
Extended Abstract

Online Fingerpointing:
Just-in-Time Problem Diagnosis for Distributed Systems

Keith Bare, advised by Priya Narasimhan

March 21, 2008

1 Overview
Distributed systems are growing both in terms of size and complexity. As a result, when a com-
ponent fails, it can be difficult to determine which part of the system failed, let alone the cause
of the failure. As the cost of downtime in production systems increases, it becomes economically
important for problems to be discovered and repaired expediently.

Recent research has explored the creation of tools that attempt to automatically determine
which component in a system failed. The resulting tools and algorithms are able to successfully
implicate a faulty component in many situations. However, at this time, these tools see little, if
any, use monitoring production systems.

A likely reason why systems administrators have not embraced tools for problem diagnosis is
that existing tools cannot provide timely notification of problems. These tools collect data from the
observed system continually, but only perform analysis a posteriori, after it was determined that a
failure occurred by other means. Offline analysis, while useful for the evaluation of fingerpointing
algorithms, is unlikely to excite operators in industry’s data centers.

This thesis describes and evaluates FPT, a framework for online fingerpointing. FPT empha-
sizes flexibility while taking efforts to keep processing overheads low. The primary goal of this
work is to explore the feasibility of just-in-time problem diagnosis. Additionally, it is hoped that
FPT’s flexibility will aid future research in problem diagnosis.

2 Implementation
The FPT framework can be used to construct fingerpointers that perform online analysis. It is
highly customizable, so it can be used in many situations. A user provides a configuration file
describing a directed acyclic graph with data processing modules at the vertices. FPT parses the
configuration file, builds the specified graph, and then handles execution.

1

A graph structure is used for several reasons. First, it allows clean integration of data orig-
inating from a remote host in a distributed system. In essence, the fingerpointer will itself be
distributed among the hosts, and edges between vertices on different hosts will be implemented
with network connections. This also spreads computation among multiple machines, which will
help keep computational overhead from becoming too high on any single machine. A second bene-
fit is that a clear distinction between different parts of the fingerpointer facilitates evaluation of new
modules. For example, a data source could be replaced with a different data source, while keeping
the rest of a detector the same. Or, a new anomaly detection algorithm could be applied, just by
replacing a single module. Finally, the graph structure can adapt in order to reduce the amount of
computation required in the typical case. Parts of a detector can be dormant, except when some
other part of the detector determines a threshold has been reached, and more data is necessary to
accurately attribute a problem.

2.1 Configuration
An FPT configuration is specified in a format similar to a .INI file. A simple section describes
a vertex in the graph, specifying the module to use, a unique identifier for the vertex, the edges
to use as inputs, and module specific options. While this is enough to specify an arbitrary graph,
specifying a complicated fingerpointer only using simple sections would certainly be onerous.

Configuration files can contain two additional section types that aim to simplify the construc-
tion of complicated graphs: $group sections and $foreach sections. A $group section creates and
names a group of edges. Groups can be used as an input to a vertex (if the module supports input
groups), or in conjunction with a $foreach section. Every vertex creates an automatic group of
all its outputs identified by an ‘@’ followed by the vertex’s unique identifier. A $foreach section
creates a vertex for each element in a group. The module to use for the vertices must be specified,
as well as all the inputs the module requires. Additionally, a $foreach section can define groups
containing all edges from the same output of each vertex the $foreach section created.

2.2 Data Processing Modules
Data processing modules are written as plug-ins. All modules interact with FPT using the same
API. However, a module may take many forms of action. A module may introduce new data,
process and forward data, or consume data.

The module API requires that plug-ins provide functions handling life cycle events and defining
execution. Additionally, FPT provides many functions that a plug-in can call. These functions
allow for inspection and manipulation of inputs and outputs, specification of scheduling criteria,
and also provide access to values specified in the appropriate section of the configuration file.

3 Evaluation
[Note: since I have not yet completed evaluation of my system, this section currently describes my
plans for evaluation. My thesis will present results.]

2

There are three important traits that will determine an online fingerpointer’s success in pro-
viding just-in-time problem diagnosis: accurate implication of faulty system components, low
overhead to prevent ill effects on the monitored system, and quick acknowledgment of anomalous
situations. Experiments are designed to quantify these traits.

It is also useful to evaluate whether or not FPT is sufficiently flexible to serve as a platform
for future work in problem diagnosis. While a tool’s utility cannot be measured quantitatively,
qualitative responses from other researchers can provide insight.

3.1 Experimental Setup
Hadoop is an open source implementation of MapReduce [4]. [I intend to provide more back-
ground information on Hadoop. Caveat: I’m currently planning on using Hadoop since it also
being used by some other projects in Priya Narasimhan’s research group. However, if initial ex-
periences seem to indicate that working with Hadoop will be problematic, I may end up working
with a different system.] Faults were injected into a single node in a cluster of machines [I will
describe the machines] running Hadoop. An FPT fingerpointer is run on the nodes in the cluster,
and its behavior is examined.

