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Chapter 1

Introduction

The tension between protecting an object and allowing it to be used or displayed
is a fundamental one, even for objects that are not digital. For example, how can
intruders be prevented from reading a classified document while still allowing
the members of that document’s security compartment to read and edit it? Or,
how can the public be prevented from using a departmental photocopier, while
still allowing members of the department to use it?

Because of this fundamental tension, organizations usually establish policies
that delineate the conditions under which an object can be accessed. These
policies, along with a mechanism for their enforcement, constitute an access
control system. But, an access control system is valuable only if it can be trusted
to be correct: the policies must allow only what is desired by the organization
and the system must correctly enforce all of the policies.

As access control systems become more widespread and more complex, it
is increasingly clear that ad hoc methods can no longer guarantee a sufficient
level of trust in the system’s correctness: a formal approach to access control
is needed. One promising avenue is the use of logic for specifying policies.
Given an appropriately defined logic, policies can be encoded as concrete logical
structures, rather than relying on abstract policy descriptions.

But, why is logic a solid foundation for access control? The specification of
policies in a logic provides three important benefits. First, once written in a
formal logic, policies have precisely specified meanings. The ambiguity inherent
in a natural language formulation no longer exists. Instead, the semantics of
the logic define the meaning of a policy exactly.

Second, by expressing them in a logic, access control policies can be enforced
by proof-carrying authorization (PCA) [3, 4]. In a PCA-based access control
system, each resource is guarded by a resource monitor. A user requesting
access to a resource must present the corresponding resource monitor with a
formal proof of why she is authorized, under the system’s policies, to access
that resource. The monitor then checks this proof for correctness. If the proof
is correct, access is granted; if the proof is incorrect, access is denied.

In PCA, then, the logical model of access control coincides with access con-
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trol in the real world: access is granted in practice if, and only if, it is granted
formally by the logical forms of the policies. In this way, a PCA-based imple-
mentation of an access control system is guaranteed to correctly adhere to that
system’s policies, whatever they may be.

Third, policies written in a logic can be subjected to extensive meta-analysis.
For example, non-interference properties of the logic can be proven and used
in this analysis, as demonstrated by Garg and Pfenning [13]. Potentially unin-
tended consequences of the policies can then be discovered by automated policy
analysis tools based on these properties. This and other meta-analyses increase
confidence in policies’ correctness.

To take advantage of these benefits, it is crucial that the underlying autho-
rization logic be able to model as many policy motifs as possible. Of course,
if the logic cannot express a critical feature of some policy, that feature could
be enforced by extra-logical methods. But, by abandoning the use of logic and
reverting to ad hoc methods, the above benefits will no longer apply to that
feature. Specifically, although a PCA proof may be correct according to the
logic’s rules, access may still be denied due to the failure of the extra-logical
checks. This destroys the correspondence between the logical model of access
and access in practice. Even worse, meta-analysis of the formal policies cannot
be used to guarantee their correctness with respect to an informal specification
because the logic does not model a critical feature.

For this reason, when designing an authorization logic, common policy mo-
tifs should be considered for inclusion. One such motif is time. It is often
desirable to limit the times during which a resource can be accessed or to grant
authorizations that expire. For example, students should not be able to view
the solutions to a homework assignment until after the due date. Because of the
ubiquity of such time-dependent access control policies, one would hope that an
authorization logic incorporating time exists.

Surprisingly, of the numerous logics [1–3, 7, 12, 13, 17, 18] and languages [7,
11] proposed in the access control literature, few allow time-dependent policies.
Those that do handle time do so using extra-logical mechanisms: we know of
no authorization logic that incorporates time internally. This void motivates us
to develop an authorization logic with time.

Because time-dependent authorizations typically use explicit times, such as
“between 9am and 5pm” or “during the month of May 2008,” the logic developed
in this thesis incorporates explicit time intervals rather than relative times, such
as “at some time in the future.” For this reason, the logic is dubbed η logic,
where η (spelled “eta”) stands for Explicit T ime Authorization.

η logic borrows ideas from constructive hybrid logic [8, 9, 20] to model time
intervals as possible worlds in which propositions may be true. Accordingly, the
@ connective of hybrid logic is used to relativize the truth of a proposition to a
time interval, as in A @ I. η logic also adopts techniques from constraint-based
reasoning [16, 21] to manage an inclusion relation between intervals.

Another common policy motif is that of consumable credentials. One often
wants to allow only a finite number of accesses. For example, students might be
freely authorized to make 250 photocopies per semester and must purchase the
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authorization to make additional copies. That is, a finite number of accesses
are free of charge.

An authorization logic that can express changes of state would be able to
account for such policies. Linear logic [10, 15] is a logic that can model con-
sumable resources. For this reason, logics of authorization that include ideas
from linear logic have been proposed [12]. To incorporate linear policies in ad-
dition to time-dependent ones, η logic is extended with techniques from linear
authorization logics. Thus, η logic is actually a family of logics comprised of a
non-linear η logic and a linear η logic.

In summary, this thesis makes two conceptual contributions. First, an autho-
rization logic that directly incorporates time is developed and its applicability
to natural time-dependent policies is demonstrated. Second, by the existence
of a linear version of η logic, linearity is shown to be orthogonal to explicit
time. This peaceful coexistence of the two features was not initially obvious be-
cause both linearity and time “consume” objects—linearity by usage and time
by expiration.

This thesis also makes a small practical contribution. The natural deduction
proof checker presented shows that a full-fledged PCA implementation of the
linear η logic should be easily constructible, at least in a centralized system.

Related Work

Coming soon.

Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews a non-
linear logic of authorization that does not use time. Examples are given to clarify
the use of the logic and demonstrate the need for time-dependent policies. In
Chapter 3, we develop non-linear η logic. Examples highlight the increased
expressive power of non-linear η logic and indicate the need for linear policies.
Meta-theoretic properties of the logic are proven, increasing our confidence in
the logic’s soundness. Chapter 4 extends the previous logic by adding linearity.
As the examples show, linearity increases the expressive power even more. The
meta-theoretic properties are also extended to account for linearity. Finally,
Chapter 5 presents a natural deduction formulation of linear η logic and briefly
describes the corresponding implementation. The soundness and completeness
of the natural deduction system with respect to the linear η sequent calculus
are also established.
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Chapter 2

Preliminaries:
Garg-Pfenning
Authorization Logic

η logic draws very heavily from a constructive, proof-theoretic authorization
logic developed by Garg and Pfenning [13]. Before presenting η logic, it will be
useful to review the so-called Garg-Pfenning logic (hereafter GP logic). This
review will allow us to introduce concepts from proof-theoretic authorization
logics, including the key concept of affirmation, will familiarize the reader with
the expression of access control policies in an authorization logic, and will afford
us an opportunity to present some meta-theory.

2.1 Logical System

Proof-theoretic logics, as an alternative to axiomatic logics, were first introduced
by Gentzen [14]. These logics make the meanings of propositions exact by
precisely specifying how each form of proposition may be verified. By coinciding
a logic’s semantics with its syntactic proofs, proof theory provides a high degree
of assurance in that logic’s correctness.

Later, Martin-Löf introduced a distinction between judgments and proposi-
tions [19]. Under this formulation, a judgment is an object of knowledge and is
made evident by a formal proof. Propositions, then, are those things that can
be acted on by the logical connectives, such as conjunction and implication.

GP logic adheres to both of these fundamental ideas in an effort to keep
the meanings of proofs clean and direct. We begin by reviewing the first-order
terms and sorts of the logic. Next, we introduce the truth and affirmation
judgments that form the foundation of GP logic. This introduction is carefully
separated from the description of the logic’s propositions, to emphasize Martin-
Löf’s distinction. Finally, we present the proof rules of GP logic as a Gentzen-
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style sequent calculus.

2.1.1 First-order Terms and Sorts

To account for atomic propositions built from predicates and for universal and
existential quantification, GP logic contains terms t which are classified by sorts
s. That term t has sort s is denoted by the judgment t:s.

The particular sorts and terms available in GP logic are left open-ended,
with the exception that a sort principal of principals is specifically assumed.
Principals are the entities, typically users or machines, that can make statements
of affirmation. The meta-variable K is used to stand for an arbitrary principal.

