
Learning an Evaluation Function for Go

Yucheng Low
ylow@andrew.cmu.edu

March 21, 2008

Abstract

The Common Fate Graph is a convenient representation of a Go Board due to its transformation
invariant properties. I propose and evaluate two methods of applying the Common Fate Graph to
learn an evaluation function for Go in a supervised learning setting. The first method uses is derived
from NeuroGo and uses a Neural Network with a dynamic topology. The second method involves the
application of Markov Random Fields on the Common Fate Graph. We then investigate the use of the
evaluator in a Monte-Carlo Go system.

1 Problem

The game of Go is practically the Holy Grail for computer game playing due to its massive branching
factor and difficult evaluation. The current state of the art computer program is only able to play at an
amateur level. Additionally, the computer programs tend to have specific weaknesses which can be targeted
by professional human players. Most notably, in 1998, an amateur 6 dan player beat the state of the art
program with a 29 stone handicap.
Even If we simplify the game by reducing the size of the board from 19 by 19 to 9 by 9, the number of
possible game states fall to around 381 ≈ 1038 which is around the complexity of international chess (≈ 1043

game states). Even so, the best computer players for 9x9 still only play at an amateur level. This is primarily
due to the difficulty of coming up with an effective evaluation function.

2 Implementation

A system has been implemented to convert any given board configuration into a transformation (rota-
tion/flip) invariant representation of the board called a Common Fate Graph[5]. This representation is then
transformed into a neural network using the same scheme as [3]. Training has been performed using 113
professional games. Details of the procedure are described below. The simple configuration in Figure 1 will
be used as an example.

Figure 1: Sample Board

1

2.1 Augmented Common Fate Graph 2 IMPLEMENTATION

2.1 Augmented Common Fate Graph

The intiution behind the common fate graph is to represent the board as an undirected graph and combining
vertices which will share a common outcome (life/death/belongs to white/belongs to black). The procedure
works as follows:

2.1.1 Chain finding

Every piece on the board is tagged with a “chain number”, such that if two pieces of the same color are
connected, they will have the same chain number. For instance, in the example, the four black stones on
the left will be labeled as “Chain 1”, the two black stones in the middle will be “Chain 2” and the four white
stones on the right will be “Chain 3”.

2.1.2 Pattern Matching

A small collection of simple hand constructed connecting patterns is used to relate chains of stones on the
board. All transformations of the patterns (rotation and flipping) are searched. In the example above, a
“Bamboo Joint” pattern will be found connecting the chain on the left and the chain in the middle.

2.1.3 Influence

This is a further extension upon the Common Fate Graph scheme where I propose to merge adjacent empty
intersections using an influence function. The intuition behind this is that contiguous regions under strong
influence from one party, is not likely to be contested and will therefore share a common outcome.
A simple influence function is used called the Bouzy 5/21 algorithm [1]. This algorithm is widely used
as it closely matches a human’s intuitive understanding of influence. The basic procedure is the use of
mathematical morphology operators. We first set all black pieces to a value of “100”, and all white pieces to
a value of “-100”. (These values are arbitrary. Just as long as they are large). We then perform 5 dilations
followed by 21 erosions.
The outcome of performing the Bouzy 5/21 algorithm on the board above is shown in Figure 2. Regions
falling under strong influence are grouped as a “chain”.

Figure 2: Bouzy 5/21 Influence

2.1.4 Basic Tags

Finally, each chain is tagged with the following information:

Label Valid Values
1 Type Black,White,Empty
2 Eye Count (Both true and false eyes) 1,2,3,4,≥ 5
3 Number of intersection in chain 1,2,3,4≥5
4 Number of liberties 1,2,3,4,5,≥6

2

2 IMPLEMENTATION 2.2 Neural Network

2.1.5 Graph construction

A graph is first constructed where each intersection has an edge to its neighbors. Then the chain information
derived in 2.1.1 and 2.1.3 is used to merge vertices. Labels are preserved.

