Robust Detection & Recovery from Service Disruptions in

Distributed Systems

Hassan Rom

Carnegie Mellon University

May 4, 2007 23:54

Abstract

Distributed systems are complex to design, build and deBogiponents crash due to software bugs
such as unchecked array bounds, logic errors, and uncheeked codes. Components hang due to
deadlocks and resource leaks. Instead of relying on fapuoefing the services which is rarely feasible,
we focus on detecting and restarting failed components approach to improve system availability.

With the concepts and benefits of restarting in mind, | widgent avatchdog service for detecting
and recovering from failed components in a distributedesyst As a case study, | will describe the
design and implementation of a watchdog service for a digted storage system called Ursa Minor.

Experiences and novel extensions will be highlighted.

1 Introduction

Studies have shown that a large percentage of failures ieragsare due to software faultS].] Most
software failures are caused by intermittent or transiegsif] that are hard to debug, especially if the bugs
appear very infrequently. It is even harder to debug in ldig&ibuted systems, where different components
have different states and may crash when those states rtsnvdbrse, a crash of one component may result
in cascading crashes of other components and even the wistéss Other failures such as due to natural
disasters and hardware faults are unavoidable. Failuressedeby human error, such as misconfiguration of
systems, are claimed to be underreportgd [

Failure-proofing of each individual components is impieadtif not impossible. When a new component
is written or new hardware is installed, a rigourous robessitest of the distributed system as a whole needs

to be rerun. A failure in one component may require the whydtesn to be restarted, which if not designed

propery may require long hours for consistency checks. Borngercial systems, this may result in loss
of millions of dollars; for critical systems, this may retsin loss of life. Training system operators can be
expensive. As distributed systems grows in size, so doasuimber of system operators; resulting in higher
likeliness of human error due to lack of coordination.

Studies have also shown the benefits of restarting as a nisohéor recovery from failure€]. Restart-
ing systems can also yield better performance due to reatamof leaked resources. Further, by restarting,
components default to a clean state which also happens belmedst tested state, thus are less likely to fail.

In this paper, we choose to focus on the benefits of restaniiegthe impracticality of failure-proofing
components. We present a clean abstraction for distritaytstém developers to focus on application code
rather than worrying about reliability.

The remaining sections of the paper are organized as falldwghe next section, we will discuss
related work on technigues to achieve high-availabilitydistributed systems as well as failure detection
of components. In section 3, we will describe the architectf the watchdog service. In section 4, we
describe an implementation of the watchdog service in ailliged storage system called Ursa-minor. In
section 5, we present an evaluation of our implementationsektion 6, we discuss our experience and

limitations of our architecture. We conclude in section 6.

2 Related Work

Much work has been done that focuses on achieving highaditty via redundancy and fail-over mecha-
nism. Although redundancy does offer performance benéfissoften expensive. Most systems which use
redundancy also require system operator intervention vshieging back up the failed component. In our
architecture, recovery is automated.

Recent studies show that high-availability can also beeseli by recovery. For example, microreboot-
ing [3] have shown that by isolating failures of components resualfaster recovery time when compared to
restarting of the whole distributed system. Our work is ko that of microreboot and shadow driver$ |
but applied to a distributed storage system although otniteture is still applicable to distributed systems
in general. Also, while microrebooting focuses on recawgifrom software-faults, our architecture could
also recover from hardware failures.

Ironically, in some systems, cleanly shutting down compbsiand reinitializing is slower than crashing
and recoveringd], although in other systems such the earlienx file systems, unexpected restarts can

result in state inconsistenciessck will need to be run on the file system in order to bring it backato

consistent state.

3 Architecture

The main goal of this current work is to provide a clean alotiva for distributed system developers who
want to focus on application code and not worry about rdligd@ode. With this in mind, we have identified

four main properties that our architecture needs to hold.

1. Reliable failure detection. The architecture should reliably detect failed components

2. Recovery. The architecture should support automatic restarts aftengonent failure has been de-

tected.
3. Isolation. Failed components should not result in crashes of other oaergs.

4. Invisible. The architecture should provide a simple abstraction fercdmponents for realiable com-
munication. Components should not need worry about ratrmsson and reestablishment of mes-

sages.