Because we will want to be able to reason parametrically with terms, GP
logic introduces a signature, Σ, to track the parameters in scope and their
respective sorts. The syntax of a signature is:

Σ ::= · | Σ, x:s

Thus, a signature is simply a list of sort-parameter ascriptions: a signature may
be empty, written as ·; or, it may be a signature Σ followed by the ascription of
a sort s to a parameter x, written as Σ, x:s. To avoid ambiguities, we assume
that all parameters declared in Σ are distinct from x; this convention can be
maintained by implicitly renaming variables according to α conversion.

Since GP logic now includes parameters, the judgment t:s must be extended
to account for parameters, in addition to the ground terms it already handles.
The new judgment is written Σ ` t:s, meaning that term t has sort s in signature
Σ. In particular, Σ, x:s ` x:s holds. Also, [t/x] stands for the capture-avoiding
substitution of term t for all occurrences of the free variable x. In particular,
[t/x]A is the proposition A with all free occurrences of x replaced by t.

2.1.2 Judgments

In GP logic, it is necessary to reason about the truth of propositions. That is,
statements of the form “Proposition A is true” are objects of knowledge and
the subjects of proofs. Following Martin-Löf’s philosophy, GP logic therefore
includes the judgment form A true , which presupposes that A is a well-formed
proposition. For syntactic simplicity, the modifier true will often be dropped, so
that A will implicitly stand for the judgment A true .

However, the truth of propositions is not a sufficiently expressive notion
upon which to base an authorization logic. In addition to reasoning about
objective truths, it is necessary to reason about principals’ policies or intents.
The approach taken by GP logic is to add a new judgment form K affirms A,
meaning that “Principal K affirms that proposition A is true.” A principal,
then, issues a policy by affirming the truth of that policy. In an implementation,
the affirmation K affirms A will be established by a certificate signed by K
containing A.

These judgments of truth and affirmation are the basic judgment forms of
GP logic. However, they are of little use in and of themselves; we need to be
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able to reason from hypotheses. The mechanism that GP logic uses is termed
a hypothetical judgment or sequent, an extension of a basic judgment that
explicitly lists the allowable assumptions.

Specifically, GP logic uses two hypothetical judgment forms:

Σ; Γ =⇒ A true

Σ; Γ =⇒ K affirms A

where Σ is a signature of the parameters, ascribed with sorts, that appear in
the remainder of the judgment, and Γ is an unordered collection of hypotheses
of the form A true , called a context1.

The first of the above hypothetical judgments may be read “Under the hy-
potheses of Γ, proposition A is true, parametrically in the terms of Σ.” Similarly,
the second hypothetical judgment states “Under the hypotheses of Γ, principal
K affirms that proposition A is true, parametrically in the terms of Σ.”

2.1.3 Propositions

The syntax of propositions in GP logic is:

A,B ::= P | A ∧B | > | A ∨B | A ⊃ B | ∀x:s.A | ∃x:s.A | 〈K〉A

GP logic contains nearly all of the ordinary connectives from first-order logic:
atomic propositions, P ; conjunction, A ∧B; truth, >; implication, A ⊃ B; uni-
versal quantification, ∀x:s.A; and existential quantification, ∃x:s.A. However,
falsehood, ⊥, is conspicuously absent. Falsehood is omitted from non-linear η
logic for reasons that will discussed in Section 3.1.4, and, for consistency, it is
also omitted here.

Despite the close similarity of these propositions to those of first-order logic,
there is one form of proposition that is unique to authorization logics: 〈K〉A,
read “K says A”. This proposition internalizes the affirmation judgment Kaffirms
A, meaning that it is semantically equivalent to K affirmsA, but is a proposition
rather than a judgment.

Having an affirmation proposition allows affirmations to be combined with
logical connectives, such as implication. For example, we could not combine
the judgment K affirms A with the proposition B via implication because this
would violate Martin-Löf’s distinction between judgments and propositions:
only propositions, and not judgments, can be operated on by the logical con-
nectives. But, we can combine the proposition 〈K〉A with the proposition B via
implication as (〈K〉A) ⊃ B.

2.1.4 Inference Rules

Since GP logic possesses a proof-theoretic semantics, its proof rules are critically
important. They, and not any other external semantics, establish the meaning

1Although this meaning is distinct from its usage in the access control literature, we will
continue to use this terminology, as it is common in logic and type theory.
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of the truth and affirmation judgments. We must therefore proceed to present
the proof rules of GP logic.

In proof-theoretic logics, each inference rule is written in the form:

J1 J2 · · · Jn

J
label

This notation means that if the premise judgments J1, J2, . . . , Jn are evident,
then the conclusion judgment J is also evident by the rule named label. Note
that n may be 0. In this case, the rule has the form:

J
label

and the conclusion judgment J is always evident: there are no proof obligations.
With the notation explained, we can now describe the inference rules of GP

logic. We begin by examining the meaning of hypotheses through the init rule.

Σ; Γ, P =⇒ P
init

We would expect that an assumption A true could be used to immediately
conclude A true . This is, in fact, the case. However, for technical reasons, we
do not adopt this in its full generality as an inference rule, but instead use the
above init rule which restricts the direct use of hypotheses to atomic propositions
P . We can recover the more general form as a meta-theorem (Theorem 2.1,
Section 2.3).

Next, we consider the rules for the affirmation judgment and its internaliza-
tion as a proposition.

Σ; Γ =⇒ A

Σ; Γ =⇒ K affirms A
affirms

When is an affirmation judgment evident? That is, when can we conclude that
a principal K affirms the truth of proposition A? If A is true, it is made evident
by a proof. When this proof is presented to K, K is confronted with irrefutable
evidence of the truth of A. K cannot possibly deny the truth of A, for doing
so would violate K’s rationality. Instead, K must affirm it. Thus, one way of
establishing K affirms A is to establish A true . This is captured by the above
affirms rule.

In a sequent calculus, the meaning of each logical connective ? is defined by
a set of right rules and a set of left rules. Right rules show how A ? B true may
be established, and left rules show how a hypothesis A ? B true may be used.
For the says connective, there is one right rule and one left rule:

Σ; Γ =⇒ K affirms A

Σ; Γ =⇒ 〈K〉A
〈〉R

Σ; Γ, 〈K〉A,A =⇒ K affirms B

Σ; Γ, 〈K〉A =⇒ K affirms B
〈〉L

The right rule 〈〉R specifies that 〈K〉A true may be established by evidence that
K affirms A holds. This is consistent with our above claim that the proposition
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〈K〉A is the internalization of the judgment K affirms A. We now know how to
verify 〈K〉A true , but how does one use the hypothesis 〈K〉A true ?

The left rule 〈〉L gives instructions for how the hypothesis 〈K〉A true may
be used. Because 〈K〉A true represents the knowledge that K affirms A true ,
from K’s perspective, A may as well be true; K will never admit that one of her
beliefs is invalid. So, provided that we are reasoning about an affirmation made
by K, that is, provided that we are inside K’s mind, the hypotheses 〈K〉A true
and A true are equivalent.

We now review the inference rules for implication and universal quantifica-
tion. A reader familiar with the sequent calculus presentation of first-order logic
may skip this discussion; there is nothing unique to GP logic in the remaining
rules.

First, we give the rules for implication.

Σ; Γ, A =⇒ B

Σ; Γ =⇒ A ⊃ B
⊃R

Σ; Γ, A ⊃ B =⇒ A Σ; Γ, A ⊃ B,B =⇒ γ

Σ; Γ, A ⊃ B =⇒ γ
⊃L

The implication A ⊃ B may be intuitively thought of as a plan for converting
a proof of A true to a proof of B true . Such a conversion can be established
by assuming that a proof of A true is given and constructing a proof of B true
from this assumption. This is captured by the right rule ⊃R. The conversion
intuition also suggests that the hypothesis A ⊃ B true can be used by executing
this plan. Given A true , the plan A ⊃ B true can be carried out to produce
B true . This intuition is formalized in the left rule ⊃L.

Next, we give the rules for universal quantification.