2.2 Neural Network

2.2.1 Construction

A 3 layer (1 hidden layer) network is constructed, where each layer is a copy of the graph constructed in 2.1
excluding edges. An edge is added between two vertices of two adjacent layers, if there is an edge between
those two vertices in the Common Fate Graph.
In other words. Let the Common Fate Graph be represented by G = {V,E}, where V = {v1, v2...vn} and
the the Neural Net be represented by {V 1, V 2, V 3, V 4, E} , where V i consists of the vertices in layer i, and
V i = {vi1, vi2, vi3...vin}
Then there is a edge between v1

j ∈ V1 and v2
k ∈ V2 iff there is an edge (vj , vk) ∈ E.

Edge weightsW (vi, vj) are identified by the tuple (Label(vi), Label(vj), Layer(vi), Layer(vj), Label((vi, vj))).
(i.e. Layer and label of the source vertex, layer and label of the destination vertex, and label of the edge)
Vertex biases W (v) are identified by the tuple (Label(v),Layer(v)).
By construction there are as many output values as input values.

2.2.2 Execution

The neural network is executing by feeding in a vector of all 0.5’s. The reason behind this is to use the
neural network to learn the input necessary through the biases in the first layer, rather than require a
seperate training scheme.
There is a reasonable interpretation of this scheme. We can think of the input values as the initial “beliefs”
regarding the ownership of particular vertices. Then during the neural network forward propagation, each
vertex will take the ownership “beliefs” of its neighbors and use them to determine its own belief value. This
value is then propagated forward down the neural network.
This interpretation allows me to treating the network as a recurrent network. That is, on execution, feed
the output back into the input for some predetermined number of times or until convergence.
This has not been evaluated completely, but preliminary results are available.

2.2.3 Training

Training is performed by playing against Training is done by standard backpropagation. However, since two
edges might share the same weights, shared weights must be taken into account.

2.3 Pairwise Markov Random Field

Another simple method of analysing the augmented common graph is to interpret it as a pairwise Markov
Random Field,

2.3.1 Construction

The construction method is very similar to that of the neural network construction in 2.2.1. Let the graph
be represented by G = {V,E} where V is the set of vertices and E is the set of edges. Every vertex can
take on one of two possible values (0 or 1, where 1 means that the vertex classified as Black’s territory).
The unary potentials ψi(vi) are uniquely identified by Label(vi), and the binary potentials φij(vi, vj) are
uniquely identified by the tuple (Label(vi),Label(vj),Label((vi, vj))).

3

2.3 Pairwise Markov Random Field 2 IMPLEMENTATION

Then the joint probability of any given value assignments to the vertices/variables vi...v|V | is

P (v1....v|V |) =
1
Z

(∏
vi=V

ψi(vi)

) ∏
(vi,vj)∈E

φij(vi, vj)

 (1)

2.3.2 Execution

Given the potential values, evaluation is performed by evaluating the marginal probabilities P (vi). This can
then be directly interpreted as the probability that vi is black’s territory. The marginal probabilities were
originally computed using Loopy Belief Propagation. This was later changed to Damped Belief Propagation
[6] due to convergence concerns. Other Double Loop algorithms [6, 7] with guaranteed convergence were
considered but not implemented due to their relative complexity.

During the period of testing, no non-covergent situations were met. There is also no guarantee that Belief
Propagation will return the true values of the marginals even when convergent. However, solving for the
exact marginal probabilities is known to be an NP-Hard problem.

2.3.3 Training

Training is complicated by the inability to produce a sufficiently large training set representative of the
problem; therefore batch methods cannot be used. An incremental training scheme is necessary to allow for
gradual improvisation while training data is generated on the fly (through self-play or by playing against
another AI). Additionally, assumptions cannot be made regarding the class of potential functions used,
therefore requiring the system to store and train the full parameterization of the potentials (i.e. ψi ∈
R2, φij ∈ R2×2)

Training is performed through incremental gradient descent on single examples, with the gradient direction
aiming to maximize the joint probability of the example. A simplifying assumption is made that every
potential is only used once in each graph even though this is evidently not true.

