to greet a nearby 

person is inadequate.  Often the roboceptionist attempts to greet people who are not 

interested in talking back, but merely passing by.  The roboceptionist may also attempt to 

greet people who are standing outside the nearby classroom—these people are not 

interested in responding either.  While the roboceptionist is attempting to greet people 

who will not respond, other people who do want to talk to the roboceptionist may be 

waiting for a greeting.  The problem is that the roboceptionist is spending too much 

attention on people who are not interested in interacting with the roboceptionist.   

 Before the roboceptionist can reliably greet people, however, the roboceptionist 

needs to have a reliable way of tracking people.  This project refines a velocity-based 

motion model for particle-filter based person tracking using a laser range finder. 

 
 

I. Introduction 
 
 Robust person tracking is an important part of human-robot interaction.  In order 

for a robot to make predictions about human behavior, that robot must have a reliable set 

of data from which to make predictions.  One recurring problem in person-tracking is the 

problem of “target discontinuity”: the tracker may lose track of a person due to an 

occlusion, or even a brief failure in data association.  If the person reappears, the tracker 

assigns a new ID to that person, and disregards that person’s previous tracking 

information.   We can improve the tracker’s motion model so that when a temporary loss 
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of data occurs, the tracker uses its current estimate of the person’s position and velocity 

to predict the subsequent location of the person. 

 When people walk normally, they do not always walk in exactly the same 

direction as they were walking before.  Some trackers model this trait by using Brownian 

motion [1, 8].  According to the Brownian motion model, a person is equally likely to 

move in any direction at any moment.  In reality, however, the chance that a person 

suddenly moves backward is much less than the chance that a person continues to move 

forward.  So Brownian motion is a crude model for the motion of a walking person.  We 

can improve our motion model by biasing Brownian motion in the direction that a person 

is moving.  Now our motion model captures both the person’s tendency to deviate from 

their forward direction and the fact that people generally favor the directions that are 

closer to moving forward. 

 Before we can use a person’s velocity to bias our motion model, the tracker must 

be able to track a person’s velocity.  Unfortunately, laser range scans at the thigh level 

can result in noisy velocity data.  We explore this problem by trying various filtering 

methods to track person velocities. 

 We will explain all of the steps in this approach: segmentation of laser data into 

people blobs, assigning filters to people blobs, tracking position with a particle filter, 

tracking velocities, and incorporating a velocity bias into a Brownian motion model.  We 

will also verify the improved tracking reliability with results based on laser range scans 

of people walking near the roboceptionist. 
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II. Related Work 

 
 Many contributions have been made to the field of people tracking using laser 

range finders.   One approach to tracking is to use a Kalman filter [5]; this approach 

assumes that the state being estimated changes according to a Gaussian distribution.  A 

non-Gaussian approach is to use a particle filter [3].  This approach represents the state of 

a moving target with a set of random samples.  This approach works best when the 

samples according to a motion model that accurately predicts how the people being 

tracked walk through the environment.  

 Some people particle filter-based tracking methods use a Brownian motion model 

[1, 8] in order to avoid tracking person velocities.  The imprecise nature of this model 

becomes apparent whenever observations of a person are not available.  During an 

occlusion, or a failure to identify a laser segment as a person, Brownian motion model 

will cause the particle filter’s particles to disperse randomly.  Even if the person 

reappears within the large region of dispersed particles, it is often the case that there are 

not enough particles near the person to justify the filter’s support for that person.  So the 

tracker assigns a new particle filter to the person, and that filter lasts until the next loss of 

observation.  The Brownian motion model inhibits our ability to produce robust tracking 

data. 

 Others have extended the particle filter approach using sample-based joint 

probabilistic data association [6, 7].  While this approach offers a more sophisticated 

method of associating features in laser data to objects being tracked, the motion model is 

restricted to a Gaussian distribution over changes in walking direction and speed.   
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 Another technique involves learning common destinations in the environment, 

and then incorporating these destinations into a goal-based motion model [2].  This 

approach relies on a body of training data in order to work.  Not only must the data be 

large enough to cover all the paths that people might follow; this data must also be free of 

occlusions if the trainer uses a Brownian motion model.  Furthermore, a trainer that uses 

a Brownian motion model would need a perfectly reliable algorithm for associating laser 

segments with people; otherwise, brief failures in data association would cause the trainer 

to have tracking discontinuities.  The plan-based tracker would need an excessively large 

amount of laser data in order to avoid such errors.  In this case, the cost of the Brownian 

motion model is in the required amount of training data. 