Σ, x:s; Γ =⇒ A

Σ; Γ =⇒ ∀x:s.A ∀R
Σ ` t:s Σ; Γ,∀x:s.A, [t/x]A =⇒ γ

Σ; Γ,∀x:s.A =⇒ γ
∀L

The right rule ∀R states that ∀x:s.A true may be verified by establishing A true
for all possible terms of sort s. This is done by introducing a new parameter x
of sort s and establishing A true parametrically in x. Just as the implication
A ⊃ B can be thought of as a plan for converting a proof of A true to a proof of
B true , the right rule ∀R suggests that ∀x:s.A can be thought of as a plan for
creating a proof of [t/x]A true for any term t of sort s. So, assuming such a plan
and given a term t of sort s, the plan can be carried out to produce [t/x]A true .
This intuition is captured by the left rule ∀L.

The remaining connectives of GP logic and their rules are taken directly
from first-order logic. A summary of all of the inference rules in GP logic is
given Figure 2.1.

To illustrate some properties of GP logic, we state a few judgments derivable
and a few judgments not derivable in the logic.

1. ·; · =⇒ A ⊃ 〈K〉A true
2. ·; · =⇒ 〈K〉〈K〉A ⊃ 〈K〉A true
3. ·; · =⇒ 〈K〉(A ⊃ B) ⊃ 〈K〉A ⊃ 〈K〉B true
4. ·; · 6=⇒ 〈K〉A ⊃ A true
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Initial Rule

Σ; Γ, P =⇒ P
init

Affirmation and 〈K〉A

Σ; Γ =⇒ A

Σ; Γ =⇒ K affirms A
affirms

Σ; Γ =⇒ K affirms A

Σ; Γ =⇒ 〈K〉A
〈〉R

Σ; Γ, 〈K〉A,A =⇒ K affirms B

Σ; Γ, 〈K〉A =⇒ K affirms B
〈〉L

Other Connectives

Σ; Γ =⇒ A Σ; Γ =⇒ B

Σ; Γ =⇒ A ∧B
∧R

Σ; Γ, A ∧B,A =⇒ γ

Σ; Γ, A ∧B =⇒ γ
∧L1

Σ; Γ, A ∧B,B =⇒ γ

Σ; Γ, A ∧B =⇒ γ
∧L2

Σ; Γ =⇒ > >R

Σ; Γ =⇒ A

Σ; Γ =⇒ A ∨B
∨R1

Σ; Γ =⇒ B

Σ; Γ =⇒ A ∨B
∨R2

Σ; Γ, A ∨B,A =⇒ γ Σ; Γ, A ∨B,B =⇒ γ

Σ; Γ, A ∨B =⇒ γ
∨L

Σ; Γ, A =⇒ B

Σ; Γ =⇒ A ⊃ B
⊃R

Σ; Γ, A ⊃ B =⇒ A Σ; Γ, A ⊃ B,B =⇒ γ

Σ; Γ, A ⊃ B =⇒ γ
⊃L

Σ, x:s; Γ =⇒ A

Σ; Γ =⇒ ∀x:s.A ∀R
Σ ` t:s Σ; Γ,∀x:s.A, [t/x]A =⇒ γ

Σ; Γ,∀x:s.A =⇒ γ
∀L

Σ ` t:s Σ; Γ =⇒ [t/x]A
Σ; Γ =⇒ ∃x:s.A ∃R

Σ, x:s; Γ,∃x:s.A,A =⇒ γ

Σ; Γ,∃x:s.A =⇒ γ
∃L

Figure 2.1: The inference rules for Garg-Pfenning logic.
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5. ·; · 6=⇒ A true

The first three judgments show that 〈K〉 satisfies the properties of a lax modal-
ity. The fourth judgment highlights the difference between truth and affirma-
tion: truth is always affirmed (as shown in the first judgment), but an affirma-
tion by some principal does not entail truth. The fifth judgment states that not
every proposition is true a priori in GP logic, implying consistency of the logic.

2.2 Examples

Now that we have presented the judgments and crucial inference rules of GP
logic, the reader should be sufficiently prepared to consider a few examples
of policies written in GP logic. First, we present an example that will recur
throughout the remainder of this paper: controlling access to academic offices.
Although this example is relatively small, it will still demonstrate the use of
affirmation in GP logic, and, in later chapters, highlight the increased expressive
power of η logic. Second, we examine the application of GP logic to chemical
laboratory inspections.

2.2.1 Office Entry

In this example, we describe two hypothetical policies for the Grey system [5, 6],
an architecture for controlling entry to academic offices that was developed and
is currently deployed at Carnegie Mellon University. In the Grey system, each
office door is equipped with a processor that controls access to the office through
PCA. Following the standard PCA methodology, the office door will unlock only
if the principal requesting access presents the doorfront processor with a correct
proof that, under the security policies of the system, she is authorized to enter.

For this example, we postulate the existence of an administrating principal,
admin, that controls entry to the various faculty, staff, and student offices in
his administrative domain. For simplicity, we also assume that the ownership
relation from principals to offices is an injective function, so that each office can
be named according to its owner.

Only one predicate is used here: may enter. may enter(K2,K1) means that
principal K2 is allowed to enter K1’s office.

One reasonable policy to include in such a system is the authorization of
every principal to enter her own office. Because admin controls each office, this
policy is expressed in GP logic as:

own : 〈admin〉(∀K:principal.may enter(K, K)) true (2.1)

This policy may be read as “The administrator says that each principal K
may enter her own office.” Although extremely simple, this policy exhibits an
important point. Because the certificate corresponding to an affirmation must
be an independent object, it cannot contain free variables. Thus, any quantifiers
must appear inside the top-level affirmation, as seen in the own policy.
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Another reasonable feature to have in an office access control system is the
ability of each office owner to decide who may enter her office. To accomplish
this, the administrator can agree to trust office owners’ access control decisions:

trust : 〈admin〉(∀K1:principal.∀K2:principal.〈K1〉may enter(K2,K1) ⊃ may enter(K2,K1))true
(2.2)

This policy may be read as “The administrator says that, for all pairs of princi-
pals K1 and K2, if K1 says K2 may enter K1’s office, then K2 may indeed enter
K1’s office.” The trust policy expresses a kind of delegation: K1 now speaks for
admin on matters of K1’s office.

To clarify how the trust policy can be used, consider a professor Alice and
her graduate student Bob. Suppose that Alice is out of the office on May 7,
2008. But, Bob needs to retrieve a paper from Alice’s office that he and Alice are
collaborating on. He calls Alice and she agrees to issue the following credential:

C0 : 〈Alice〉may enter(Bob,Alice) true

Bob then approaches Alice’s door and requests entry to her office using his cell
phone. Before the door will unlock, Bob must submit a correct proof of

Alice:principal,Bob:principal; own, trust, C0 =⇒ 〈admin〉may enter(Bob,Alice)true

That is, Bob must prove that the administrator allows him to enter Alice’s
office. Bob’s phone constructs the required proof by simply applying the trust
hypothesis to the C0 hypothesis. The doorfront processor checks this proof, and,
since it is correct, unlocks the door.

Although this policy serves its purpose, it is a rather coarse approximation
to the behavior desired in general. It is likely that Alice wants the credential
C0 to allow Bob access to her office only on May 7, 2008. If he needs access at
a later time, he should be required to contact Alice first. But, under GP logic,
once Alice issues this credential, Bob will be able to enter her office at any time,
even months or years after May 7, 2008!

As noted previously, time might be handled in such a system using extra-
logical checks. But then, the proof does not accurately reflect the true state
of the system: access might be denied even though the proof is correct. This
inaccuracy, even for such a simple example as office entry, motivates the devel-
opment of η logic. We will revisit this example in Section 3.2.1 and show that,
in η logic, users can restrict access to their offices by time.

2.2.2 Chemical Laboratory Inspections

We now consider a more complicated example. Inspection duties of the United
States Occupational Safety and Health Administration (OSHA) include the
oversight of chemical laboratories. As a rough approximation, the inspection
process can be thought of as a verification that all employees of the laboratory
are “safe” in some appropriately defined way. Only if OSHA can be guaranteed
of this, will it certify the laboratory.
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To model the inspection process in GP logic, we assume the existence of a
sort, lab, of chemical laboratories and the existence of a distinguished principal
OSHA. The following predicates are required:

is employee(K, L) Principal K is an employee of lab L.
is manager(K, L) Principal K is a manager of lab L.
is technician(K, L) Principal K is a technician of lab L.
is janitor(K, L) Principal K is a janitor of lab L.
is safe(K, L) Principal K is safe in lab L.
is certified(L) Lab L is certified and may continue operating.

