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Abstract

Our focus is on the study and development of efficient algorithms for the task of
broadcasting within peer-to-peer (P2P) data distribution systems. The purpose of
broadcasting is to completely distribute a target set of data pieces from a set of
initial sources to all peers within the distribution system. Thus, findings from the
study of the problem of broadcasting have useful implications for the task of data
delivery and file distribution within these systems.

Our work was initially motivated by the desire to develop different data distri-
bution algorithms than those currently employed by popular Internet-based P2P
systems. Current P2P file distribution systems such as BitTorrent employ game
theoretic motivated algorithms and replication heuristics in the face of distribut-
ing files over the Internet to participating peers that are autonomous, self-serving
and possibly dishonest. We hope to instead develop efficient data distribution algo-
rithms that would be employed in peer-to-peer networks such as internal or private
networks, storage area networks and networks of parallel storage devices where a
degree of centralization, coordination and dependability is available.

We believe that the task of broadcasting is a fair theoretical abstraction of this
problem. Past work in the field has studied certain basic versions of the broadcasting
problem extensively. We will instead focus our efforts on Disjoint Multi-Source
Broadcast and Arbitrary Multi-Source Broadcast, two variants of broadcasting that
were previously studied very little.
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Chapter 1

Introduction

Our work in this thesis will attempt to approach the data distribution problem in
peer-to-peer systems using techniques from broadcasting and gossiping problems.
Current peer-to-peer data distribution systems employed over the Internet utilize
game theoretic motivated algorithms to induce cooperation from other autonomous
Internet peers that are often self-serving and possibly dishonest. There are how-
ever many real-world situations from computer systems that can benefit from the
idea of peer-to-peer (P2P) data distribution. Internal or private networks, storage
area networks and networks of parallel storage devices, where a degree of central-
ization, coordination and dependability is available, have frequent need for efficient
distribution and replication of data objects.

1.1 Motivation

We were originally motivated to develop algorithms for efficient data distribution
within the context of Similarity-Enhanced Transfer (SET), an enhancement devel-
oped for peer-to-peer file distribution systems to exploit available similar files as
additional sources [15]. SET is also deployed as a core transfer mechanism within
Data-Oriented Transfer (DOT), a data transfer service for client applications that
separates content negotiation from the task of transferring data [19].

Given that SET now augments the set of available file sources with additional
sources from files of exploitable similarity at the level of file chunks, we wanted to
know what algorithms would best take advantage of this new resulting scenario and
whether we could do better than current algorithms employed by most Internet-
based P2P systems.

Most peer-to-peer file distribution algorithms fall under a trichotomy of peer se-
lection algorithms, piece selection algorithms and flow control algorithms [12]. The
BitTorrent P2P file distribution system, which has become the de facto benchmark
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by which all newly developed peer-to-peer data distribution systems are compared
to, utilizes Tit-for-Tat (TFT) in combination with Optimistic Unchoking for both
peer selection and flow control while employing a Local Rarest First (LRF) heuristic
for piece selection [5]. Its peer selection algorithm, Tit-for-Tat, is a game theoretic
motivated heuristic that addresses the Prisoner’s Dilemma-like conditions of most
Internet-based peer-to-peer file distribution networks where participating peers are
often selfish and self-serving [5, 18]. Its Local Rarest First (LRF) piece selection
heuristic functions to promote file piece diversity and has been found to work very
well in practice in other P2P systems such as Bullet-Prime [12].

While BitTorrent performs well in practice, several weaknesses with the system
and its algorithms have been highlighted. It has been found to face a first blocks
problem that results in a slow startup of the file distribution process [14]. Its TFT
algorithm also fails to prevent systematic unfairness in terms of the volume of data
served across nodes [4]. Several suggestions for improvements have been made for
both BitTorrent’s TFT and LRF algorithms [4, 18]. These findings show that while
current P2P data distribution algorithms work fairly well in practice, there are still
opportunities for continued improvements and the development of better algorithms.

1.2 Approach

In order to better understand the performance of P2P file distribution systems, we
examined different theoretical models of such systems that could provide theoretical
justifications for the performance and use of current P2P algorithms while shedding
light on where they might be improved. We also attempted to initially approach the
problem from a different direction, considering the issue of perhaps effective place-
ment of source nodes given a description of demands by peers in a P2P system [1].

We found a wide variety of different approaches towards modeling peer-to-peer
file distribution systems [7, 8, 13, 16, 17, 18] through fluid-based models, queueing
models and state-based models.

A few efforts attempted to describe peer-to-peer systems using fluid models
with an exponential decreasing peer arrival rate [8], fluid replication at downloader
peers [13] or through a steady state analysis [16]. A number of efforts also described
P2P systems using queueing models. One peer-to-peer queueing model took into
account the underlying physical network topology by modeling delays in routers as
a single-class open queueing network and peers as processor sharing queues [17].
Another utilized a multiple class closed queueing network that was flexible enough
to model different architectures of P2P systems [7]. A third approach was the use
of a state-based model where states reflected degrees of file download completion
and the behavior of peers were modeled differently according to the state they were
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in. Transfer rates to the next succeeding state were modeled as a continuous time
Markov chain [18].

We finally decide to take a different approach to the data distribution problem
in peer-to-peer systems by abstracting the task as a general problem of broadcasting
in a peer-to-peer network. The broadcast problem is defined as the task of getting a
set of messages currently held by one member (a node) of a communication network
to every other member of the network [6, 11]. Here, we abstract the set of file pieces
as the messages held by a peer.

We find that while peer-to-peer data distribution systems are commonly deployed
over the Internet where such systems must deal with self-serving, autonomous peers
through the use of game theoretic algorithms to induce cooperation, the idea and
benefits of peer-to-peer data distribution is widely applicable to a whole class of
situations where a degree of centralization, coordination and cooperation might be
available. Internal or private networks, storage area networks and networks of par-
allel storage devices are examples of such situations that have frequent need for the
efficient distribution and replication of data objects.

Furthermore, the broadcast problem stands as a very interesting theoretical prob-
lem by itself due to its wide applicability. The problem of broadcasting and one of
its specific variants, gossiping, are important in the design of communication pro-
tocols in various types of networks for they abstract a large class of communication
problems in distributed systems, distributed memory multiprocessor systems and
parallel computation problems [2, 3].

Past work has focused on simple variants of the broadcasting problem and more
general versions such as multicasting [11] and the Data Migration Problem [9, 10].
The Data Migration Problem, which we will review briefly in the next chapter, is the
most general version of the task of data distribution in a peer-to-peer network and
has been proven to be NP-hard. In the broadcasting problem instances that we are
interested in, we start out with having initial copies of every file piece distributed
among some set of peers functioning as the initial source nodes. The goal then is
to replicate these file pieces to every other node since the goal of peers in a typical
P2P file distribution network is to download the entire target file being distributed.

Under the Data Migration Problem, each file piece may not necessarily be de-
manded by all nodes, rather, its destination nodes, the nodes that require such a file
piece, can be any arbitrary subset of the participating peers. Thus, every instance
of the broadcast problem is an instance of the Data Migration Problem, though not
vice versa.

The focus of our study will be on Disjoint Multi-source Broadcast and Arbi-
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trary Multi-source Broadcast, two variants of the broadcasting problem that to our
knowledge have not been studied yet in past work. Our end goal is to develop data
distribution algorithms that would minimize the number of timesteps that it takes
for both cases to complete their respective file distributions.

We currently have no knowledge of the computational complexity of both prob-
lems. While we could utilize the approximation algorithms that have been developed
for the Data Migration Problem [9, 10] since every variant of the broadcast problem
is a data migration problem, we believe that we can develop algorithms with better
run times by focusing on the problem at a more specific level.