 
 

III. Tracking Using Particle Filters 
 

 
A.  Using a Laser Range Finder to Observe People. 
 
  Before we can track a person, we need to know what a person looks like.  Our 

tracker is based on a SICK laser range finder, so our robot’s perception of the 

environment is a series of 2D laser scans.  So a tracker update begins with a time-

stamped laser scan.  The tracker’s first step is to create a list of observed person locations 

based on the current laser scan.  This algorithm was already provided when we began this 

project [8]. 

 The laser range finder has a 180 degree range, and a resolution of 1 laser beam 

per degree.  This sensor gives the tracker an array of distances and positions, sorted by 

the angle at which each laser beam is fired.  We partition the set of laser beams into 
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segments by imposing a threshold for how close two consecutive laser beam positions 

must be in order to belong to the same segment.  We define the center of a laser segment 

as the centroid of the positions given by the laser beams in that segment.  We define the 

width of a segment as the position difference vector (wx, wy) between the first and last 

laser beam in the segment, where the “first” and “last” refer to indices in the array of 

laser beam data.  This gives us a set of laser segments, each with a center and a width. 

 For each laser segment, we impose a set of fixed thresholds on the magnitude of 

the segment’s width to determine whether a laser segment refers to a person.  We also 

have fixed thresholds for identifying legs, since it is possible to perceive a pair of legs as 

two separate segments.  If a segment does not conform to either of these thresholds, then 

we label that segment as a wall, which we ignore. 

For leg-matching, we use a nearest-neighbor algorithm, and we have thresholds 

on distance between leg centers to determine which legs are close enough to be 

considered a pair.  Whenever we match a pair of legs, we merge the leg segments and 

redefine the new pair’s center and width.  Since an unmatched leg is not enough 

information to track a person reliably, the tracker ignores unmatched legs. 

 Now we have a segmentation of our laser data into “people blobs”, where each 

blob is an observed position of a person.  These blobs define what a person looks like to 

our tracker.   

 

B. Assigning Filters to Observed People 
 
 This step in our tracker assigns each person blob a filter for tracking.  Initially, we 

have no filters, so we simply create a new filter for each person blob.   This process gets 
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more complicated, however, when we must match already existing filters to new 

observations.  Our person tracker solves this problem using a nearest-neighbor approach.  

As with the method from part (A), this algorithm was already provided when we began 

this project [8]. 

 First, we calculate the centroid of each particle filter (if any exist at the current 

iteration of the tracker); here, we define the centroid as the mean of the filter’s sample 

positions.  Then, for each person blob, we compute the distance from that blob’s center to 

the centroid of each filter, and take the minimum of these distances.  If the minimum 

distance is within a constant predefined threshold, then we assign the closest filter to the 

person blob.  Otherwise, none of the filters is close enough to the person blob for us to 

justify an assignment of an existing filter to that person blob.  Note that if the filter that 

we just assigned turns out to be closer to another person blob, then we will reassign that 

filter to the closer person blob. 

 This process may leave some person blobs unassigned to a filter.  In this case, we 

instantiate a new filter and assign that filter to the person blob.  Also, some filters may 

not be assigned to a person blob, due to an occlusion, a blob segmentation error, or a 

person leaving the environment.  In case the person still exists undetected in the 

environment, we allow a filter to remain in an “unassigned” state for a predefined 

constant amount of time before we remove the filter.  This removal timeout resets when 

we assign a person blob to a previously unassigned filter. 

 In some cases, a filter that was previously assigned to a person blob may become 

too far away from the person blob for reassignment, due to inability to track the person 

blob.  When this occurs, the person blob is assigned a new filter, and old filter becomes 
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unassigned—destined for premature removal.   As a result, the person blob changes filter 

ID’s and the tracker discards all of the old filter’s data.  This is the tracking discontinuity 

problem, which a robust tracker should avoid as much as possible.  In part (IV), we base 

our tests for tracker robustness on the occurrences of these discontinuities. 

 Now that each person blob has an assigned filter, we can use these filters to track 

the person blobs.   