It is reasonable to assume that OSHA classifies each employee of a laboratory
according to his job description. We assume that the three classes established
by OSHA are: manager, technician, and janitor. This classification policy can
be expressed as:

job : 〈OSHA〉(∀L:lab.∀K:principal.is employee(K, L) ⊃
(is manager(K, L) ∨ is technician(K, L) ∨ is janitor(K, L))) true

(2.3)

This policy provides a method for distinguishing the job that an employee holds.
Employees holding different positions may be “safe” under different conditions.
For example, janitors may be exposed to chemicals but need not operate lab
equipment, while technicians will handle chemicals and operate equipment. For
this reason, a janitor might be “safe” if he can access safety procedures for all
chemicals in the lab, but he need not (and perhaps should not) access equipment
manuals. On the other hand, a technician would need to be able to access both
chemical safety procedures and equipment manuals to be “safe.”

OSHA’s certification policy can then be expressed as:

certify : 〈OSHA〉(∀L:lab.(∀K:principal.is employee(K, L) ⊃ is safe(K, L)) ⊃ is certified(L))true
(2.4)

This can be read as “OSHA says that a lab L is certified if, for all employees K
of lab L, K is safe in lab L.”

In many policies, credentials are required to establish a result. Note that, in
the certify policy, however, the requirement is a kind of conditional credential:
the safety of a principal K in lab L is only needed when K is an employee of L.
Because this condition exists, it is possible, using the case analysis induced by
the job policy, to take the specific job of K into account when determining K’s
safety.

2.3 Meta-theory

One of the key advantages of a proof-theoretic logic is its vulnerability to a
rigorous meta-theoretic analysis. Meta-theorems are stated as natural and de-
sirable properties of the logic—properties that one would expect to hold. The
proofs of these properties serve as a kind of “sanity check” on the design of the

12



logic; if some expected property fails to hold, perhaps the logic’s design should
be reconsidered.

As a proof-theoretic logic, the meta-theory of GP logic can be explored in
this way. There are two reasonable properties for GP logic. First, as alluded
to in the discussion of the init rule (see Section 2.1.4), for any proposition A,
from the assumption that A is true, it should be possible to establish that A is
true. For atomic propositions P , this is captured explicitly in the init inference
rule. For arbitrary propositions A, this is stated and proved as the following
theorem.

Theorem 2.1 (Identity). For any proposition A, Σ; Γ, A true =⇒ A true .

Second, the logic should possess a so-called cut elimination property. One
cut rule for GP logic states that a proof of A true can be used to replace the
hypothesis A true in a proof of γ to yield a direct proof of γ. For this reason,
a cut rule might be intuitively thought of as a method for creating and using
lemmata; the proof of Atrue functions as the lemma and the hypothesis Atrue in
the proof of γ corresponds to the use of the lemma in proving the main theorem.

Since GP logic also permits conclusions of the form K affirms A, a rule for
cutting affirmation is also needed. K affirmsA can replace the hypothesis A true
in a proof of K affirmsB since, from K’s perspective, truth and K’s affirmations
are equivalent.

Cut elimination means that an explicit cut rule is not needed in the logic: any
uses of the rule are unnecessary. The following theorem states the admissibility
of cut. Because cut elimination follows from this by a straightforward induction,
often only the admissibility of cut is formally stated and proven.

Theorem 2.2 (Admissibility of Cut).
1. If Σ; Γ =⇒ A true and Σ; Γ, A true =⇒ γ, then Σ; Γ =⇒ γ.
2. If Σ; Γ =⇒ K affirms A and Σ; Γ, A true =⇒ K affirms B, then Σ; Γ =⇒

K affirms B.

The proofs and associated lemmas for the above meta-theorems are given in
[13].

2.4 Conclusion

In hopes of adequately preparing the reader for the following discussion of η
logic, this chapter has reviewed a proof-theoretic authorization logic developed
by Garg and Pfenning [13]. We have also seen the application of GP logic to
two disparate systems: office access control and chemical laboratory inspections.
Finally, we have presented the meta-theory of GP logic and explained its impor-
tance as an expression of the logic’s soundness. We now proceed to Chapter 3
where we develop non-linear η logic, which is heavily based on principles from
GP logic reviewed in this chapter.
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Chapter 3

Non-linear η Logic

Introduction coming soon.

3.1 Logical System

Introduction coming soon.

3.1.1 First-order Terms and Sorts

The basic system for first-order terms and sorts remains as it was in GP logic.
Σ is still a signature listing the parameters in scope and their respective sorts.
We continue to write Σ ` t:s for the judgment that term t has sort s and [t/x]A
for the substitution of term t for the free variable x in proposition A.

The sort principal of principals is carried over from GP logic. Non-linear η
logic includes two additional sorts: the sort time of times and the sort interval
of time intervals. The remaining sorts in the logic are left open-ended so that
application-specific sorts can be added as needed.

Times are the components that comprise the time intervals about which
non-linear η logic reasons. Because the logic does not depend on it, a concrete
structure for times is not given, but instead left to be specified by individual
applications. However, intuitively, one may think of times as points on the real
line. Times are usually represented by t; it should be clear from the context
whether a given occurrence of t indicates an arbitrary term or a time.

Intervals, represented with the meta-variable I, are sets of time about which
reasoning occurs. Despite the use of the terminology “interval,” these sets of
time need not be intervals in the mathematical sense; that is, they need not
have the form [t1, t2] = {x | t1 ≤ x ≤ t2} or the related open interval forms.
Non-linear η logic is flexible enough to permit the use of arbitrary sets of time
(provided they possess a preorder of inclusion). However, we overlook the slight
abuse of terminology since structures that are strictly intervals appear naturally
in many applications.
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3.1.2 Constraints

As will be seen in Section 3.1.5, the rules of non-linear η logic will require a
preorder of inclusion for intervals. Because interval parameters are permitted
in the logic, it is not sufficient to simply adopt a mathematical definition of
interval inclusion. Instead, a constraint domain is incorporated in the logic. The
superset constraint form I ⊇ I ′ is required, but the remainder of this domain
is left open-ended: other constraint forms may be freely added for application-
specific purposes.

The meta-variable C denotes an arbitrary constraint form. Because it will be
necessary to assume that certain constraints hold during reasoning, a constraint
context is introduced, with the following syntax:

Ψ ::= · | Ψ, C

Thus, each constraint context Ψ is a (possibly empty) list of constraints. Re-
ordering of the members of Ψ is freely permitted.

We will use the constraint entailment judgment

Σ; Ψ |= C

to mean “Under the constraints of Ψ, constraint C holds, parametrically in the
members of signature Σ.” Note that the signature Σ is required because Ψ and
C may contain parameters from Σ.

Because the structure of intervals is left abstract, even the particular decision
procedure used to solve superset constraints remains relatively unspecified: any
system satisfying the following six basic properties can be used as the constraint
domain. These properties are required for the meta-theory that will be presented
in Section 3.3.

(Hypothesis) Σ; Ψ, C |= C.
(Weakening) If Σ; Ψ |= C, then Σ,Σ′; Ψ,Ψ′ |= C.
(Cut) If Σ; Ψ |= C and Σ;Ψ, C |= C ′, then Σ; Ψ |= C ′.
(Substitution) If Σ ` t:s and Σ, x:s; Ψ |= C, then Σ; [t/x]Ψ |= [t/x]C.
(Reflexivity) Σ; Ψ |= I ⊇ I.
(Transitivity) If Σ; Ψ |= I ⊇ I ′ and Σ;Ψ |= I ′ ⊇ I ′′, then Σ; Ψ |= I ⊇ I ′′.

3.1.3 Judgments

Our goal in designing non-linear η logic is to allow reasoning about explicit
time within an authorization logic. Instead of reasoning about the truth of
propositions, as was done in GP logic, it is necessary to reason about the truth of
propositions during explicit time intervals. Therefore, the objects of knowledge
in non-linear η logic are not statements of the form “Proposition A is true,”
but rather statements of the form “Proposition A is true during interval I.”
Then, according to Martin-Löf’s philosophy, the logic should include a judgment
form that relativizes truth to a time interval. We choose to write A[I] for the
judgment meaning “Proposition A is true during interval I.”
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In addition to its truth judgment form, A true , GP logic included an affir-
mation judgment form, K affirmsA, to model principals’ intents and policies. It
is therefore natural to include affirmation in non-linear η logic, since it is still
necessary to model policies. But, how should affirmation interact with explicit
time intervals?