One major assumption of the architecture is that the commerae crash-only. A crash-only software
is defined to be software that only has one way of stoppingytcrashing it - and only one way to bring it
up - by initiating recoveryZ].

There are five main components in our architecture:

Messaging Layer :

As with Nooks B], the messaging layer serves as a reliability layer for camication between compo-

nents. The messaging layer also provides isolation of comptdfailures.
Directory Service:

The messaging layer depends on the directory service foingpinformation lookup when sending a
message. Since routing information is abstracted out bgitketory service, components are free to restart
on a new machine.

Resource M anager :

The resource manager is reponsible for managing sharedroesoacross the distributed system. Since
our assumption is the components of the system may crasty qioémt of its execution, shared resources
and locks are leased in order to prevent from a crash compoheliding shared resources and locks for

infinite amount of time.

Watchdog Service :

The watchdog service is responsible for detecting andrtesidailed components.

Crash-only components:

All components in the system as well as our architectureisp@omponents needs to be crash-only.
This is a strict requirement for all components because titehdog service may decide to restart any of

the components of the system at anytime.

3.0.1 Messaging Layer

The messaging layer serves as a reliability layer in theiliged system. The purpose of the messaging
layer is to provide an efficient and reliable means of commation between components. Network and
machine connections, transports and failures are abstiracto a simple, unified semantic; the semantic
being clients of the messaging layer are guaranteed to gespomse from the messaging layer be it a
success or a communication error. Thus, messaging layésdsresponsible for reestablishing network
communication betwen components after a restart. In the eha communication error, the clients need
not worry about retransmission since the messaging layealn@ady attempted that, so the only reasonable
action is to propagate the error up to the caller. Since oum assumption is that the components are crash-
only components, the messages meant for a crashed compuiieventually reach the component after
a restart. If this doesn’t happen, then there’s a bug in tbevery code of the component, which needs be
fixed by the programmer.

The timeout value should be set to the maximum recovery tihtieeoserver plus the maximum request
time. Timeout values can be dynamically set by analyzingklead patterns on the server. Timeouts should
be invisible to client code.

Messages between components should also be entirelyesalfibing R]. That way, on a component
restart, the component can continue where it left off beftoteashed. Messages should also carry informa-
tion on its idempotency and time-to-live. Recovering framidgempotent message after a crash requires only
reissuing of the message. For non-idempotent messagesdmwe component might need to roll-back or
simply tolerate the inconsistency resulting from the regpla

To avoid retransmits and faster response time, the megséayer also logs pending requests. On a
restart, the messaging layer replays the logs.

Progress counters on the server side are also maintainbd méssaging layer. The progress counter
values are appended to each heartbeat(see below), whietsathe watchdog service to decide whether

or not the component is making progress. If the watchdogicemetermines that a component is not

making progress, perhaps because itis hung, then the vegisietvice restarts the component. The progress
counters should also be invisible to components.

One possible measurement of progress is the number of teagessages a component has received vs.
the number of request complete messages the componentriiadfse watchdog service sees that the
number of requests the component has finished remains thewhite there are still pending requests for
a certain period of time, then the watchdog service may @ecidestart the component. While this statistic
is easy to maintain, the watchdog service is not always abigeintify whether or not a particular request
is making progress since the thread that is handling thaicpkar request might be hung while the other
threads are servicing other requests just fine.

Another possible measurement of progress is the maximutight-request time. While the watchdog
service is able to decide on a smaller granuality whethembany particular request is making progress,
obtaining the maximum in-flight requests time requires nvaoek. Since the messaging layer is one of the
most commonly executed pieces of code in the distributetésysadding more code to support this feature

may decrease the performance of the distributed system asle Wy a significant amount.

3.0.2 Directory Service

The directory service provides a naming service for getinging information that the messaging layer uses
to send messages to a component. On startup of a comporesabriiponent reports its routing information
to the directory service. If a component wants to send a rgesseanother component, then the messaging
layer of the sender will do a routing lookup of the receivertloa directory service. Routing information is
periodically resent by the messaging layer of all companemhis allows a component to be restarted on
another machine if the machine it previously ran on expegsrhardware problems.

The directory service is a component in the distributedesysitself, hence is also monitored by the

watchdog.