 
C. Particle Filters 
 
 Our tracker uses particle filters [3] in order to assign each observed person an ID 

that persists through consecutive laser scans.  This approach uses random samples and 

sample weighting to estimate the location of a person.  We use a Gaussian distribution 

with the person’s location as the mean to generate the filter’s first set of particles.  Once 

we have a set of random particles for our filter, we update the particle filter in two steps: 

move the particles according to a motion model, and resample according to particle 

importance weights. 

 First, we move the particles according to some motion model.  The goal of this 

motion model is to predict where the next location of the person will be as accurately as 

possible.  Some person-trackers use a Brownian motion model [1, 8] to move the 

samples.  A goal-based motion model [2] is also possible.  In part (E), we will introduce a 

motion model that uses both current velocity and Brownian motion to move the particle 

filter’s samples. 

 We then resample our particles based on “importance”.  Here, importance is 

defined by proximity to the center of the person blob that the particle filter is tracking.  
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 The following is a formal definition of proximity-based importance weight.  Let 

(xi, yi) be the location of the particle filter’s ith sample; let (xc, yc) be the location of the 

person blob; let 
x
w  and y

w be the width of the person blob in the x and y direction 

respectively; define Gaussian_probability(x, Φ, σ) as the Gaussian probability 

distribution function with mean Φ and variance σ.  Then we compute the ith sample’s 

importance weight P with 

 

 gauss_x =  Gaussian_probability(xi, xc, 
2

x
w

)   (C1) 

 gauss_y =  Gaussian_probability(yi, yc, 
2

y
w

)   (C2) 

 Pi = gauss_x * gauss_y      (C3) 
  
 After calculating an importance weight for each sample, we then use the 

importance weights to create a new sample.  We do this by creating a random sample 

selector with probability distribution function p over our old sample set (of size n) such 

that 

 p(select the ith sample) = 
!
=

n

j

j

i

P

P

1

     (C4) 

 We then use this random sample generator repeatedly until we have a set of n 

random samples.  Since the random sample generator favors samples with larger weights, 

our new sample set will have samples with larger importance.  Since importance is based 

on proximity to the person blob, our new sample set shifts closer to the person blob as a 

result of resampling. 
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 By moving the samples according to a motion model and resampling based on 

importance weights, we can track the location of a person blob as the person moves 

through the roboceptionist’s field of view. 

 
 
D. Tracking Velocity 
 
 At this point, we have everything we need in order to implement a tracker that 

uses a Brownian motion based particle filter.   However, a tracker that incorporates 

velocity into the motion model also needs a method for estimating a person’s velocity.  

Simply taking the difference between current and previous blob centroids is inadequate, 

because this leads to imprecise velocities—from now on, we will refer to this notion of 

velocity as “raw velocity”.  The noisiness of raw velocity comes from leg movements 

that distort person blobs. Since our laser range finder is aimed horizontally at the height 

of most people’s legs, human gaits have a confounding effect on the velocities of person 

blob centroids.  Nevertheless, we can remove some of the noise by smoothing the raw 

velocity values with a filter (see Figures 3-1 and 3-2).  This brings us to the question of 

which filtering algorithm is appropriate for smoothing velocity. 

 Although a simple average-based filter may not be optimal, this method works 

well-enough to mention as a possibility.  Two particular kinds of average-based filter are 

the weighted average, and the moving average.   

 Weighted Average: let Zn+1 be the current raw velocity, Vn be the previous 

weighted average velocity (or the first raw velocity, Z1, for n=0), and α be a predefined 

constant in the range [0,1].  Then we compute the current weighted average velocity Vn+1 

with 
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This involves finding a “good” value for α, which is possible via trial and error.  A lower 

value of α puts more emphasis on the previous weighted average; this “dampens” the 

velocity values. 

 Moving Average: let k be the number of consecutive raw velocity values to 

average together, where k≠0.  We compute moving average velocity Vn+1 with 
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This gives us the sum of the current raw velocity (where i = 0) and the k-1 most recent 

previous raw velocities.  A higher value of k puts less weight on the current raw velocity, 

thus “dampening” the velocity values.  We can find a reasonable value for k using trial 

and error. 

  Another approach to velocity filtering would be to use a discrete Kalman filter 

[4].  This filter is a feedback control system that updates both the state x̂ and the error 

covariance P of a system.  There are two steps in a Kalman filter update: a time update, 

and a measurement update. 