We will now define the model and definitions used throughout this paper, give
a brief review of past work done in the area of broadcasting problems, and then
present the focus of our work.

1.3 Model and Definitions

We first define the communication model we assume for peer-to-peer networks dis-
cussed in this paper. Our communication model is the Half-Duplex One-Port 1-
Message model, a common assumption among past work on broadcasting [2, 6, 9,
10, 11].

Two communication models are often used when analyzing about problems
in broadcasting, gossiping and multicasting. Under the Full-Duplex or telephone
model, on a connection between two nodes, both end nodes can function as sender
and receiver simultaneously, allowing a bidirectional exchange of file pieces. Under
the Half-Duplex or mail/telegraph model, exactly only one node can be a sender
and one a receiver, permitting only a unidirectional transfer of file pieces.

Under the One-Port constraint, no node can be engaged in more than one con-
nection during a single timestep. Under the 1-Message constraint, each node can
only either send or receive a single file piece. We assume that the underlying com-
munication graph is a complete graph, that is any node/peer can connect to any
other node/peer.

The makespan of a distribution is its completion time, the number of timesteps
or rounds required before the file distribution completes and all nodes in the peer-
to-peer network have received all file pieces. The makespan of an algorithm is the
completion time of the distribution under the algorithm.

We outline the following definitions for parameters or variables for any given
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broadcast problem.

N = Total number of peers/nodes in the network

K = Number of initial sources at t = 0

L = Total number of file pieces composing file to be broadcasted to all peers

Let K denote the set of initial K source nodes.

Si
t is the set of nodes that have file piece i at the start of timestep t where

1 6 i 6 L. Si
1 thus denotes the set of initial nodes that hold file piece i, so Si

1 ⊆ K.

P i
t denotes the file piece set of node i at start of timestep t or the set of file

pieces held by node i at the start of timestep t. There are thus 2L different pos-
sible file piece sets that a node could have, where L is the total number of file
pieces that compose the file being distributed. A full source node would thus have a
complete file piece set while a node that has no file pieces has an empty file piece set.

Let TH1,S(n, k, l) represent the makespan or the number of timesteps/rounds that
it takes to complete the distribution of a file made up of l file pieces to all n nodes
with the initial condition of k initial sources. Subscript S denotes the initial condi-
tion that there is exactly only one initial copy of each of the l file pieces. Subscript
H1 denotes the the Half-Duplex One-Port 1-Message assumption.

A configuration at timestep t is an assignment of file piece transfer connections
that will occur simultaneously during timestep t. A configuration assigns which
nodes to serve as senders or source nodes during that timestep, which nodes as re-
ceivers or destination nodes and which file pieces are to be replicated on each file
piece transfer connection.

Under the Half-Duplex One-Port 1-Message, there can be at most bN/2c simul-
taneous connections and thus at most bN/2c file pieces can be replicated during any
given timestep.

For a given timestep t, when less than bN/2c nodes have at least a single file
piece, and a configuration assigns each of these nodes to transfer a file piece to a
node that has none, we say that the configuration is maximally busy, as such a
configuration maximizes the number of file pieces being distributed at timestep t.
We say that the the network is maximally busy at timestep t if its configuration at
timestep t is also maximally busy. A network cannot be maximally busy if its number
of nodes with at least one file piece is at least bN/2c but it could be maximumly busy.

A maximumly busy configuration for timestep t is a set of connections between
nodes such that all bN/2c file piece transfer capacities is fully utilized at timestep
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t. We say that the the network is maximumly busy at timestep t if its configuration
at timestep t is also maximumly busy.

An algorithm that ensures that the network is maximally busy when it cannot
be maximumly busy, and maximumly busy when it can, for every timestep preceding
the terminal round is thus optimal and results in a data distribution process with
the lowest makespan as no algorithm can do any better at each timestep.
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Chapter 2

Previous Work

2.1 On the Problem of Gossiping

The gossip problem is a variant of the broadcast problem in which each node begins
with a unique piece of information or file piece that needs to be distributed and
thus broadcasted to every other node. Gossiping is in effect an all-to-all broadcast,
every node is part of the initial K sources, and K = N . There is exactly one initial
copy and one initial source for each file piece, and each node/peer holds a different
file piece. Thus, L = K = N .

The problem of gossiping is one of the simplest and earliest studied versions of
the broadcast problem. Using a well-known finding from graph theory about the
edge chromatic number for complete graphs [2], the makespan of the gossip problem
is

TH1,S(N, N, N) =

{
2(N − 1) if N is even

2N if N is odd

The simple idea is that each edge color represents a configuration for some
timestep, and on each connection, it takes two timesteps for both endnodes to
exchange file pieces. An extension under Full −Duplex is thus trivial [3],

TF1,S(N, N, N) =

{
N − 1 if N is even

N if N is odd

where subscript F1 denotes a Full-Duplex One-Port 1-Message assumption.
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2.2 On the Problem of Broadcasting

2.2.1 Single-Source Scenario

The problem of Single-Source Broadcast is a simple variant of the broadcasting prob-
lem where one peer serves as the single initial source (K = 1) holding an entire copy
of the file to be distributed. From this single initial source, the goal is to broadcast
all L file pieces that compose the file to all N nodes in the peer-to-peer data distri-
bution network.

Work by Farley [6] on the Single-Source Broadcast problem found the distribution
to complete within

TH1,S(N, 1, L) = blog2 Nc+

⌈
L(N − 1)− 2blog2 Nc + 1

bN/2c

⌉
This is a lower bound on the makespan for the Single-Source Broadcast situation,
since we know that for the first blog2 Nc timesteps, 2blog2 Nc − 1 is the maximum
amount of file pieces that can be transmitted within this period. At every round
after this stage but preceding the terminal round, all capacities of the network is
fully utilized. During the terminal round, the distribution is completed. Hence, any
other distribution algorithm cannot complete any faster.

When N is odd, the makespan reduces to become

TH1,S(N, 1, L) = blog2 Nc+ 2L− 1 when N is odd

2.2.2 L-Multi-Source Scenario

Under the L-Multi-Source Broadcast case, the goal is to distribute a file made out of
L pieces to all N nodes in the network but with the initial starting conditions that
each initial copy of the L file pieces is held at a different node at the start. Hence,
K = L, we have L initial sources, each holding a single different file piece of the L
file pieces. Each file piece then has exactly one initial copy located at a different
initial source and no initial source can hold more than one file piece at the start.

Khuller et al. [11] developed a polynomial-time algorithm that completes L-
Multi-Source Broadcast within

TH1,S(N, L, L) =

⌈
log2

N

L

⌉
+ 2L

A high-level description of the data distribution algorithm is that it is essentially
made up of two phases, where during the first phase, the algorithm partitions the N
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nodes into L groups of equal size. Each of the initial L sources will be a member of
a different group. Without loss of generality, assume that the initial source for piece
i is a member of group i where 1 6 i 6 L. Each of these initial sources will then
broadcast their file piece to every other node in its group. In the second phase, N/L
groups of size L are formed by picking one node from each of the L groups from the
first phase. Each of these groups is essentially an instance of the gossiping problem,
since every group member holds a different file piece. We complete the distribution
by solving these gossip instances in parallel [11].

A special case of L-Multi-Source Broadcast is K = L = N , the distribution then
becomes a problem of Gossiping.

2.3 On the Problem of Multicasting

A more challenging extension to the problem of broadcasting is the problem of
multicasting. Instead of broadcasting the entire file and thus all L file pieces to all
N nodes, under multicasting, each file piece is demanded by some subset of the N
nodes, and these subsets may overlap each other, meaning that a node can request
for some of the file pieces and not necessarily all L pieces. We denote Di to represent
the subset of N nodes that demand file piece i where 1 6 i 6 L.