By adopting the reasonable notion that everything can be relativized to
a time interval, it can be concluded that each affirmation made by a principal
occurs on some time interval. Moreover, a principal cannot affirm a proposition,
but must instead affirm a judgment. Combining these two ideas naturally leads
to statements of the form “During interval I, principal K affirms the truth of
proposition A on interval I ′” as objects of knowledge. Using the @ connective
described in the next two sections, the previous statement will be equivalent
to “During interval I, principal K affirms the truth of proposition A @ I ′ on
interval I.” As a result, it is sufficient to consider only statements of the latter
form; if the interval of truth is different than the interval of affirmation, it can
be embedded in the proposition.

We therefore arrive at the judgment form (K affirms A) at I meaning that
“During interval I, principal K affirms the truth of proposition A on I.” Since,
as mentioned previously, principals do not affirm propositions, but instead judg-
ments, it would be more precise to write the affirmation judgment form as
(K affirms A[I]) at I. But because the two intervals are the same, we elide the
unnecessary first interval.

Because reasoning from assumptions is needed, non-linear η logic extends
the basic judgment forms A[I] and (K affirmsA) at I to permit hypotheses. The
hypothetical judgment forms are:

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ (K affirms A) at I

where Σ is a signature ascribing sorts to the parameters that may appear in the
remainder of the judgment, Ψ is a constraint context containing the constraints
assumed to hold, and Γ is a context of hypotheses of the form A[I].

The first hypothetical judgment form means “Assuming that the constraints
in Ψ hold and under the assumptions in Γ, proposition A is true during in-
terval I, parametrically in the terms of Σ.” Similarly, the second hypothetical
judgment form means “Assuming that the constraints in Ψ hold and under the
assumptions in Γ, during interval I, principal K affirms that proposition A is
true on I, parametrically in the terms of Σ.”

3.1.4 Propositions

The propositions in non-linear η logic are given by the following grammar:

A,B ::= P | A ∧B | > | A ∨B | A ⊃ B | ∀x:s.A | ∃x:s.A | 〈K〉A
| A @ I | C ⊃̇A | C ∧̇A
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These propositions include those of GP logic. Just as 〈K〉A internalized the
judgment KaffirmsA in GP logic, 〈K〉A now internalizes the judgment (Kaffirms
A) at I. Although the formal meanings of the connectives must shift with the
change from time-independent basic judgments to time-dependent ones, the
connectives still retain their intuitive meanings. For example, A∧B still behaves
like a pair of A and B. This is made precise by the meta-theory in Section 3.3.2
that establishes a formal correspondence between GP logic and a fragment of
non-linear η logic.

Despite the inclusion of the propositions of GP logic, there are three new
proposition forms in non-linear η logic: A@I, C ⊃̇A, and C ∧̇A. The proposition
A @ I internalizes the new judgment A[I], allowing us to legitimately combine
it with the other logical connectives. For example, although (A[I]) ⊃ B would
violate the distinction between judgments and propositions, (A @ I) ⊃ B is a
well-formed proposition.

C⊃̇A and C∧̇A are constraint implication and constraint conjuction proposi-
tions, respectively, adapted from Saranlı and Pfenning’s Constrained Intuition-
istic Linear Logic [21]. They permit the constraint domain to interact with the
rest of the logic.

It should be noted that falsehood, ⊥, is not included in the logic, stemming
from the need to avoid security risks. If falsehood was included and, by some
accident of policy management, a contradiction existed for any interval I, even
an arbitrarily small one, then the judgment ⊥[I] would be derivable. From
this judgment, any user would be able to give a valid proof of any judgment,
including those allowing him to access protected resources. We therefore exclude
falsehood from the logic to prevent this nightmare scenario from ever arising.

One consequence of the absence of falsehood is that policies to explicitly
deny a group of users access cannot be written; only policies that explicitly
allow a group of users access can be written. Stated differently, only whitelists,
and not blacklists, can be created.

3.1.5 Inference Rules

Following the presentation of GP logic, we now state a few key proof rules and
attempt to provide some intuition for them. As noted previously, we postpone
the inference rules for the well-formedness of propositions, judgments, and con-
texts to Section 5.1 to avoid obscuring the key proof rules.

We begin by presenting the init rule that defines the nature of hypotheses:

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, P [I] =⇒ P [I ′]
init

We would expect that, from the assumption that proposition A is true on inter-
val I, it should be possible to prove that A is true on I. More generally, since
truth on an interval refers to truth over the whole of that interval, it should be
possible to prove that A is true on any subinterval I ′ of I from this assumption.
The init rule captures this intuition, though, as in GP logic, it is restricted to
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atomic propositions P for technical reasons. The init rule in its full generality
is proven admissible in Theorem 3.1 (see Section 3.3.1).

Next, consider the new connective: @.

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ, A @ I[I ′], A[I] =⇒ γ

Σ; Ψ; Γ, A @ I[I ′] =⇒ γ
@L

The right rule @R shows that establishing A[I] is sufficient evidence for A@I[I ′],
for any interval I ′. The left rule @L allows the hypothesis A @ I[I ′] to be used
as A[I].

Taken together, the rules for @ imply an equivalence between A[I] and A @
I[I ′] for any I ′, and also show that A @ I internalizes the hybrid judgment
A[I]. For example, establishing that “In 2008, it is true that ‘During 1815–
1821, Napoleon Bonaparte is in exile’” is equivalent to establishing that “During
1815–1821, Napoleon Bonaparte is in exile.” In other words, whether it is true
now that Napoleon was in exile depends only on whether it was true then that
Napoleon was in exile.

Next, we examine the constraint connectives. First, the rules for constraint
implication:

Σ; Ψ, C; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ⊃̇A[I] ⊃̇R

Σ; Ψ |= C Σ; Ψ; Γ, C ⊃̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ⊃̇A[I] =⇒ γ
⊃̇L

C ⊃̇ A represents the proposition A with the constraint precondition C. Thus,
as formalized in the right rule ⊃̇R, verifying C ⊃̇A[I] involves verifying that A
is true during interval I under the assumption that constraint C holds. The left
rule ⊃̇L states that to extract A[I] from C ⊃̇ A[I], one must simply establish
the constraint precondition C.

The other constraint connective is constraint conjunction.

Σ; Ψ |= C Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ∧̇A[I] ∧̇R

Σ; Ψ, C; Γ, C ∧̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ∧̇A[I] =⇒ γ
∧̇L

The right rule ∧̇R requires that the constraint C holds and that A is true
during interval I, reminiscent of the right rule for ordinary conjunction. The
left rule ∧̇L allows the hypothesis C ∧̇A[I] to be used by projecting out the two
component hypotheses: C and A[I].

Next, we consider the rules for the affirmation judgment (K affirms A) at I
and its internalization as 〈K〉A.

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ (K affirms A) at I

affirms
Σ; Ψ; Γ =⇒ (K affirms A) at I

Σ; Ψ; Γ =⇒ 〈K〉A[I]
〈〉R

Σ; Ψ; Γ, 〈K〉A[I], A[I] =⇒ (K affirms B) at I ′ Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, 〈K〉A[I] =⇒ (K affirms B) at I ′ 〈〉L

The affirms rule indicates that, during interval I, every principal K is prepared
to affirm the truth of A on I if confronted with incontrovertible evidence of it:
K cannot possibly ignore the evidence and must therefore affirm A[I].
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The right rule 〈〉R shows that 〈K〉A internalizes the affirmation judgment
(K affirms A) at I. That is, by establishing (K affirms A) at I, one may conclude
that the proposition 〈K〉A is true on interval I.

The left rule 〈〉L shows how to use an affirmation made by K during interval
I. As in GP logic, the distinction between K’s affirmations and truth disappears
when trying to prove an affirmation made by K. However, with time-dependent
affirmations, the disappearance of this distinction is only valid for affirmations
made by K during a superinterval I of the interval I ′ for the affirmation made
by K that is being established. Without the interval constraint, this rule would
be incorrect. If I is not a superinterval of I ′, one cannot be assured that K still
affirms A during all of interval I ′.