 The time update step predicts what the state will be in the next time step.  We 

update our predicted (i.e., a priori) state and error covariance with 
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where !

k
x̂  is the predicted state, and !

k
P  is the predicted error covariance.  In (D4), Q is 

the process noise covariance, which we define as a constant.  Here, 
1

ˆ
!kx  is our previous 

state value, which contains the previous filtered velocity Vn.  In the context of the 

velocity filter, 
1!ku  = 0 because we have no control input for a person blob’s velocities.   

 Given a predicted state and error covariance, we use an actual measurement to 

correct our prediction in the measurement update step.  We correct our prediction with 
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 In (D5), R is the measurement noise covariance, which we define as a constant.  

The key feature of this step is the computation of the Kalman gain matrix Kk.  The 

equation (D5) computes Kk so that the velocity estimate error covariance (i.e., a posteriori 

error covariance) 
k
P  is minimized.  We then plug the Kalman gain Kk, the measurement 

zk (which is the same as our raw current velocity Zn+1), and our predicted values !

k
x̂  and 

!

k
P  into equations (D6) and (D7).  This gives us a new state estimate 

k
x̂ and a new error 

covariance measurement
k
P .  Here, 

k
x̂ contains our current filtered velocity Vn+1.  So the 

measurement update gives us our filtered velocity value, as well as the input values for 

the next Kalman filter update. 

 In part IV, we will measure the performance of the biased Brownian motion 

person tracker using each of the velocity filters mentioned above.  Figures 3-1 and 3-2 

demonstrate the noise removal of the weighted average velocity filter.  Figures 3-3 and 3-

4 compare three velocity filters mentioned above.  Note that the velocity vectors are 
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filtered component-wise in terms of x-component and y-component, and then converted 

into direction and speed for the graphs in figures 3-1 through 3-4. 

 

 

Figure 3-1: A weighted average filter removes noise from a person blob’s estimated velocities over 
time.   This graph shows the direction component of the “raw” and filtered velocities.  
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Figure 3-2: A weighted average filter removes noise from a person blob’s estimated velocities over 
time.   This graph shows the speed component of the “raw” and filtered velocities.  
 

 
Figure 3-3: Comparison of three different velocity filters.  This graph shows the direction component 
of the filtered velocities.  
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Figure 3-4: Comparison of three different velocity filters.  This graph shows the speed component of 
the filtered velocities.  
 
 
E. A Biased Brownian Motion Model 
 
 With a velocity filter in place, we can incorporate person velocity into the 

Brownian motion model.  This results in a motion model that still assumes random 

movement, but biases the movement with the person’s average velocity. 

 Brownian motion models use a two-dimensional Gaussian distribution with each 

particle’s position P as the mean and a fixed constant σ for the variance.  So a person 

tracker that uses a Brownian motion model would use the following formula to update the 

position P of each sample: 

 
 Pnew = Gaussian(P, σ)       (E1) 
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In order to bias this motion model, let Δt be the time elapsed since the previous tracker 

iteration; let Vn be the estimate of the person’s current velocity.  Now we can replace 

(E1) with  

 
 Pnew = Gaussian(P + Vn Δt, σ)      (E2) 
 
Note that by translating the mean of the normal distribution in the direction of the 

person’s estimated velocity, we are incorporating both the person’s direction and speed 

into the motion model.   

 Intuitively, the model that uses (E1) expects the person to wander randomly at the 

particle filter’s current position, while the model based on (E2) expects the person to 

wander randomly from the next point on the person’s path as projected by the person’s 

current velocity.  The biased Brownian motion model (E2) makes a stronger assumption 

than (E1) about where a person is likely to move, but still allows the person to deviate 

from the expected trajectory. 

 
 

IV. Results 
 
 We constructed three tracking tests for our person tracker.  All of these tests use 

real laser data taken from Tank the roboceptionist’s SICK laser range finder.  We stored 

the laser data into log files so that we could replay the exact same laser data for each 

variant of our person tracker.  Each test compared a Brownian motion person tracker to 

three biased Brownian motion person trackers which vary by velocity filter; the velocity 

filters we used were a weighted average, a moving average, and a discrete Kalman filter.  
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For the weighted average filter, α = 0.25; for the moving average filter, k = 11; for the 

discrete Kalman filter, Q = 1 and R = 500.   