2.3.1 Single-Source Multicast

Single-Source Multicast is a more challenging extension of the Single-Source Broad-
cast problem. Instead of broadcasting all L file pieces, we now have a set of deman-
ders, Di, for each file piece i to which we must replicate and send the file piece to.
Again, we start from the same initial conditions as in Single-Source Broadcast, we
have K = 1 and a single initial source node that holds all L file pieces. Thus, the
number of initial sources for a piece i, |Si

1| = 1.

A polynomial time algorithm that is a 2-approximation has been developed for
Single-Source Multicast [11]. The algorithm finishes in at most OPT + L rounds
where OPT is the minimum number of rounds required for the problem. The total
makespan of the algorithm is at most

≤ max
16i6L

(i + blog |Di|c) + L

2.3.2 L-Multi-Source Multicast

L-Multi-Source Multicast, similar to its counterpart version in broadcasting, L-
Multi-Source Broadcast, begins with the initial conditions of having L initial sources,
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each holding one of the L file pieces that compose the file. The goal is to distribute
a file piece i to nodes that are member of Di, the set of peers that demand file piece i.

Finding a schedule that minimizes the number of rounds of a given instance of
the L-Multi-Source Multicast problem is NP-hard. Khuller et al. [11] showed a
polynomial-time reduction from a restricted version of 3SAT known to be NP-hard
into an instance of the L-Multi-Source Multicast problem.

A polynomial time (3 + o(1))-approximation algorithm was developed [11] with
a makespan of

max
16i6L

(log|Di|) + 2β + O(
√

β)

where

β = max
j=1,··· ,N

|{i|j ∈ Di}|

β thus represents the largest number of file pieces currently demanded for this in-
stance of the L-Multi-Source Multicast problem. β is also an upper bound on the
number of different sets Di to which a peer j can belong to.

Both max16i6L(log|Di|) and β are lower bounds on the L-Multi-Source Multicast
problem. Hence, the algorithm is a (3 + o(1))-approximation.

2.3.3 The General Data Migration Problem

The most general abstraction for the task of data distribution in peer-to-peer net-
works is the Data Migration Problem. Let Si = Si

0 denote the set of initial sources
for file piece i where 1 6 i 6 L. The Data Migration Problem is then stated as fol-
lows, for every file piece i, we need to utilize the initial sources for this file piece,
Si, to replicate file piece i to peers that are member of Di, the set of nodes that
demand piece i.

Hence, the initial source nodes for a file piece i and its destinations nodes are
both arbitrary subsets of all N nodes. There can thus be more than one initial copy
of piece i, a node be an initial source for more than one file piece and a node may
demand some subset of the L file pieces. Thus, every variant of the broadcasting,
multicasting and gossiping problems are instances of the Data Migration Problem.

Khuller et al. [10] have shown that the Data Migration Problem is NP-hard
through a polynomial-time reduction from the problem of edge coloring with the
smallest number of colors, which we know to be NP-hard, to an instance of the
problem. An improved (6.5 + o(1))-approximation algorithm has been developed
for the problem [9].
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Chapter 3

Our Focus

Our main focus is investigating and possibly developing efficient algorithms and
heuristics for two specific variants of the broadcasting problem: Disjoint Multi-
source Broadcast and Arbitrary Multi-source Broadcast. We assume nodes, rep-
resenting peers in a network, follow the Half-Duplex One-Port 1-Message model,
symbolically denoted as H1. Under this assumption, a node may only sustain a
connection to exactly one other node at a timestep (the One-Port or Pairwise con-
straint), one endnode serves exclusively as a sender while the other is a receiver
(the Half-Duplex constraint) on any given connection, and the sender node may
only transmit a single file piece (the 1-Message constraint) to the receiver on its
connection.

On a single timestep, the network may possibly have multiple matchings that
are disjoint from each other in that no two matchings share any endnodes or ver-
tex. Each matching represents a valid connection between two nodes, and thus
these matchings represent connections that can occur simultaneously within a given
timestep.

3.1 Validity of Model Assumptions

The broadcast problem is a fair abstraction of the peer-to-peer data distribution
problem, providing a reasonable approximation to the scheduling challenges faced
by peer-to-peer data distribution. In truth, real world instances of peer-to-peer data
distribution must contend with other technical concerns, such as the underlying data
transfer protocol used which is most commonly TCP/IP, differing bandwidth rates
on outgoing connections (uplink bandwidth) and incoming connections (downlink
bandwidth) between any two peers and the effects of the underlying physical topol-
ogy of the network. The abstraction of a complete graph where a node is connected
to every other node is a reasonable approximation since peer to peer networks are
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usually sustained as an application-level overlay network over the Internet where a
connection between any two nodes is made possible through TCP/IP.

While it is true that in real peer-to-peer data distribution networks, a peer may
be connected to a number of other peers simultaneously, the One-Port or Pairwise
constraint reflects the desire to avoid node-congestion. It is quite reasonable to as-
sume that on a very minute discrete time level, a peer is exchanging data pieces
with one other node at a time.

The Half-Duplex constraint may perhaps be a weaker approximation to real
world peer-to-peer systems than a Full-Duplex assumption. Under the Half-Duplex
assumption, on a given connection, the direction of data transfer is unidirectional:
only one endnode may act as a sender while the other must be a receiver. With Full-
Duplex, data transfer becomes bidirectional: endnodes can function as both sender
and receiver. Under a 1-Message constraint then, the connection can sustain a max-
imum transfer of two data pieces. For example, the peer-to-peer file distribution
system BitTorrent reflects a Full-Duplex situation, since one of its core algorithms,
Tit-for-Tat, gets a peer to reciprocate any useful data piece it receives from another
peer with a data piece that this other peer desires. However, again on a very fine
grained time interval level, the exchange of data pieces between two peers can be
seen as a half-duplex or unidirectional situation.

Finally, since peer-to-peer data distribution systems commonly split files to be
distributed into numerous equivalent pieces of the same size, the constraint of only
being able to transfer a single file piece or 1-Message over a connection seems fairly
reasonable. As an example, BitTorrent divides a file being distributed into equal-
sized pieces of 256 KB and these pieces are further subdivided into blocks of 16 KB
sizes [4]. BitTorrent downloads pieces concurrently from multiple peers, but obtains
the blocks of a piece from a specific peer. Thus, at the most basic level, it is reason-
able to approximate such behavior as a 1-Message limitation.

The Half-Duplex One-Port 1-Message model would at best fit an approximation
to real world peer-to-peer system on a very fine grained time scale level.

3.2 Investigating New Variants of the Broadcast-

ing Problem

In the last section, we explored previous work on the broadcasting problem within
the Half-Duplex One-Port 1-Message context, where efforts have been primarily fo-
cused on the simple Single-Source Broadcasting problem where K = 1, the Gossiping
problem where L = K = N and L-Multi-Source Broadcasting where L = K. How-
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ever, little work has been done in the field to address situations where the number
of initial sources is different from 1 or L, and where the distribution of the initial
first copies of the L file pieces varies among the K initial sources.

We will focus on new variants of the broadcasting problem, specifically what we
term as Disjoint Multi-source Broadcast and Arbitrary Multi-source Broadcast.

Figure 3.1: Disjoint Multi-source
Broadcast with N = 6, K = 3, L = 7

Figure 3.2: Arbitrary Multi-source
Broadcast with N = 6, K = 6, L = 7

Disjoint Multi-source Broadcast is a variant of the broadcasting problem where
the state of the peer-to-peer data distribution network starts off with K initial
sources, each of which holds a disjoint subset of the L file pieces that make up the
entire file to be distributed. Thus, no two initial sources may hold the same file
piece, the subset of file pieces that each initial source node holds is disjoint from
each other and there is exactly a single copy of each of the L file pieces at the start
of the distribution process. When K = 1, this reduces to the Single-Source Broad-
casting situation while when K = L, this becomes the L-Multi-Source Broadcasting
problem studied extensively in previous work. Our focus under Disjoint Multi-source
Broadcast is then to study situations where 1 < K < L.