3.0.3 Resource Manager

All shared resources and locks in the distributed systenhanelled by the resource manager. Resources
and locks are leased rather than held for unbounded periods.

Resources and locks that are held by a crashed componemveritually be reclaimed by the resource
manager.

The resource manager is also a component in the distribysteins and hence, is also monitored by the

watchdog.

3.04 Watchdog Services

The primary purpose of the watchdog service is to detecicenisruptions of components, whether the
component has crashed or the component has hung. The wagtsédace receives heartbeats and progress
counters from all components in the distributed system.mFtioe heartbeat and progress counters, the
watchdog decides whether or not to restart the component.

Watchdog service is a component in the distributed systesif @ind could be a single point of failure. If
the watchdog service crashes, the system is no longerIeeliab a remedy, a secondary watchdog service
is needed to monitor the primary watchdog and vice versas §étondary watchdog service could then be
the next pooint of failure, but we address this issue by lathe primary watchdog service monitor it; so,

they watch and restart each other, as long as they don’t bdtkirhultaneously.

3.0.5 Watchdog ClientsLibrary

A watchdog client library is statically linked in each conmgmt. On initialization, the watchdog client
library spawns a thread which periodically sends a heartwéh progress counters from the messaging
layer to the watchdog service.

Notice that the watchdog service need not know prior knogaedf the distributed system. A new
component can simply be started and will integrate seaiylesth the current system without additional
configuration.

The frequency of heartbeats presents an interesting biylanetwork utilization tradeoff. The less
frequent heartbeats are sent, the higher the networkaitdiz will be for inter-component communication.
The more frequent heartbeats are sent, the lower netwdikatittn will be for inter-component commu-
nication. For network sensitive applications, we sugdest the distributed system designer take this into

account, although we doubt that the heartbeats will degnatigork performance too much.

3.0.6 Crash-only components

All components in the system should assume that they maysherted by the watchdog service at any point
of its execution. It is reasonable to put this condition om tomponents since we are uncertain when the
components might crash anyways, so the components migheéladeal with it.

If the crash-only condition is met by the components, it dan Ae used towards its advantage, first for
reliability and second potentially for performance. Comg@ats may experience resource leaks after running

for long periods of time. As a result, performance may sufiéthe watchdog notices the performance

Object
manager

Metadata T4
requests,””

V4

Application

Ursa Minor
client library

. Storage-
Client nodes

Application

Ursa Minor

client library /0 requests >

Client

Figure 1: Ursa Minor high-level architecture. Clients use the storage system via the Ursa Minor clienatyor
The metadata needed to access objects is retrieved fronbjihet manager. Requests for data are then sent directly to

storage-nodes.

degradation, then the watchdog could simply restart thepoomnt putting it into a clean state.

Non-volatile states of a crash-only application must be aged by a dedicated state store in order to
make the component as stateless as posaplstfictly leaving only the program logic in the component.
This results in a much simpler and shorter recovery afteastcor a force restart by the watchdog service
thus minimizing the downtime of the component.

On a restart, a component must restore its state from theatedi stores. The components need not

worry about reestablishing network communications, wisdine responsibility of the messaging layer.

4 Implementation

Ursa-minor [] is a distributed storage system that aims to be self-aditnating, self-managing, Our
initial motivation was to extend Ursa-minor to support anébed service disruption detection and recovery,
although our proposed architecture can be applied to amy diktributed system.

Ursa-minor already implements its own directory servicd aressaging layer. The current implemen-
tation of the messaging layer in Ursa-minor handles rekstaent of network connection after a com-

ponents restart although it lacks dynamic timeouts. Tinseaue exposed to the components. Ideally,

timeouts should be hidden from the components in order teigheca nice abstraction of reliable communi-
cation between crash-only components. Currently, tinseartg set to a large number. Ursa-minor’s current
implementation also lacks logging of pending messagesceSinis feature is a mere optimization over
retransmission of messages, for the purposes of our cum@Rt we safely ignored this feature.

Apart from the messaging layer and the directory serviceauninor consists of 3 other core compo-
nents; the metadata service, workers and the NFS servers.

M etadata service:

The metadata server is responsible for maintaining inftionabout the backing of data which includes
the location and encoding for all objects in the storageesgst

Workers:

The workers are where all persistant data is stored.