Next, we examine implication. Implication interacts very strongly with time,
as evidenced by the combination of parameters, constraints, and hybrid worlds
in its right rule:

Σ, i:interval; Ψ, I ⊇ i; Γ, A[i] =⇒ B[i]
Σ; Ψ; Γ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ, A ⊃ B[I] =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ, A ⊃ B[I], B[I ′] =⇒ γ

Σ; Ψ; Γ, A ⊃ B[I] =⇒ γ
⊃L

The judgment A ⊃ B[I] may be intuitively thought of as a plan for converting
A to B that is available during any subinterval of I. Such a conversion can be
established by deriving B[i] under the assumption A[i], parametrically in the
arbitrary subinterval i of I. The parameter and corresponding constraint ensure
that the conversion is valid at every time in I. This intuition is formalized in
the right rule ⊃R.

The conversion intuition also appears in the left rule ⊃L. The plan A ⊃ B[I]
for converting A to B can be carried out to produce B[I ′] from A[I ′], provided
I ′ is a subinterval of I. The rule is incorrect without the subinterval proviso
because the plan would not be available at an arbitrary I ′.

Finally, the remaining connectives do not interact extensively with time.
One such connective is conjunction:

Σ; Ψ; Γ =⇒ A[I] Σ;Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∧B[I] ∧R

Σ; Ψ; Γ, A ∧B[I], A[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L1

Σ; Ψ; Γ, A ∧B[I], B[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L2

To show that A ∧B is true on interval I, it is sufficient to show both that A is
true on I and that B is true on I; this is captured by the right rule ∧R. The left
rules ∧L1 and ∧L2 show that both A and B are true on I if A∧B is true on I.
These right and left rules do not manipulate the interval annotations; they are
the same as the rules in first-order logic for conjunction, but are tagged with
intervals.

The remaining proof rules are given in Figure 3.1.
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Initial Rule

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, P [I] =⇒ P [I ′]
init

A @ I

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ, A @ I[I ′], A[I] =⇒ γ

Σ; Ψ; Γ, A @ I[I ′] =⇒ γ
@L

Constraints

Σ; Ψ, C; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ⊃̇A[I] ⊃̇R

Σ; Ψ |= C Σ; Ψ; Γ, C ⊃̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ⊃̇A[I] =⇒ γ
⊃̇L

Σ; Ψ |= C Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ∧̇A[I] ∧̇R

Σ; Ψ, C; Γ, C ∧̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ∧̇A[I] =⇒ γ
∧̇L

Affirmation and 〈K〉A

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ (K affirms A) at I

affirms
Σ; Ψ; Γ =⇒ (K affirms A) at I

Σ; Ψ; Γ =⇒ 〈K〉A[I]
〈〉R

Σ; Ψ; Γ, 〈K〉A[I], A[I] =⇒ (K affirms B) at I ′ Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, 〈K〉A[I] =⇒ (K affirms B) at I ′ 〈〉L

Other Connectives

Σ; Ψ; Γ =⇒ A[I] Σ;Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∧B[I] ∧R

Σ; Ψ; Γ, A ∧B[I], A[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L1

Σ; Ψ; Γ, A ∧B[I], B[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L2

Σ; Ψ; Γ =⇒ >[I] >R

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ A ∨B[I]

∨R1

Σ; Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∨B[I]

∨R2

Σ; Ψ; Γ, A ∨B[I], A[I] =⇒ γ Σ; Ψ; Γ, A ∨B[I], B[I] =⇒ γ

Σ; Ψ; Γ, A ∨B[I] =⇒ γ
∨L

Σ, i:interval; Ψ, I ⊇ i; Γ, A[i] =⇒ B[i]
Σ; Ψ; Γ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ, A ⊃ B[I] =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ, A ⊃ B[I], B[I ′] =⇒ γ

Σ; Ψ; Γ, A ⊃ B[I] =⇒ γ
⊃L

Σ, x:s; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ ∀x:s.A[I] ∀R

Σ ` t:s Σ; Ψ; Γ,∀x:s.A[I], [t/x]A[I] =⇒ γ

Σ; Ψ; Γ,∀x:s.A[I] =⇒ γ
∀L

Σ ` t:s Σ; Ψ; Γ =⇒ [t/x]A[I]
Σ; Ψ; Γ =⇒ ∃x:s.A[I] ∃R

Σ, x:s; Ψ; Γ,∃x:s.A[I], A[I] =⇒ γ

Σ; Ψ; Γ,∃x:s.A[I] =⇒ γ
∃L

Figure 3.1: The inference rules for non-linear η logic.
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Before concluding this section, we give a few judgments derivable and a few
judgments not derivable in non-linear η logic to illustrate the logic’s properties.

1. ·; ·; · 6=⇒ (A @ I) ⊃ (A @ I ′)[I ′′]
2. ·; ·; · =⇒ (A @ I) ⊃ (A @ I ′)[I ′′] if ·; · |= I ⊇ I ′

3. ·; ·; · =⇒ (A @ I) ⊃ (A @ I @ I ′)[I ′′]
4. ·; ·; · =⇒ (A @ I @ I ′) ⊃ (A @ I)[I ′′]
5. ·; ·; · =⇒ ((A ∧B) @ I) ⊃ ((A @ I) ∧ (B @ I))[I ′′]
6. ·; ·; · =⇒ ((A @ I) ∧ (B @ I)) ⊃ ((A ∧B) @ I)[I ′′]
7. ·; ·; · =⇒ A ⊃ 〈K〉A[I]
8. ·; ·; · =⇒ 〈K〉〈K〉A ⊃ 〈K〉A[I]
9. ·; ·; · =⇒ 〈K〉(A ⊃ B) ⊃ 〈K〉A ⊃ 〈K〉B[I]

10. ·; ·; · 6=⇒ 〈K〉A ⊃ A[I]
11. ·; ·; · 6=⇒ A[I]

Judgment 1 shows that truth on one interval does not entail truth on another
interval, in general; the intervals may be unrelated. When the intervals are re-
lated by inclusion, the entailment does hold, as in judgment 2. Judgments 3 and
4 imply that only the innermost interval matters. This relates to the previously
mentioned equivalence between A[I] and A@I[I ′]. Judgments 5 and 6 show the
distributivity of @ over ∧, an intuitive and desirable property. Judgments 7–9
indicate that 〈K〉 remains a lax modality, as in GP logic. Judgment 10 illustrates
the difference between truth and affirmation: truth entails affirmation, as seen
in judgment 7, but affirmation does not entail truth. By demonstrating that
arbitrary propositions are not a priori true at arbitrary intervals, judgment 11
establishes the consistency of non-linear η logic.

3.2 Examples

Introduction coming soon.

3.2.1 Office Entry

Recall, from Section 2.2.1, the office entry example that was based on the Grey
system. This example assumed an administrating principal, admin, that con-
trolled entry to the offices, named each office according to its owner, and used
the predicate may enter, where may enter(K2,K1) meant that K2 may enter
K1’s office. The two policies ((2.1) and (2.2)) proposed for a GP-logic based
PCA architecture were:

own : 〈admin〉(∀K:principal.may enter(K, K)) true

trust : 〈admin〉(∀K1:principal.∀K2:principal.〈K1〉may enter(K2,K1) ⊃ may enter(K2,K1)) true

The first of these policies allowed every office owner to enter her own office. The
second policy allowed an office owner to make decisions about who may enter
her office, decisions which the administrator trusted.
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The above GP logic policies were sufficient for controlling who could enter
an office, but not for controlling when that person could enter. This deficiency
resulted from the inability of GP logic to reason with time internally. Now that
we have developed non-linear η logic as an authorization logic with time, it is
natural to check that the new logic is expressive enough to handle time-based
office entry policies.

First, consider creating a non-linear η logic analogue of the own policy. Be-
cause non-linear η logic includes all connectives from GP logic and because
these connectives retain their intuitive meanings, a natural attempt uses the
same proposition as own:

〈admin〉(∀K:principal.may enter(K, K))[?]

At the moment, this judgment is incomplete: the time interval over which the
proposition is true has not yet been specified (indicated by ‘?’).

What interval should be used? It must be the same as the interval over
which the policy will be valid. If the administrator wants to allow each office
owner to enter her own office only during interval I, then the interval for this
policy should be I. In the setting of academic offices, it would seem unusual for
an office owner to be prevented from entering her office at any time. So, in this
specific instance, the interval is (−∞,∞). The non-linear η logic analogue of
own is then:

own′ : 〈admin〉(∀K:principal.may enter(K, K))[(−∞,∞)] (3.1)

This policy means that “At all times, the administrator says that each principal
K may enter her own office at any time.”