Arbitrary Multi-source Broadcast is a variant of broadcasting where 1 < K 6 N
and each of the L file pieces will have at least a single copy but can also have multi-
ple copies initially among the K initial sources. Hence, the set of initial nodes that
have file piece i at the start of the data distribution process, Si

1 at t = 1, is some
arbitrary subset of the K initial sources.

Little has been explored about both variants in current literature and work on
broadcasting problems.
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3.3 Abstractions of Real World Situations

We choose to study both the Disjoint Multi-source Broadcast and the Arbitrary
Multi-source Broadcast cases as these are abstractions of specific real world situa-
tions faced by peer-to-peer data distribution systems.

As we discussed earlier, the peer-to-peer data distribution problem can be rea-
sonably abstracted as the broadcast problem and modeled by a complete graph in
which nodes represent the participating peers. Most if not all current peer-to-peer
file distribution systems employ segmented donwloading in which different pieces of
the file are downloaded simultaneously from different peers. A file being distributed
in the system is thus represented and modeled as a collection of file pieces that must
all be obtained by a node to complete its download of the file. In certain literature,
file pieces are termed as commodities to be distributed, and the problem thus be-
comes a commodity distribution problem.

In real world peer-to-peer distribution scenarios, N , the model parameter that
denotes the number of peers demanding the target file being distributed, is usually
in the hundreds or thousands. K, the parameter denoting the number of initial
starting sources is usually in the tens or hundreds. L, denoting the number of file
pieces that make up the entire file, is usually largest in value among all the model
parameter, reflecting the reality that files being distributed using peer-to-peer data
distribution are often very large files in the sizes of hundreds of megabytes or several
gigabytes. The size of a file piece is usually in the magnitude of kilobytes; BitTorrent
for example divides files into 256 KB-sized pieces that are further subdivided into
16 KB-sized blocks [4]. Thus, L is usually a value in range of thousands and above.

3.4 Disjoint Multi-source Broadcast

The Disjoint Multi-source Broadcast case approximates a real world peer-to-peer dis-
tribution network scenario with a starting state where none of the initial K source
nodes holds the entire copy of the file being distributed but all file pieces are avail-
able collectively from these initial sources. Thus, the file download can still proceed
to completion.

The goal of Disjoint Multi-source Broadcast is to distribute all L file pieces to
all N nodes in the network. The distribution network starts with K initial sources
where 1 < K < L. Each of these K initial sources hold a disjoint subset of these L
file pieces.

Let TH1,S(N, K, L) where 1 < K < L denote the makespan of the Disjoint Multi-
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source Broadcast situation under the Half-Duplex One-Port 1-Message model.

3.4.1 A Few Lower Bounds

We first derive a few clear lower bounds on the completion time of Disjoint Multi-
source Broadcast case.

Lemma 3.4.1. For a peer-to-peer distribution network with N nodes and K initial
sources distributing a file made out of L file pieces, the makespan of the distribution
must take at least the same number of rounds that it takes to get every node to obtain
its first file piece.

TH1,S(N, K, L) ≥
⌈
log2

N

K

⌉

Proof. Every node that currently holds at least one file piece should replicate one
of its pieces to a node that has none. By doing so at every timestep, we double
the number of nodes with at least a single file piece. We know we cannot do any
better than this in increasing the number of nodes with a file piece. The peer-to-peer
distribution network begins with K initial sources and the number of nodes with
at least one file piece can at most double at every next timestep. Hence, this takes
exactly dlog2N/Ke before all N nodes gets a file piece.

Lemma 3.4.2. Let P i
t be the set of file pieces currently held by node i at timestep t.

Let i ∈ K, where K is the set of the initial K source nodes. Then, |P i
0| denotes the

size of the disjoint subset of the L file pieces that is held by initial source i at t = 0,
the start of the data distribution process. Then, the makespan must be at least as
large as the maximum number of initial file pieces held among the K initial sources
at the start of the process.

TH1,S(N, K, L) ≥ max
i∈K

|P i
0|

Proof. Since on every timestep under the Half-Duplex One-Port 1-Message assump-
tion, a node can send out only a single file piece, it takes at least |P i

0| timesteps to
distribute all the initial |P i

0| different file pieces held by an initial source node source
i where i ∈ K. Since every node needs to download the entire file and hence needs
to acquire all L file pieces, the distribution process must take at least as long as it
takes to introduce all the different file pieces from the largest subset of the L file
pieces held among the K initial sources at the start of the process.
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Lemma 3.4.3. The makespan of Disjoint Multi-source Broadcast under the Half-
Duplex One-Port 1-Message assumption with L file pieces, N nodes and K initial
must be at least

TH1,S(N, K, L) ≥
⌈

L(N − 1)

bN/2c

⌉
Proof. Since there are N nodes and each desire the entire file, a total of NL file
pieces should be transmitted in this file distribution process. Since we initially began
with a single copy of the original file but with these L pieces distributed arbitrarily
among the initial K sources, we thus have left another L(N − 1) file pieces that
needs to be transmitted using the peer-to-peer distribution network.

Within a single timestep, there can be at most bN/2c simultaneous connections and
hence at most bN/2c file pieces can be transmitted during a given timestep. Hence,
the total number of timesteps for the distribution must take at least the above lower
bound.

We now derive a much better lower bound for the makespan of the Disjoint
Multi-source Broadcast problem.

Lemma 3.4.4. The number of timesteps to complete the Disjoint Multi-source
Broadcast distribution must be at least

TH1,S(N, K, L) ≥
⌊
log2

N

K

⌋
+

⌈
L(N − 1) + K −K2blog2 N/Kc

bN/2c

⌉

Proof. We first examine the maximum number of file pieces that can be transmitted
within the first τ = blog2 N/Kc timesteps. The total number of file pieces transmit-
ted in the first τ timesteps can be at most

≤ K + 2K + 4K + . . . + 2τ−1K

≤ K(1 + 2 + 4 + . . . + 2τ−1)

≤ (2τ − 1)K

2− 1

since the initial state of the network begins with K initial sources, each holding
a subset of the L file pieces that make up the entire file. Hence, during the first
timestep, at most K file pieces can be transmitted. In the next time period, we
know we can at most double the number of file pieces transmitted if in the previous
timestep, we transmitted each of the K file pieces to a different node that had no file
pieces, thus resulting in 2K nodes in the current time period that can participate
in file piece transmissions. We know we can’t do better than doubling the number
of file pieces sent at every timestep.
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Let η = (2τ − 1)K = (2blog2 N/Kc − 1)K. We know that the the network needs to
distribute NL file pieces to get the file to all N nodes. However, we initially started
with a single copy of each of the L file pieces, albeit distributed disjointly among the
initial K sources. Then the number of remaining messages at the start of t = τ + 1
must be at least

≥ NL− η − L

We know that at a given timestep, at most bN/2c simultaneous connections are
possible and hence at most dN/2e file pieces can be distributed at a time. Then, the
number of remaining timesteps before all L commodities is distributed to all nodes
is at least

≥
⌈

NL− η − L

bN/2c

⌉
≥

⌈
NL− (2blog2 N/Kc − 1)K − L

bN/2c

⌉
≥

⌈
NL− 2blog2 N/Kc + K − L

bN/2c

⌉
≥

⌈
L(N − 1) + K − 2blog2 N/Kc

bN/2c

⌉

Hence, the number of timesteps to complete the Disjoint Multi-source Broadcast
distribution is at least

TH1,S(N, K, L) ≥ τ +

⌈
L(N − 1) + K − 2blog2 N/Kc

bN/2c

⌉
≥

⌊
log2

N

K

⌋
+

⌈
L(N − 1) + K − 2blog2 N/Kc

bN/2c

⌉

If K = 1, this reduces to the lower bound for the Single-Source Broadcast case.