NFS server:

The NFS server provides an interface for NFS clients to tbeage system exported by ursa-minor.
Communication between NFS clients and the NFS server dogsithru the messaging layer.

We made a minor modification to the messaging layer to addr@ssgcounters. Since the NFS server
doesn't serve its client via the messaging layer, progresaters were added manually to the NFS server.

We added a watchdog service component to Ursa-minor, @thae didn't implement a resource man-
ager since there are no shared resources on locks betweemntipenents in ursa-minor. Also, a watchdog
client library is embedded in all the components of Ursaanin

A considerable amount of work was done by the authors of ttsaldrinor components to make the

components of Ursa-minor crash-only.

5 Evaluation and early experiences

We evaluate our work on three things. First on the robustaege watchdog service detecting and restart-
ing failed components. Second, on the crash-only-nesseofdmponents and finally we evaluate on our
experience making the components crash-only. At the endigtection, we discuss the limitations of our

architecture.

5.1 Robustness

We used the postmark benchmark to evaluate robustness wiadcindog service. There are three phases of

postmark; first the creation of files, second the reading anitihgy of files, and third, the deletion of files as

Ferformance owver time
1.2 T T T T T T T

seconds to perform 188 transactions
@
o
T
1

@ 1 1 1 1 1 1 1 1 1
5] 2aa 488 =151 2aa 1688 1286 1486 168G 1288 2aan

time (=l

Figure2: Few lterations of Postmark Benchmark. The figure shows a graph of performance over time for eight
and a half iterations of the postmark benchmark. Each iteréas a noticable three phases. For example, in the first
iteration of postmark which is from time 0 to time 240s, thetfpphase of the benchmark is file creation, the second

phase is reading and writing and the third phase is delefidifes.

shown in Figure2.

We ran the postmark benchmark in a loop while randomly Igllithe components in Ursa-minor and
observing whether or not the watchdog has successfullctdete component failure and restarting it. We
also observed the impact of performance in postmark bendghomea restart.

We conclude that the watchdog service was able to realiadtigctl component crashes and restarting

them. In between a crash and a restart, we observed a smsdl pathe postmark benchmark.

5.2 Crash-only-ness

We evaluate the crash-only-ness of the components in otersylsy running postmark in a loop without

injecting any faults. The result is shown in Figure

Ferformance owver time

| I I m MWMWMWMWMWNWMWHH ‘mewmwmwmwmwm

s
I
BT

L]
T

BT L g L e s b e

LR = R R

L
AR 2

seconds to perform 188 transactions

5] Sa0a 1a80a 15808 2anaa 250848 28808 250688

Figure 3: Failuredetection robustness test.

This figure shows a manual test of injecting crashes on thegpooents in Ursa-minor simply by sending<a.L

-9 command on the components. The red vertical lines repteserestart of a component. The watchdog service
succeeded on detecting all component crashes and the cemtpanre able to successfully restart after the manual

killing of the components as shown by the first four red vaitimes.

In this test, we conclude that the MDS is not crash-only.

5.3 Experienceswith achieving crash-only

In our experience of making existing non crash-only comptseto crash-only components, we conclude
that it is not a trivial task. This is probably mainly due tdte@re authors tending to put more focus on
performance over restartability. We believe that to mo$twsoe developers, improving performance is
probably more intuitive to think about than restartabiliBut, we also believe that it would be much easier
if the component author keeps the crash-only requirement the very beginning of development. We

also believe that it is easier to tweak a crash-only compoteeachieve better performance than to make

10

components that are tweaked for better performance to ksa-craly.

Contrary to software development principles, we beliewa this sometims fine to have bugs in code,
since this results in more testing of recovery code whiclukhbe the primary focus of systems that focuses
on robustness over performance. If the code reaches toeaveltetre a component is not able to recover
from a crash, then the author of the component should put prayety to fixing the recovery code than the

bug that caused the crash of the component in the first place.

5.4 Limitations

Our architecture imposes two hard conditions on all the aomepts. First, all components are required to

be crash-only and second, all components need to commenigathe messaging layer.

6 FutureWork

Since making existing components crash-only is hard, itldvbe interesting to explore on the possibility
of using static and dynamic analysis tools to identify notatile states in components. Once identified,
programmers can use this information to help them make tloenponents crash-only.