Note that the administrator need not commit to a policy for an extended
period of time. For example, suppose that the administrator only wants to
commit to allowing an office owner to enter her own office during 2008. The
administrator would issue the policy with 2008 as its validity interval. If the
administrator later chooses to extend the policy through 2009, he can reissue the
same policy with the new interval 2009. If, instead, the administrator chooses
not to renew the policy, he simply does nothing: the 2008 version will no longer
be valid in 2009.

Next, consider creating an analogue of the trust policy. Again, we use the
same proposition as in trust. For concreteness, we choose (−∞,∞) as the va-
lidity interval, but it should be noted that any desired interval could be used.
The policy is then:

trust′ : 〈admin〉(∀K1:principal.∀K2:principal.〈K1〉may enter(K2,K1) ⊃ may enter(K2,K1))[(−∞,∞)]
(3.2)

This policy means that “At all times, the administrator says that, for all pairs
of principals K1 and K2, if K1 says K2 may enter K1’s office at some time, then
K2 may indeed enter K1’s office at that time.”

With this policy, we can now reconsider the situation of the professor Alice
and her graduate student Bob. Recall that Alice is out of the office on May 7,

22



2008 and that Bob needs to retrieve a paper from Alice’s office. Alice agrees
to authorize Bob to enter her office, but only for that day. So, she issues the
following credential:

C0 : 〈Alice〉may enter(Bob,Alice)[5/7/08]

At some time t, Bob will approach Alice’s office door and request access using
his cell phone. Before the door will unlock, he must present a correct proof of:

Alice:principal,Bob:principal; ·; own′, trust′, C0 =⇒ 〈admin〉may enter(Bob,Alice)[[t, t]]

Provided that t is some time during May 7, 2008 (formally, |= 5/7/08 ⊇ [t, t])
Bob’s phone can construct a correct proof by applying the trust′ policy to the
credential C0 that Alice supplied, and Bob will be granted access. If t is not
during May 7, 2008 (formally 6|= 5/7/08 ⊇ [t, t]), that method cannot be followed
to construct a correct proof, and Bob will not be granted access.

As is evident from this example, non-linear η logic permits the expression
of a richer set of policies than is possible in GP logic. However, the logic is
still not sufficiently expressive. The deficiency occurs even in this small office
entry example. Alice can now restrict the times during which Bob may access
her office, but it is not possible to restrict the number of times Bob may enter.
Specifically, because the credential C0 is never consumed during use, Bob may
enter the office as many times as he wants during ???

Because non-linear η logic models the expiration of, but not the consumption
of, credentials, it is natural to consider extending the logic with linearity, just
as Garg and Pfenning cleanly added linearity to an authorization logic with-
out time [12]. This effort toward a linear η logic that can model consumable
credentials is the focus of the following chapter.

3.2.2 Journal Publication

To further demonstrate the increased expressiveness of non-linear η logic, con-
sider a peer-review publication system as employed by academic journals. This
example uses time in a more complex way than the previous example and also
illustrates the use of time-based constraints and constraint implication.

We postulate the existence of two application-specific sorts: the sort journal
of academic journals and the sort article of journal articles. To ease the notation,
we also use the constraint form t ∈ I as an abbreviation for I ⊇ [t, t]. The
following predicates are required:

is approved(A,K, J) Article A is approved by principal K for publication in journal J .
is reviewer(R,A, J) Principal R is the reviewer for article A submitted to journal J .
is editor(E, J) Principal E is an editor for journal J .
is published(A, J) Article A is published in journal J .

Journal J appoints E as an editor for term I by issuing the credential
〈J〉is editor(E, J)[I]. One of an editor’s duties is to assign reviewers to articles
submitted to the journal. Editor E assigns principal R as the reviewer for article
A from time t onward by issuing the credential 〈E〉is reviewer(R,A, J)[[t,∞)].
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For simplicity, we assume that each article has at most one reviewer, justifing
the reference to a reviewer of an article as the reviewer.

Another one of an editor’s duties is to process reviews as they come back
from reviewers. Editor E accomplishes this by signing the following credential:

approve : 〈E〉(∀R:principal.∀ta:time.
〈R〉is approved(A,R, J) @ [ta, ta] ⊃
is reviewer(R,A, J) @ [ta, ta] ⊃
(ta ∈ IE) ⊃̇

is approved(A,E, J) @ [ta,∞))[(−∞,∞)]

If principal R decides to approve article A for publication in journal J , he can
submit a positive review at time ta by issuing the certificate 〈R〉is approved(A,R, J)[[ta, ta]].
Provided that editor E agrees that R is the reviewer of article A at time ta and
that ta ∈ IE , E will accept R’s review and approve the article for publication
from time ta onward. If R is not the reviewer of article A or if ta /∈ IE , then
the review will not be accepted.

Note that, unlike the policies we have previously seen, approve is not a fixed
policy, but rather a template. When E signs the credential, he must instantiate
IE with the interval over which he will accept reviews.

In a similar way, each journal must specify the conditions under which it
accepts articles approved by editors. This is done by issuing the following cre-
dential:

publish : 〈J〉(∀E:principal.∀ta:time.
〈E〉is approved(A,E, J) @ [ta, ta] ⊃
is editor(E, J) @ [ta, ta] ⊃
(ta ∈ IJ) ⊃̇

is published(A, J) @ [ta,∞))[(−∞,∞)]

If principal E approves article A for publication in journal J , he issues the cre-
dential 〈E〉is approved(A,E, J)[[ta, ta]]. If journal J has appointed E as editor
during time ta and if ta ∈ IJ , J will accept editor E’s approval and publish the
article from ta onward. Again, this policy is a template: J must instantiate IJ

with the interval during which it will accept articles for publication.

3.3 Meta-theory and Correspondence to GP Logic

Introduction coming soon.

3.3.1 Meta-theory

The meta-theory for non-linear η logic is slightly more complicated than that
of GP logic because of the addition of time. But, it still serves to increase
confidence in the soundness of the logic by providing a kind of “sanity check.”

As in GP logic, we are still interested in verifying the identity principle.
However, with the shift in underlying judgments to hybrid, time-dependent
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forms, the statement of the theorem must change. For any proposition A, it
should be possible to conclude from the hypothesis A[I] that A[I ′], provided I ′

is a subinterval of I. This is formalized in the following theorem.

Theorem 3.1 (Identity). For all propositions A, if Σ; Ψ |= I ⊇ I ′, then
Σ; Ψ; Γ, A[I] =⇒ A[I ′].

Proof. By structural induction on A.

A natural time-dependent property to expect of non-linear η logic is the
notion of subsumption. For example, whenever one can prove that A is true on
interval I, it should be possible, for any subinterval I ′ of I, to construct a similar
proof that A is true on I ′. This can be easily generalized to affirmations. Because
this type of subsumption occurs in proof conclusions and not assumptions, it
appears to the right of the =⇒ symbol in a hypothetical judgment. It is therefore
termed right subsumption.

Theorem 3.2 (Right Subsumption).
1. If Σ; Ψ; Γ =⇒ A[I] and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ =⇒ A[I ′].
2. If Σ; Ψ; Γ =⇒ (K affirms A) at I and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ =⇒

(K affirms A) at I ′.

Proof. By simultaneous structural induction on the first given derivation.

Subsumption can also occur for hypotheses. If interval I is a superinterval
of I ′, the assumption that A is true on interval I ′ is at least as powerful as
assuming that A is true on I ′: the former assumption contains as much (and
possibly more) information as the latter. Because hypotheses appear on the left
side of the =⇒ symbol in a hypothetical judgment, this kind of subsumption is
termed left subsumption.

Theorem 3.3 (Left Subsumption). If Σ; Ψ; Γ, A[I ′] =⇒ γ and Σ; Ψ |= I ⊇ I ′,
then Σ; Ψ; Γ, A[I] =⇒ γ.

Proof. By nested induction on the structures of A and the first given derivation.