3.4.2 A Condition for Maximum Busyness

We present a lemma relating file piece frequency and the existence of a maximumly
busy configuration for a certain state of a peer-to-peer data distribution network at
a given timestep. A maximumly busy configuration is an assignment of nodes that
uses all bN/2c file piece transfer capacities.

We earlier defined a file piece set of a node i at timestep t, P n
t , as the set of the

file pieces that node n has currently received so far by timestep t. There are thus 2L
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different possible file piece sets that a node could have, where L is the total number
of file pieces that make up the file being distributed. P n

t can be easily described as a
L-length binary string where a value of 1 at the i-th bit correspond to node n having
the i-file piece by timestep t. A full source node would thus have a complete file
piece set while a node that has yet to receive any file pieces has an empty file piece set.

A connection between two nodes that have the same file piece set is idle, since
no needed file piece can be provided by one node to the other. But a connection
between two nodes with differing file piece sets can engage in useful work. Let PA

t

and PB
t respectively denote the file piece sets of nodes A and B at the start of time

period t where PA
t 6= PB

t . There are three possible cases for the difference in file
piece sets:

• PA
t ⊂ PB

t , thus node B has at least one file piece that node A does not have.
Node B will thus be the sender and node A as the receiver on useful connection
between both nodes.

• PB
t ⊂ PA

t , which is a reverse from before, hence, node A will be the sender
while node B becomes the receiver node.

• PA
t and PB

t are neither subsets of each other but they may possibly overlap.
Hence, both node A and B each possess at least one file piece that the other
does not have. Both can be either a sender or receiver though not simultane-
ously as both due to the Half-Duplex One-Port 1-Message assumption.

Let Xj
t denote the number of nodes that has a certain file piece set j at timestep

t, where 1 < j < 2L.

Lemma 3.4.5. Let file piece set j be the most common set of file pieces held among
N nodes at the start of timestep t. Then, if Xj

t ≤ dN/2e, then there exists a maxi-
mumly busy configuration of connections between nodes such that all bN/2c file piece
transfer capacities is fully utilized at timestep t.

Proof. The proof for this lemma can be broken down into three cases:

Case 1: Xj
t > dN/2e

When N is even, there are more nodes with the file piece set j than there are other
nodes of different file piece sets. When N is odd, there will be insufficient nodes of
different file piece sets for nodes with file piece set j to connect to using all bN/2c
file piece transfer capacities.

Case 2: Xj
t = dN/2e

The second case is obvious, there are equal number of nodes that have file piece set
j and nodes that do not. A pairing between one node from each group will always
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be a useful connection, and there are enough such connections that can be formed
to utilize all bN/2c file piece transfer capacities.

Case 3: Xj
t < dN/2e

We know that there are Xj
t nodes that have file piece set j, hence there are N −Xj

t

other nodes that are available to be paired with these Xj
t nodes in useful connec-

tions. Thus, a total of 2Xj
t nodes are involved in these connections, we then have a

remainder of N − 2Xj
t nodes that may or may not be able to form useful connections

among themselves. These nodes are not of file piece set j but they could all be the
same of some other file piece set.

We know we have a total of bN/2c file piece transfer capacities available, with Xj
t

of these currently utilized. We will show that there will be at least
⌊

N
2

⌋
−Xj

t con-

nections among the Xj
t connections between nodes of file piece set j and nodes of

other file piece sets, such that these nodes of other file piece sets will not be holding
the same file piece set as the remaining N − 2Xj

t nodes.

Assume, without loss of generality, that the remaining N − 2Xj
t nodes are of the

same file piece set and let this be some file piece set k. Certainly, if some of these
remaining N − 2Xj

t nodes were to be of different file piece sets besides k, then useful
connections/pairings can be formed between these nodes and those of file piece set k,
leaving an even smaller number of nodes that could possibly be idle. Hence, in the
worst case scenario, all the remaining N − 2Xj

t nodes are of the same file piece set k.

Let Dk
t be the number of nodes that have file piece set k from the Xj

t other nodes
that were connected to the Xj

t nodes of file piece set j.

We know that file piece set j is the most common file piece set by our assumption.
Hence,

(N − 2Xj
t ) + Dk

t ≤ Xj
t

Dk
t ≤ Xj

t − (N − 2Xj
t )

Hence, there can be at most Xj
t − (N − 2Xj

t ) nodes of file piece set k from the Xj
t

other nodes connected to those of file piece set j. This leave at least

Xj
t − (Xj

t − (N − 2Xj
t )) = N − 2Xj

t

other nodes that are not of file piece set k.

These N − 2Xj
t other nodes are themselves in connections with nodes of file piece

set k. We merely need to break
⌊

N−2Xj
t

2

⌋
=

⌊
N
2

⌋
−Xj

t of these current connections
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so that we will have
⌊

N
2

⌋
−Xj

t nodes of file piece set j and another
⌊

N
2

⌋
−Xj

t nodes

that are not of file piece set k. These can then be used to form 2
⌊

N
2

⌋
− 2Xj

t useful

connections with the N − 2Xj
t nodes of file piece set k.

The total number of connections now formed is

= Xj
t − (

⌊
N

2

⌋
−Xj

t ) + (2

⌊
N

2

⌋
− 2Xj

t )

= 2Xj
t −

⌊
N

2

⌋
+ 2

⌊
N

2

⌋
− 2Xj

t

=

⌊
N

2

⌋
Thus, we have proven that we can create a maximumly busy configuration that
utilizes all

⌊
N
2

⌋
file piece transfer capacities at timestep t when Xj

t < dN/2e.

3.4.3 A General Algorithm and A Set of Heuristics

We now present a general algorithm and a set of heuristics for completing Disjoint
Multi-source Broadcast. The heuristics outlined will prove helpful in trying as best
as possible to achieve maximumly busyness, or when not all bN/2c file piece transfer
capacities could be fully utilized, maximal busyness, during every timestep except
the terminating round.

The key idea towards maintaining maximumly busyness at every time step is to
pack as much useful work as possible that can be done at a given timestep. But for
a given timestep and state of the network, it is possible that there will be numerous
maximumly busy configuration to choose from. One must be chosen such that the
configuration leads to a state of the network in the next timestep where it is still
possible to construct a maximumly busy configuration, unless such a timestep is the
terminating round of the distribution.

A General Four Phase Algorithm for Disjoint Multi-source Broadcast

Phase 1. The purpose of the first phase is to ramp up and maximize the network
utilization of all available file piece transfer capacities.

For any given network of N nodes, there can be at most bN/2c simultaneous con-
nections and thus file pieces that can be distributed at any one time. At the start,
there are K initial sources and at most K simultaneous useful connections that can
be constructed, connecting one of these sources with one of the other (N −K) nodes
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that hold no file pieces. During Phase 1, the network will be maximally busy but is
unable to be maximumly busy while the number of nodes with at least one file piece
is less than bN/2c as this implies that the most frequent file piece set, the empty
set, is held by more than dN/2e nodes. By Lemma 3.4.5, it will then not be possible
to construct a maximumly busy configuration.

The goal of Phase 1 is thus to get at least bN/2c peers or more in the network to
have at least one file piece in the least amount of time. We know we cannot do
better than by doubling the number of nodes with a file piece at every timestep.
To do so, the network must be maximally busy, that is every node with a file piece
needs to transmit a file piece to some other node that has none.