 We hand-picked all of these velocity filter parameters using a simple trial and 

error technique.  First, we define upper and lower bounds in filtering, where an upper 

bound refers to a filter that filters velocity too heavily for good tracking, and a lower 

bound refers to a filter that puts too much “trust” in the raw velocities.  For the average 

based techniques, it was easy to distinguish upper and lower bounds by inspection.  An 

excessively “heavy” filter would cause the particle filter to “fall behind” a person blob as 

a result of being too slow to respond to changes in speed and direction.  With a lower 

bound, on the other hand, filtered velocities would have excessively large magnitudes, 

causing the particle filter to “fly off” the person blob.  With these distinctions in mind, we 

managed to close the bounds enough so that all values within a certain range produced 

roughly equivalent results.  For the weighted average filter, the range for α is roughly 

[0.1, 0.4], where 0.4 is the “lower bound” as defined above.  For the moving average, the  

range for k is roughly [6, 16], where 6 is the “lower bound”.  Unfortunately, the 

distinctions between “lower bound” and “upper bound” were less clear when tuning the 

Kalman filter parameters; we had difficulty noticing any difference in performance for R 

in the range [300, 700], so our choice for Q and R may be somewhat crude. 

 
A.  Counting Discontinuities 
 
 The first test measures the average number of “tracking discontinuities” (as 

defined in part III-B) per person tracked.   
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 This test uses a continuous 214-second interval of logged laser data.  I hand-

counted 21 moving objects (which we will assume to be distinct people) as I inspected 

this data segment.  Throughout this interval, people walk through the roboceptionist’s 

field of view.  We chose this particular data segment because there are few occlusions, 

and all of the occlusions are brief—so we can ignore the effect of occlusions in this 

experiment.  Also, the people in this data segment walk in relatively straight paths; this 

gives us a simple test for tracking people who walk in straight paths. 
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Figure 4-1: The average number of discontinuities per person, based on 21 people. 
 
 
 Dividing the number of discontinuities for each technique by the number of 

people tracked (21) gives us Figure 4-1.  Our Brownian motion person tracker has an 

average of over 4 mistakes per person—an alarming error rate for a person tracker that is 

supposed to be reliable.  The suboptimal performance of the Kalman filter is due to a 
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crude choice of parameters Q and R (hand-picked for our convenience)—nevertheless, 

using a Kalman filter on velocities in this way was still better than using a Brownian 

motion model.  The biased Brownian motion person trackers that use an averaging 

technique have less than one mistake per person; while this is an improvement, these 

results suggest that over a third of all people may be tracked incorrectly.   

 

B.  Measuring the Success of a Person Tracker 
 
 Although the results from part (A) show improvement in tracking with biased 

Brownian motion, they fail to capture the full extent of our method’s success.  It is unfair 

to define success completely in terms of the number of tracking discontinuities, because 

these errors may not be evenly distributed over the duration of a person’s traversal 

through the robot’s field of view.   Consider the first one-second time interval after a new 

person blob appears.  This appearance is likely to occur near an edge of the robot’s field 

of view, where laser data is slightly less reliable and velocity estimates noisier.  A 

velocity filter initially magnifies this noise, since velocity estimates do not 

instantaneously converge to a smooth value.  Therefore, we can expect our biased 

Brownian motion filters to make a significant number of mistakes during the first second 

of tracking.  Once a velocity filter becomes “stable”, however, we expect biased 

Brownian motion to be more robust than Brownian motion. 

 To accommodate this velocity filter “set-up time”, we can relax our definition of 

tracking success so that if the tracker stops making errors after a certain initial period, 

then the tracker is “successful”.  In the context of the roboceptionist, we can afford to 
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wait one second after a person appears before the tracker stops making initial tracking 

errors.   

 Our second test measures the success of our person tracker with our new, more 

relaxed definition of success in mind.  This test uses the same laser data that our test from 

part (A) used.  Instead of counting the number of discontinuities, we count the number of 

“successfully tracked” people.  Here a person is “successfully tracked” if the tracker 

makes no mistakes after 20 tracker update iterations (roughly one second) from the initial 

appearance of that person in the roboceptionist’s field of view. 