Writing crash-only components is a non-trivial task. It Wbbe interesting to explore how compilers
can be used to abstract non-volatile state to ease the deel®f crash-only components. Compilers are
also more knowledgable about the architecture level of taehime which makes them a better candidate
for managing performance optimization.

It would also be interesting to see how we can apply techsidwen machine learning to predict when
a component would fail. The watchdog service can also betemabout when to restart a component
depending on the workload on the component. If the watchslpgadicting a component failure, by looking
at the workload of the component, the watchdog might wanestart the component when the component
is relatively not busy. This is beneficial if we want to defilgetter user experience to end users of the

distributed system.

7 Summary

In summary, for distributed systems in general, we belieeg it time that robustness and reliability be the

first priorities of current systems.

11

Acknowledgements

We thank the members and companies of the PDL Consortiunfudiing APC, Cisco, EMC, Hewlett-

Packard, Hitachi, IBM, Intel, Network Appliance, Oracleggrasas, Seagate, and Symantec) for their inter-

est, insights, feedback, and support. This material isthageresearch sponsored in part by the National

Science Foundation, via grants #CNS-0326453 and #CCFs0&hnd by the Army Research Office, un-
der agreement number DAAD19-02-1-0389.

References

[1]

2]

[3]

Michael Abd-El-Malek, Garth R. Goodson, Gregory R. Gandvichael K. Reiter, and Jay J. Wylie.
Lazy verification in fault-tolerant distributed storages®ms. Symposium on Reliable Distributed
Systems (Orlando, FL, 26—28 October 2005). IEEE, 2005.

George Candea and Armando Fox. Crash only softwlda. Topics in Operating Systems (Lihue, Hl,
18-21 May 2003), pages 61-66. USENIX Association, 2003.

George Candea, Shinichi Kawamoto, Yuichi Fujiki, GregeEman, and Armando Fox. Microreboot—
a technique for cheap recover§ymposium on Operating Systems Design and Implementation (San

Francisco, CA, 06—08 December 2004), pages 31-44. USEN$ddation, 2004.

[4] Jim Gray. Why do computers stop and what can be done about it? Tandem Technical report 85.7.

June 1985.

[5] Jim Gray and Daniel P. Siewiorek. High-availability cpater systems.EEE Computer, 24(9):39-48,

[6]

[7]

[8]

September 1991.

Mark Sullivan and Michael Stonebraker. Using write geted data structures to improve software

fault tolerance in highly available database managemestésys, June 1991.

Michael M. Swift, Muthukaruppan Annamalai, Brian N. Béiad, and Henry M. Levy. Recovering
device drivers. Symposium on Operating Systems Design and Implementation (San Francisco, CA,

06—08 December 2004), pages 1-16. USENIX Association,.2004

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Imgving the reliability of commodity op-
erating systemsACM Symposium on Operating System Principles (Lake George, NY, 19-22 October
2003), pages 207-222. ACM, 2003.

12

Ferformance owver time

3 T T T T T T

W 4 L 1 114
i drpreEs

b 1 PR ETEETEEEY

=} 1

ot i 1

F [

m

< . i "

; E 3]

@ i Ty

= i AT TirT

=

C

[

It

[H

o

o

o

+

"

-

c

o

B 1 |

I

@ I I I
5] cHEE 4HEE EHEE ERS]S]c] 16686 E 12888 140060 166066 18888

time (=l

Figure4: Crash-only-nesstest.

In this test, we ran postmark without any fault injection.this instance, the first component to crash was the NFS
server. The watchdog service sucessfully detected theréaéind successfully restarted the NFS server. The next
component to crash was the worker. Again, the watchdogaestccessfully detected the failure and successfully
restarted the worker. Unfortunately, the next componerdrésh was the MDS server, but wasn't able to restart
successfully. The watchdog repeatedly tried to restartMBsS but to no avail. We conclude that the MDS is not

crash-only.

13

	Introduction
	Related Work
	Architecture
	Messaging Layer
	Directory Service
	Resource Manager
	Watchdog Services
	Watchdog Clients Library
	Crash-only components

	Implementation
	Evaluation and early experiences
	Robustness
	Crash-only-ness
	Experiences with achieving crash-only
	Limitations

	Future Work
	Summary