Phase 1 thus completes within

⌊
log2

N

K

⌋
timesteps.

1. At every timestep, every node with at least one file piece must replicate one
of its file pieces to another peer that has no file pieces.

2. Each of the initial K sources hold some subset of the L file pieces that make up
the original file. At every timestep, each of these initial sources must replicate
a different file piece from their respective subset.

3. When a source reaches its last different file piece, then it should keep on
replicating this file piece until the end of Phase 1.

For example, let P i
0 where 1 6 i 6 K denote the disjoint subset of L file pieces held

by initial source i. In the first |P i
0| timesteps, source i must give out a different

file piece. Should source i run out of new file pieces to give out before Phase 1
completes, that is if |P i

0| ≤ blog2 N/Kc, then it should keep on distributing the last
file piece it had given out previously.

At the end of Phase 1, exactly K2blog2 N/Kc peers now have at least a single file piece
and

K2blog2 N/Kc > K2(log2 N/K)−1

>
K2log2 N/K

2

>
K

2

N

K
=

N

2

By the end of Phase 1, it is then possible for the network to be maximumly busy at
the next time step.
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Figure 3.3: Phase 1 for DMSB with N = 10, K = 2, L = 6

Phase 2. The second phase focuses on trying to replicate exactly dN/2e copies of
each of the L file pieces while keeping each timestep during this phase maximumly
busy. Each file piece will have at least dN/2e copies by the end of Phase 2.

Initially, at the end of Phase 1, no file piece can be at more than dN/2e nodes.
We know this because Phase 1 takes blog2 N/Kc timesteps, hence no file piece
can be replicated to more than 2blog2 N/Kc nodes, which is less than or equal to
2log2 N/K = N/K nodes with 1 < K < L.

We utilize two data structures for this phase: a Frequency Table that records the
current number of copies of each file piece and a Completion Table that keeps track
of file pieces with more than dN/2e copies during Phase 2.

Phase 2 also aims to maximize the utilization of all bN/2c file piece transfer ca-
pacities at each timestep during this phase. Hence, while we try to avoid having
more than dN/2e copies for each of the L file pieces, there are times when this con-
straint has to be exceeded in order to ensure all bN/2c file piece transfer capacities
is utilized. It is these file pieces that will be tracked by the Completion Table.

1. Construct the Frequency Table and record the number of copies of each of the
L file pieces at the start of Phase 2.

2. We now need to construct a maximumly busy configuration for this current
timestep that utilizes all available bN/2c connections. We have bN/2c repli-
cation slots to distribute among the L file pieces, and we then identify sources
for pieces we select to replicate and their destination nodes.
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Figure 3.4: Phase 2 for DMSB with N = 10, K = 2, L = 6
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3. Sort the Frequency Table by frequency count. We will only replicate file pieces
that currently have less than dN/2e copies. We are going to select bN/2c
pieces to replicate starting with the least frequent file pieces.

4. We thus give priority towards first replicating the current rarest file
pieces in the distribution network. We start with file pieces with the low-
est frequency count, then move on to the next lowest frequency count if we
still have available replication slots. We will only replicate file pieces that
currently have less than dN/2e copies.

5. For all file pieces with the same frequency count, we will be fair in our selection
and distribute the available replication slots in a round robin manner, assigning
each of these file pieces one slot at a time and repeating this procedure until
we have either

• Completely allocated all available bN/2c replication slots

• No more source nodes are available for any of these file pieces with this
frequency count

• For file pieces that still have available source nodes, these file pieces have
received enough replication slots such that in the next timestep, they will
have dN/2e copies

6. We then move on to the next lowest frequency count if we still have avail-
able replication slots and repeat Step 5 until we are done assigning bN/2c
replication slots or find that the next lowest frequency count is at least dN/2e.

7. We will now decide on the source and destination nodes for file pieces that
we have selected to replicate. Currently, we have not developed an algorithm
that can efficiently produce a selection of source and destination nodes that
would fulfill the demands and constraints of each file piece being replicated.
We will however outline a few heuristics that we have found to work well in
determining such selections in several examples we have tested.

Let PREPLICATE
t denote the set of file pieces selected so far to be replicated

during timestep t. Let Ri
t denote the number of copies of file piece i that will

be replicated during timestep t and thus, 0 6 Ri
t 6 bN/2c. Let Si,REPLICATE

t

be the set of source nodes selected to replicate file piece i at timestep t, where
i ∈ PREPLICATE

t and Si,REPLICATE
t ⊆ Si

t . Let Di,REPLICATE
t be the set of des-

tination nodes to receive file piece i at timestep t.

Then any selection of sources and destinations for file piece i where i ∈ PREPLICATE
t

must adhere to the following constraints:

• Si,REPLICATE
t ⊆ Si

t
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• |Si,REPLICATE
t | = |Di,REPLICATE

t | = Ri
t

• Di,REPLICATE
t ∩ Si

t = ∅
• Si,REPLICATE

t ∩ Sj,REPLICATE
t = ∅ where i 6= j and j ∈ PREPLICATE

t

• Si,REPLICATE
t ∩Dj,REPLICATE

t = ∅ where i 6= j and j ∈ PREPLICATE
t

• Di,REPLICATE
t ∩Dj,REPLICATE

t = ∅ where i 6= j and j ∈ PREPLICATE
t

While we have not developed a deterministic algorithm that can efficiently
produce a selection adhering to the above constraints, we will now outline a
few heuristics that we have found to work well in several examples we have
examined.

• For a file piece i where i ∈ PREPLICATE
t , if all of its sources, Si

t have been
selected as sources for file piece replication, then any of the N − |Si

t | other
nodes can be selected as destination nodes for file piece i. We label such
file pieces i as sources-fully-engaged file pieces.

• Then, for file pieces j where j ∈ PREPLICATE
t , if not all of its sources, Sj

t ,
are selected as sources for file piece replication at this time step, we label
these as sources-partially-engaged file pieces.

• The heuristic for destination node selection for some piece a where a
∈ PREPLICATE

t is to select destination nodes from Sb
t , where piece b is

some sources-partially-engaged file piece. The rationale here is that this
does not hurt but may help piece b since this does not decrease piece
b’s own respective set of possible destination nodes. We must however
ensure that there is still enough remaining nodes from Sb

t to be members
of Si,REPLICATE

t .

• In reverse to how we did replication slots distribution in Step 3 and
4, in destination selection, we give priority to the most frequent file
pieces first, since logically, these file pieces have a smaller set of possible
destination nodes. We employ the heuristic just mentioned earlier, trying
at best to select a destination node that is a member of Sb

t where piece b
is some sources-partially-engaged file piece.

8. By the end of Step 7, we may have remaining replication slots that we were
unable to assign if we find that at the start of Step 7, all file pieces with
available source nodes already have or will have dN/2e copies by the next
timestep.

9. Let β be the number of remaining replication slots by the end of Step 7. If
β = 0, then skip to Step 12.

10. If β > 0, we must now allocate these remaining slots. We aim to maximize the
utilization of all bN/2c file piece transfer capacities at each timestep during
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Phase 2. By the end of Step 7, we have selected 2(bN/2c − β) nodes as senders
and receiver nodes, and have at least 2β nodes left. From these remaining
nodes, we need to select β nodes as senders and another β receivers and
determine which file pieces will be replicated on these β connections. It is
these file pieces on these β connections that will be tracked by the Completion
Table.

11. Once these file pieces have been determined, insert a new entry for each of these
file pieces that are not currently recorded in the Completion Table. Every entry
in the table will keep track of some file piece h that has exceeded dN/2e copies
during some timestep within Phase 2 and the set of nodes that have not yet
receive piece h.