Finally, we can reconsider cut elimination in the context of non-linear η logic.
The admissibility of cut for the truth judgment remains relatively unchanged: a
proof of A[I] can replace the assumption A[I] of any other proof. However, the
admissibility of cut for the affirmation judgment changes in a significant way.
As argued in the description of the 〈〉L rule, an affirmation made by K during
interval I is equivalent to truth, but only if we are currently reasoning about the
beliefs that K holds during a subinterval I ′. Thus, a proof of (K affirms A) at I
can replace the assumption A[I] in a proof of (K affirms B) at I ′, provided that
I is a superinterval of I ′.

Theorem 3.4 (Admissibility of Cut).
1. If Σ; Ψ; Γ =⇒ A[I] and Σ; Ψ; Γ, A[I] =⇒ γ, then Σ; Ψ; Γ =⇒ γ.
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2. If Σ; Ψ; Γ =⇒ (K affirms A) at I, Σ; Ψ; Γ, A[I] =⇒ (K affirms B) at I ′, and
Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ =⇒ (K affirms B) at I ′.

Proof. By simultaneous nested induction on the structures of A and the first
two given derivations.

The above meta-theorems have been mechanically verified using the Twelf
logical framework []. The Twelf proofs are available at http://www.andrew.
cmu.edu/user/hdeyoung/etalogic/???.

3.3.2 Correspondence to GP Logic

Upon careful comparison of the rules of GP logic and the rules of non-linear
η logic, a correspondence becomes evident. For example, consider the ∧R and
〈〉L rules:

GP Logic Non-linear η Logic

Σ; Γ =⇒ A Σ; Γ =⇒ B

Σ; Γ =⇒ A ∧B
∧R

Σ; Ψ; Γ =⇒ A[I] Σ;Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∧B[I] ∧R

Σ; Γ, 〈K〉A,A =⇒ K affirms B

Σ; Γ, 〈K〉A =⇒ K affirms B
〈〉L

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, 〈K〉A[I], A[I] =⇒ (K affirms B) at I ′

Σ; Ψ; Γ, 〈K〉A[I] =⇒ (K affirms B) at I ′ 〈〉L

Because there are no notions of time or constraints in GP logic, the correspon-
dence does not extend to these constructs.

The above intuition suggests that GP logic can be encoded into non-linear
η logic. Let ~I denote a list of time intervals. Also, if Γ = A1, . . . , An is a
GP logic context and ~I = I1, . . . , In, let Γ[~I] be the non-linear η logic context
A1[I1], . . . , An[In].1 Finally, define a translation for signatures such that Σ is Σ
with interval and time parameters removed.

This permits us to state the following theorem.

Theorem 3.5.
1. If Σ; Γ =⇒ A and Σ; Ψ |= I ⊇ I ′ for all I ∈ ~I, then Σ; Ψ; Γ[~I] =⇒ A[I ′].
2. If Σ; Γ =⇒ K affirmsA and Σ; Ψ |= I ⊇ I ′ for all I ∈ ~I, then Σ; Ψ; Γ[~I] =⇒

(K affirms A) at I ′.

Proof. By simultaneous structural induction on the first given derivation.

Theorem 3.6.
1. If Σ; Ψ; Γ[~I] =⇒ A[I ′], then Σ; Γ =⇒ A.
2. If Σ; Ψ; Γ[~I] =⇒ (K affirms A) at I ′, then Σ; Γ =⇒ K affirms A.

Proof. By simultaneous structural induction on the given derivation.
1There is an implicit identity translation from GP logic propositions to non-linear η logic

propositions here.
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3.4 Conclusion

Coming soon.
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Chapter 4

Linear η Logic

Coming soon.

4.1 An Overview of Linear Logic

Menu Item Linear Logical Formula
Choice of Soup du Jour (M–W: Vegetable; R–F: Chicken Noodle) or Salad ((V ⊕ CN) & S)

and Roast Beef Sandwich ⊗ RBS

4.2 Logical System

4.2.1 Judgments

4.2.2 Propositions

4.2.3 Inference Rules

4.3 Examples

4.3.1 Office Entry

4.3.2 Filling Painkiller Prescriptions

4.3.3 A Homework Assignment Administration System

4.4 Meta-theory

4.4.1 Internal Meta-theory

4.5 Conclusion
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Basic Rules

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ;P [I] =⇒ P [I ′]
init

Σ; Ψ; Γ, A[[I]];∆, A[I] =⇒ γ

Σ; Ψ; Γ, A[[I]];∆ =⇒ γ
copy

A @ I

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, A @ I[I ′] =⇒ γ
@L

Constraints

Σ; Ψ, C; Γ; ∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ C ⊃̇A[I] ⊃̇R

Σ; Ψ |= C Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, C ⊃̇A[I] =⇒ γ
⊃̇L

Σ; Ψ |= C Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ C ∧̇A[I] ∧̇R

Σ; Ψ, C; Γ; ∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, C ∧̇A[I] =⇒ γ
∧̇L

Affirmation and 〈K〉A

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ (K affirms A) at I

affirms

Σ; Ψ; Γ;∆ =⇒ (K affirms A) at I

Σ; Ψ; Γ;∆ =⇒ 〈K〉A[I]
〈〉R

Σ; Ψ; Γ;∆, A[I] =⇒ (K affirms B) at I ′ Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ;∆, 〈K〉A[I] =⇒ (K affirms B) at I ′ 〈〉L

Other Connectives

Σ; Ψ; Γ; · =⇒ 1[I] 1R
Σ; Ψ; Γ;∆ =⇒ γ

Σ; Ψ; Γ;∆,1[I] =⇒ γ
1L

Σ; Ψ; Γ;∆1 =⇒ A[I] Σ;Ψ; Γ;∆2 =⇒ B[I]
Σ; Ψ; Γ;∆1,∆2 =⇒ A⊗B[I]

⊗R

Σ; Ψ; Γ;∆, A[I], B[I] =⇒ γ

Σ; Ψ; Γ;∆, A⊗B[I] =⇒ γ
⊗L

Σ; Ψ; Γ;∆ =⇒ >[I] >R

Σ; Ψ; Γ;∆ =⇒ A[I] Σ;Ψ; Γ;∆ =⇒ B[I]
Σ; Ψ; Γ;∆ =⇒ A & B[I] &R

Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, A & B[I] =⇒ γ
&L1

Σ; Ψ; Γ;∆, B[I] =⇒ γ

Σ; Ψ; Γ;∆, A & B[I] =⇒ γ
&L2

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ A⊕B[I]

⊕R1

Σ; Ψ; Γ;∆ =⇒ B[I]
Σ; Ψ; Γ;∆ =⇒ A⊕B[I]

⊕R2

Σ; Ψ; Γ;∆, A[I] =⇒ γ Σ; Ψ; Γ;∆, B[I] =⇒ γ

Σ; Ψ; Γ;∆, A⊕B[I] =⇒ γ
⊕L

Σ, i:interval; Ψ, I ⊇ i; Γ; ∆, A[i] =⇒ B[i]
Σ; Ψ; Γ;∆ =⇒ A ( B[I] (R

Σ; Ψ; Γ;∆1 =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ;∆2, B[I ′] =⇒ γ

Σ; Ψ; Γ;∆1,∆2, A ( B[I] =⇒ γ
(L

Σ; Ψ; Γ; · =⇒ A[I]
Σ; Ψ; Γ; · =⇒ !A[I] !R

Σ; Ψ; Γ, A[[I]];∆ =⇒ γ

Σ; Ψ; Γ;∆, !A[I] =⇒ γ
!L

Σ, i:interval; Ψ, I ⊇ i; Γ, A[[i]];∆ =⇒ B[i]
Σ; Ψ; Γ;∆ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ; · =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ;∆, B[I ′] =⇒ γ

Σ; Ψ; Γ;∆, A ⊃ B[I] =⇒ γ
⊃L

Σ, x:s; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ ∀x:s.A[I] ∀R

Σ ` t:s Σ; Ψ; Γ;∆, [t/x]A[I] =⇒ γ

Σ; Ψ; Γ;∆,∀x:s.A[I] =⇒ γ
∀L

Σ ` t:s Σ; Ψ; Γ;∆ =⇒ [t/x]A[I]
Σ; Ψ; Γ;∆ =⇒ ∃x:s.A[I] ∃R

Σ, x:s; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆,∃x:s.A[I] =⇒ γ
∃L

Figure 4.1: The inference rules for linear η logic.
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Chapter 5

Implementing a Proof
Checker for Linear η Logic

Coming soon.

5.1 Proof Checker Inference Rules
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Chapter 6

Conclusion

Coming soon.
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