 

 

Figure 4-2: Tracking success rates, based on a relaxed definition of success.   “Straight Paths” refers 
to the 21 people who traversed the roboceptionist’s field of view during the test 
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 Figure 4-2 shows the results of this test.  As illustrated in Figure 4-3, the 

Brownian motion person tracker still performed poorly due to tracking discontinuities 

throughout a person’s path.  The weighted average and moving average person trackers 

had high success rates—in these cases, most (or all) of the errors occurred within the first 

second of tracking a person.  The Kalman filter still shows mediocre results due to a 

crude choice of parameters Q and R. 

 

 

 

Figure 4-3: Screenshots of the “Straight Paths” test in progress.  Top: using a Brownian motion 
model.  Bottom: using a biased Brownian motion model with a weighted average velocity filter.  The 
circles with dots are particle filters.  The ribbons are laser segments (green ribbon means person 
blob, red ribbon means wall).    
 



Joe Rollo 
Advisor: Prof. Reid Simmons 
Undergraduate Senior Research Thesis 
 

 21 

 
C   Tracking With Occlusions 
 
 The results from part (B) measure performance for occlusion-free paths.  In the 

real-world, however, occlusions can have a major impact on person tracker performance.  

So we devised an experiment in order to measure how robust a person tracker is to 

occlusions. 

 This test uses a continuous 48-second interval of logged laser data.  Throughout 

this interval, a stationary object in front of the roboceptionist’s sensor casts a shadow of 

occlusion down the center of the roboceptionist’s field of view.  I hand-counted 19 

moving objects (which we will assume to be distinct people) passing through this shadow 

of occlusion as I inspected this data segment.  So this test gives our person tracker 

nineteen chances to track an occluded person successfully. 

 For this test, a person is considered “successfully tracked” if that person keeps the 

same particle filter before and after walking through the stationary shadow of occlusion. 
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Figure 1-4: The rate at which a person is successfully tracked despite walking through a stationary 
occlusion.  This is based on 19 people walking through the same shadow of occlusion. 
 
 

 

Figure 2-5: Occlusion test screenshot.  This shows a stationary target occluding a person, and 
another person approaching from the left.  The ribbons are laser segments (green ribbon means 
person blob, red ribbon means wall).   The dots in the shadow of occlusion are the samples of the 
filter that is temporarily “unassigned” during the occlusion. 
 

 Figure 4-4 shows the occlusion test’s results, and figure 4-5 shows a screenshot of 

the test in progress.  Although the weighted average and moving average person trackers 

were not perfect, they performed far better than the Brownian motion person tracker.  
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Even the person tracker that used a Kalman filter for velocity values, despite crudely 

chosen parameters Q and R, performed better than the person tracker that used a 

Brownian motion model. 

 
 

V. Conclusion 
 
 In this paper, we presented a method for incorporating both velocity and 

Brownian motion into a person tracker’s motion model.  We showed that by filtering 

velocity values and biasing the Brownian motion in the direction of current velocity, we 

can improve the reliability of our person tracker.  Our results demonstrated improved 

robustness in person tracking, even in the midst of occlusions. 

 As a bonus, our method tracks velocity as well as position.  A robot that uses our 

person tracker would be able to consider a person’s position and velocity when deciding 

how to interact with that person.  A roboceptionist, for example, would be able to ignore 

a person who is nearby, but walking quickly past the roboceptionist. 

 Our person tracker is far from perfect, however.  Simply ignoring the first one-

second time interval is a significant cost for person trackers that need to respond as 

quickly as possible to a newly-detected person.   It would be better solve the “set-up 

time” problem, or at least reduce the set-up time need for reliable velocity tracking.  Also, 

it might be possible to improve tracking velocities with a Kalman filter by using a system 

identification technique [4].  Another area in need of improvement is our blob-

segmentation algorithm, which relies too heavily on fixed thresholds; this method has 

edge-cases in which people are temporarily mistaken for walls.  As far as the question of 

which velocity filter to use, there are many other possible filters beyond the three that we 
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chose to test.  We mentioned one way to bias a particle filter’s motion model, but there 

could be other more advanced methods of bias: consider biasing both the mean and the 

variance of the Gaussian distribution at each step.  These are but a few of the 

imperfections in our person tracker. 

 One major flaw in our method is our assumption that the velocity of a person is 

equivalent to the velocity of a person blob’s centroid.  This assumption does not hold true 

because we are tracking pairs of legs, not torsos.  An understanding of how leg 

movement corresponds to torso movement would greatly improve our estimations of 

person velocities.  This would improve the robustness of our person tracker.    
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