12. Having at best configured bN/2c file piece transfer connections, we allow these
file piece transfers to occur.

13. We now update the Frequency Table for file pieces that were replicated during
this round. We also update the Completion Table if some piece h tracked by
this table was replicated as well. In particular, nodes that have received piece
h during this timestep if removed from the Completion Table’s entry for piece
h.

14. We repeat the entire algorithm again starting from Step 2 until every of the L
file pieces is replicated in at least dN/2e nodes. We must try at best to ensure
that every timestep during Phase 2 is maximumly busy and utilizes all bN/2c
file piece transfer capacities.

By the end of Phase 2 we know that each file piece is replicated in at least dN/2e
nodes. File pieces that have exactly dN/2e copies will be completely distributed to
all N nodes during Phase 3. In Phase 4, we will then complete the distribution of
the remaining nodes with more than dN/2e copies by the end of Phase 2. We will
use the information from the Completion Table to complete Phase 4 in the minimal
amount of timesteps possible.

Phase 3. The third phase completes the distribution of every file piece i that had
exactly dN/2e copies at the end of Phase 2. Let γ where γ 6 L be the number of
such file pieces. Then, Phase 3 takes exactly γ rounds to complete.

Each of these file pieces currently reside at exactly dN/2e nodes, a remaining bN/2c
nodes desire the file piece and at most bN/2c file piece transfers can occur at a time.
Each file piece then takes exactly one timestep to complete its distribution to all N
nodes. Each of these γ timesteps are also maximumly busy since all bN/2c file piece
transfer capacities are utilized. Hence, Phase 3 is on a whole maximumly busy.
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Figure 3.5: Phase 3 for DMSB with N = 10, K = 2, L = 6
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Figure 3.6: Phase 4 for DMSB with N = 10, K = 2, L = 6

Phase 4. In the final phase, we complete the distribution of file pieces that ex-
ceeded dN/2e copies by the end of Phase 2. The Completion Table informs us, for
each piece h of these file pieces, which of the N nodes that have yet to acquire
piece h. Using this information, we try our best in constructing a maximumly busy
configuration that utilizes all bN/2c file piece transfer capacities.

We again face the same challenge as we did at Step 7 of Phase 2 in producing a
selection of sender and receiver nodes and the file pieces to replicate that will result
in a maximumly busy configuration. However, any configuration that is produced
must again adhere to the constraints on the sources and destination nodes for each
file piece i where i ∈ PREPLICATE

t , as outlined in Step 7 of Phase 2.

We again utilize the same heuristics employed in Step 7 of Phase 2 and the in-
formation provided by the Completion Table in coming up with a maximumly busy
configuration for each timestep under Phase 4.

1. We give priority towards replicating the current rarest file pieces in the
distribution network. Rarest pieces are indicated in the Completion Table as
entries with the largest number of nodes that has yet to receive that file piece.

2. For all file pieces with the same rarity, we will again be fair in our selection
and distribute the available bN/2c replication slots in a round robin manner
until we

• Completely allocated all available bN/2c replication slots
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• No more source nodes are available for any of these file pieces with this
frequency count

3. We then move on to the next lowest frequency count if we still have avail-
able replication slots and repeat Step 2 until we are done assigning all bN/2c
replication slots.

4. With the bN/2c file pieces to replicate identified, we now proceed with desti-
nation selection, and again as in Step 7 of Phase 2, give priority to the most
frequent file pieces first that are being replicated during this timestep.

5. We employ the same heuristic of selecting destination nodes for a file piece a
where a ∈ PREPLICATE

t from Sb
t where piece b is a sources-partially-engaged file

piece. We must again however ensure that there will still be enough remaining
nodes from Sb

t to be members of Si,REPLICATE
t .

6. Having at best configured bN/2c file piece transfer connections, we allow these
file piece transfers to occur.

7. We update both the Frequency Table and the Completion Table.

8. We repeat the entire algorithm for the next timestep starting from Step 1 until
all N nodes have obtained all L file pieces and thus the entire file.

We earlier mentioned that if all preceding timesteps to the terminal round is maxi-
mumly busy or maximally busy when it is not possible to be maximumly busy, then
Disjoint Multi-source Broadcast completes in the number of timesteps outlined by
the lowerbound from Lemma 3.4.4. The terminal round itself need not necessarily
be maximumly busy. Thus, in Phase 4 we try at best to get all timesteps preceding
the terminal round to be maximumly busy.

Let γ be the number of file pieces that had exactly dN/2e copies at the end of Phase
2. Then, (L− γ) is an upperbound on the completion time of Phase 4, since there
are (L− γ) file pieces that had more than dN/2e copies at the end of Phase 2, and
each of these pieces clearly need only one timestep to complete its distribution to
all N during Phase 4.

Thus, L is an upperbound on the combined total completion time of Phase 3 and
Phase 4.

3.4.4 Interesting Findings

Our study of the Disjoint Multi-source Broadcast problem has resulted in the iden-
tification of a lower bound on its makespan, the development of a general algorithm
and a set of heuristics that have worked well in practice in solving this particular
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variant of the broadcasting problem. We have also obtained a few interesting find-
ings relating to the properties of the Disjoint Multi-source Broadcast problem.

Finding 1: The degree of asymmetry of the distribution of the initial copies of
the L file pieces among the K initial sources does not affect the lowerbound on the
makespan of Disjoint Multi-Source Broadcast.

First, we find that the asymmetry of the distribution of the initial L file pieces over
the K initial sources have no bearing on the lower bound of the makespan of the
distribution. From Lemma 3.4.4, we had derived that

TH1,S(N, K, L) ≥
⌊
log2

N

K

⌋
+

⌈
L(N − 1) + K −K2blog2 N/Kc

bN/2c

⌉

An algorithm for Disjoint Multi-source Broadcast that is maximally busy during the
first blog2 N/Kc timesteps and maximumly busy for all succeeding timesteps prior
to the terminal round would be able to achieve the lower bound on the makespan
from Lemma 3.4.4.

We see that the lower bound we derived in Lemma 3.4.4 is only affected by three
parameters: N , the total number of nodes, K, the number of initial sources and
L the number of file pieces that make up the file being distributed. Thus, two in-
stances of Disjoint Multi-source Broadcast with the same values for parameters N ,
K and L but differing in how the initial copies of the L file pieces are distributed
among the K initial sources will have the same lower bound on the makespan.

Figure 3.7: Both initial Disjoint Broadcast setups result in equal makespans
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We present two examples where N = 6, K = 3 and L = 7 but differ in the initial
distribution of the L file pieces among the K initial sources. The first example has
greater asymmetry, where the majority of the file pieces are concentrated at a single
node. The second example has a uniform distribution of the initial file pieces. Both
examples have equal makespans.

We see that in these particular examples, there is no difference in the time to
complete between the two Disjoint Multi-source Broadcast instances where they only
differ in how the L pieces were distributed over the K initial sources. Intuitively,
it would seem better if the L pieces were more uniformly distributed among the
initial K sources and that this would help facilitate a faster completion time for the
distribution. This is simply not the case with the provided examples.
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Figure 3.8: Example of N = 6, K = 3 and L = 7 with greater asymmetry in the
initial distribution of file pieces among initial sources
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Figure 3.9: Example of N = 6, K = 3 and L = 7 with uniform distribution of initial
copies of file pieces among initial sources
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Finding 2: A local greedy maximizing busyness algorithm does not necessarily lead
to a global optimum for the Disjoint Multi-Source Broadcast Case.

Employing a local greedy algorithm that tries to ensure each local node is engaged
in any available useful file piece transfer during the current timestep is insufficient
towards creating a global optimum. Simply, having every node locally be engaged
in some useful local work may still result in an overall non-optimal solution.