[I intend to describe the specifics of the Hadoop configuration, and the application being run
on top of Hadoop. There will be justification why this is reasonable.]

[I intend to describe the faults that are injected, as well as the mechanism by which they are
injected. The faults will probably include a crash, a hang, a memory leak, and packet loss.]

The FPT fingerpointer is configured to collect black box, OS-level performance metrics from
the Linux /proc filesystem. Problem diagnosis is performed with some of the algorithms described
in [6]. [I will state which ones I implement, and provide a very brief overview how they work. I
will also include more specific details about the fingerpointer’s structure.]

3.2 Accuracy
An inaccurate fingerpointing tool is unlikely to provide many benefits. False positives require
administrators to waste effort fixing problems that do not actually exist, and false negatives may
cause problems to go unnoticed.

Since FPT is configured to use previously evaluated algorithms, these experiments are mostly
just make sure the number of false positives and false negatives remain similar to those in the
previous work.

[I will determine what kind of experiments are best compared to previous work. Data collected
from the experiments will be displayed in graphical and/or tabular form. If any of the data seems
to disagree with previous results, potential causes for the deviations will be explored.]

3.3 Overhead
Overhead is measured by running the Hadoop workload without injecting faults. The run time will
first be recorded when FPT is not running to provide a control data point. This can be compared

3

to run times when FPT is run with different configurations, in order to determine how much FPT’s
processing slows down the Hadoop computations.

[I will display the data collected, in graphical and/or tabular form, and make some comments.]

3.4 Detection Time
Detection time is measured by running a Hadoop workload with various faults injected. An FPT
fingerpointer will monitor each run. Again, various algorithms and configurations will be used.
In each case, the wall clock time when the fault is injected and the wall clock time when the
fingerpointer determines there is a problem will be recorded.

[I will display the data collected, in graphical and/or tabular form, and make some comments.]

3.5 Responses
The FPT framework was presented to Priya Narasimhan’s problem diagnosis research group. Ini-
tial responses indicate there is definite interest in the tool.

[Over the next month, the researchers plan to try using FPT. This will provide me with some
good feedback on how other people feel about implementing data collection and analysis modules
for FPT.]

4 Related Work
Architecturally, FPT seems to be most similar to EMERALD [7]. While FPT attempts to be a
plug-in based tool for problem diagnosis, EMERALD is targeted toward intrusion detection. In
some senses, problem diagnosis and intrusion detection are similar. However, the APIs defined by
EMERALD are also more complicated than those defined by FPT.

Some existing work mentions running algorithms that can be used for problem diagnosis on-
line. [3] mentions that the metric attribution algorithm was designed to have low computational
overhead in order to allow the possibility of online execution. However, all results presented were
analyzed offline. Magpie [1] can perform online clustering and extraction of request traces and
from a running application. The request clusters can be analyzed to find anomalous behavior, but
this analysis is not automated.

There are several existing approaches to offline problem diagnosis. FPT is designed to sup-
port approaches using statistical or machine learning methods to detect anomalous system states,
similar to [2], [5], and [6]. FPT should be able to support similar methods, assuming that the
computations carried out are fast enough to be computed in real time.

References
[1] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for

request extraction and workload modelling. Symposium on Operating Systems Design and

4

Implementation (San Francisco, CA, December 2004), pages 259–272. USENIX Associa-
tion, 2004.

[2] Mike Y. Chen, Emre Kiciman, and Eric Brewer. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. International Conference on Dependable Systems and Networks
(Washington, DC, 23–26 June 2002), pages 595–604. IEEE Computer Society, 2002.

[3] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando
Fox. Capturing, indexing, clustering, and retrieving system history. ACM Symposium on
Operating System Principles (Brighton, United Kingdom, 23–26 October 2005), pages 105–
118. ACM, 2005.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. OSDI’04: Sixth Symposium on Operating System Design and Implementation,
pages 137-150, 2004.

[5] Emre Kiciman and Armando Fox. Detecting application-level failures in component-based
internet services. Submitted for publication, September 2004.

[6] Soila Pertet, Rajeev Gandhi, and Priya Narasimhan. Fingerpointing correlated failures in
replicated systems. USENIX Workshop on Tackling Computer Systems Problems with Ma-
chine Learning Techniques (Cambridge, MA, April 2007), 2007.

[7] Philip A. Porras and Peter G. Neumann. EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances. 20th NIST-NCSC National Information Systems Security
Conference (Baltimore, Maryland, 22–25 October 1997), pages 353–365. NIST-NCSC, 1997.

5