An optimal solution is one that minimizes the makespan of Disjoint Multi-source
Broadcast. If an algorithm is able to ensure that each timestep prior to the termi-
nal round is maximumly busy (utilizing all bN/2c file piece transfer capacities) or
maximally busy when it is not possible to be maximumly busy (if there are less than
bN/2c nodes with at least one file piece), such an algorithm is optimal as no other
algorithm can do any better during each of these timesteps.

This thus motivates the intuition and idea that employing a greedy local maximiz-
ing busyness algorithm may provide an optimal solution to the problem. We have
however found counterexamples where in the first few timesteps, the peer-to-peer
data distribution network is maximumly busy, only to result in a later non-terminal
timestep where the network can no longer do so. This implies that some thought
must go into the configuration of nodes to ensure that the succeeding state of the
network can still be maximumly busy.

Figure 3.10 is one counterexample we have found where the first few rounds are max-
imumly busy, but the distribution process progresses to a later non-terminal timestep
at t = 7 where the distribution effectively reduces into a Single-Source Broadcasting
problem. The given example completes in 16 timesteps while its optimal solution
completes in 15 timesteps.

We have seen that being maximumly busy so far may still lead to a non-optimal
solution in the long run. In the provided example, what led to the distribution pro-
cess degrading into a Single-Source Broadcasting problem at t = 7 were the choices
of file pieces that were replicated during the first few timesteps from t = 1 to at t = 6.

A common set of file pieces, pieces A, B, C and D were continuously replicated
during these timesteps, eventually resulting in all nodes obtaining all of such pieces.
However, Node 3 continued to hold rare pieces that had yet been obtained by other
nodes. Hence, the distribution effectively degraded into a Single-Source Broadcast-
ing instance with Node 3 functioning as the single-source.
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Figure 3.10: A distribution schedule for N = 4, K = 4, L = 10 that is not optimal
but timesteps t = 1 until t = 6 are maximumly busy

Had the rarer file pieces from Node 3 been replicated instead, the distribution process
might have prevented from degrading into a Single-Source Broadcasting situation.
In fact, this is exactly what is done in one instance of an optimal solution for the
example. In the general algorithm we presented earlier in a previous section, we
highlighted that giving replication priority to the current rarest file pieces in the
network works fairly well in practice.

This counterexample shows that employing a greedy local maximizing busyness
algorithm to maximize the amount of useful work done at a given timestep is simply
insufficient. The selection and order of which file pieces to replicate also matters as
this contributes towards ensuring that the network can remain maximumly busy in
the succeeding timestep. We find that in general, giving replication priority to the
current rarest file pieces works fairly well in ensuring maximum busyness in the next
timestep.
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3.5 Arbitrary Multi-source Broadcast

The Arbitrary Multi-source Broadcast problem is a more challenging extension of
Disjoint Multi-source Broadcast. Here, the goal remains a broadcasting problem to
distribute all L file pieces to all N nodes in a peer-to-peer data distribution system.
Unlike Disjoint Multi-source Broadcast however, each of the initial K source nodes
can hold overlapping subsets of the L file pieces, that is, each file piece may have
more than one initial copy and can thus be held at more than one of the initial
K sources at the start of the process. The set of initial sources for a file piece i,
Si

1 where 1 6 i 6 L, is thus some arbitrary subset of the initial K sources, rather
than restricted to a single node as in Disjoint Multi-source Broadcast. In Arbitrary
Multi-source Broadcast, 1 < K 6 N .

One of the current open problems we have identified about Arbitrary Multi-
source Broadcast is whether the problem is NP-hard. Khuller et al. have proven
that the more general data distribution problem, the Data Migration Problem is
NP-hard, showing a polynomial-time reduction from the problem of edge coloring a
simple graph with the smallest number of colors to an instance of the Data Migra-
tion Problem [10]. Under the Data Migration Problem, for every file piece i, where
1 6 i 6 L, both the set of initial source nodes for piece i and its set of destination
nodes are some arbitrary subset of all N nodes. With the Arbitrary Multi-source
Broadcast problem however, all L file pieces are desired by all N nodes but the
initial source nodes for each of these file pieces are some arbitrary subset of the N
nodes. It is this possible variance in the initial sources for each file piece that makes
Arbitrary Multi-source Broadcast a challenging problem.

Despite being one of the variants of the broadcasting problem that we wanted
to study initially for this thesis, due to the constraints of time, we were unable to
make much progress for this particular problem. We nevertheless mark the Arbitrary
Multi-source Broadcast case as the next step for future work, and we hope that our
study of Disjoint Multi-source Broadcast have yielded us insights and ideas that
would aid us in any future study of the Arbitrary Multi-source Broadcast problem.
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Chapter 4

Conclusion and Future Work

The problem of broadcasting is itself a reasonable abstraction of the challenge of
data distribution in peer-to-peer networks. By itself, it stands as a very interesting
theoretical problem with many variations as we have seen and studied, from varying
the initial conditions of the problem, such as the number of initial sources and initial
copies of the file pieces, to modifying the underlying assumptions of the problem
such as relaxing the Half-Duplex, One-Port or 1-Message constraints.

In this paper, we have examined different variants of the broadcasting prob-
lem, and have specifically focused on Disjoint Multi-source Broadcast and Arbitrary
Multi-source Broadcast, two variations that have not been studied much in past work
from the area. We had derived a lowerbound on Disjoint Multi-source Broadcast,
and presented a general algorithm and a set of best practices/heuristics that works
well in practice for different instances of the problem. A few of the main heuristics
that we identified are also employed in real-world peer-to-peer file distribution sys-
tems such as BitTorrent, which also gives replication priority to the current rarest
pieces in the network in its piece selection algorithm, Local Rarest First.

We have also obtained findings that generalize to all variants of the broadcasting
problem under the Half-Duplex One-Port 1-Message model. We identified a neces-
sary condition for maximum busyness to exist in a given data distribution network
(the most common file piece set must be at no more than dN/2e nodes). We found
that employing a greedy local algorithm to maximize busyness at every timestep
is insufficient towards creating a long-run optimal solution. Rather, the choice of
which file pieces to replicate at each timestep also matters. This result reinforces
the suitability of giving replication priority to the current rarest file pieces in the
network.

One open problem that this paper has not been able to address is the develop-
ment of an efficient algorithm to generate a maximumly busy configuration of file
piece transfers during each timestep in Phase 2 and Phase 4 of the general algo-
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rithm that we presented for Disjoint Multi-source Broadcast. The challenge for such
an algorithm is determining which configuration from all possible maximumly busy
configurations would assure that the resulting network remains maximumly busy in
a non-terminal succeeding timestep. We have also been unable to address the Ar-
bitrary Multi-source Broadcast case, and it remains an open problem if this variant
of the broadcasting problem is NP-hard. We intend to begin any future work by
starting with this particular problem.

We could also consider extensions to the Half-Duplex One-Port 1-Message model
of the broadcasting problem, such as modifying the Half-Duplex constraint into
a Full-Duplex assumption, allowing n-Port instead where n > 1 or permitting P-
Messages on a connection where P > 1. In this paper, we have also assumed an
underlying homogeneous peer-to-peer network where all link delays and switching
times are equal to one unit. We might instead consider heterogeneous networks with
different costs on different links and edges, as this assumption better reflects real-
world peer-to-peer networks. Clearly, there are certainly many interesting avenues
for future work that we can go from here.

Our study of Disjoint Multi-source Broadcast has yielded us insights into a very
interesting theoretical problem and into the class of broadcasting problems as a
whole. We have seen that studies and findings in broadcasting have the potential
of benefiting a wide variety of real-world computer system problems that can be
reasonably abstracted as a problem of broadcasting. We hope that the insights and
ideas we have obtained from this study will aid us in any future work on other
variants of broadcasting in peer-to-peer data distribution systems.
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