Assume a single training example (x1...xn) with labels (y1...yn). Then from 1

P (x1....xn) =
1
Z

(∏
vi=V

ψi(xi)

) ∏
(vi,vj)∈E

φij(xi, xj)

 (2)

logP (x1....xn) = − logZ +

(∑
vi=V

logψi(xi)

)
+

 ∑
(vi,vj)∈E

log φij(xi, xj)

Taking derivatives about a single potential value ψk(xk)

d logP (x1....xn)
dψk(xk)

= − 1
Z

dZ

dψk(xk)
+

1
ψk(xk)

(3)

Consider dZ
ψk(xk) . Let W be the set of neighbors of vk.

4

3 TRAINING USING GNUGO

Z =
∑
all ~v

(∏
vi

ψi(vi)

) ∏
(vi,vj)∈E

φij(vi, vj)

dZ

dψk(xk)
=
∑
all ~v

1(vk = xk)

 ∏
vi/(excluding vk)

ψi(vi)

 ∏
(vi,vj)∈E

φij(vi, vj)

=

1
ψk(xk)

∑
all V

1(vk = xk)

(∏
vi=V

ψi(vi)

) ∏
(vi,vj)∈E

φij(vi, vj)

∴

dZ
ψk(vk)

Z
=
P (vk = xk)
ψk(xk)

dZ

ψk(vk)
= P (vk = xk)× Z

ψk(xk)
(4)

Substituting back into 3

d logP (x1....xn)
dψk(xk)

=
P (vk = xk) + 1

ψk(xk)

Then, to increase the log-likelihood of the example, the gradient update is ψk(xk)← ψk(xk) + εP (vk=xk)+1
ψk(xk) .

A similar argument can be made for the pairwise potentials φij .

3 Training using Gnugo

3.1 Training

Gnugo’s territorial evaluation is taken as the ground truth. 113 professional games taken from the GoGod
database are used. For each game, the last 10 positions of the game are taken and the final territory division
as evaluated by Gnugo is used as the expected output.

It is noted that the models above require very large number of weights to be created, and this training set
is clearly insufficient. Therefore, further training is performed by playing it against Gnugo at level 1 and
training it against Gnugo’s evaluator two moves into the future. (That is, the current board position is taken
as input, and Gnugo’s evaluator two moves later is taken as output.) To prevent overfitting to small number
of positions, a probabilistic scheme is used where each move is weighted by its value using the formula e

value
0.35 .

The Neural Network is trained to 4000 iterations, while the Markov Random Field is trained to 2200 iterations
(due to limited time, and that MRF evaluation is extremely slow).

3.2 Evaluation

A few simple hand constructed positions are tested. The board is first evaluated relative to Black, then
relative to White, and the results averaged. Image contrast has been increased to facilitate viewing.

5

3.3 Testing 4 TRAINING USING SELF-PLAY

Input NN Output Recurrent NN output MRF Output

The neural network works well for the relatively simple first position , but performs poorly for the second
position. If the second position is simplified slightly by removing some white seeds from the center of the
board, the output is improved significantly. Its failure to evaluate this position properly is perhaps caused
by the use of some rare weights.
The MRF performs much better on the second position, accurately determining territory. But it performed
poorly in the first position: incorrectly classifying white’s probably territory in the bottom right.
The use of recurrency (3 iterations) improve the results of the the NN evaluation, now correctly classifying
the centre group (albeit with a very small weight).
Both schemes have a tendency to classify occupied intersections as neutral (or even opponent’s) territory.
This can be explained by a limitation of the training scheme. Since the evaluator loses large groups to Gnugo
frequently during training, it may end up believing that pieces can be captured easily and downgrades its
confidence that they are actually territory.

3.3 Testing

The Neural Network is tested by using it as an evaluator in a 2-ply search against Gnugo at level 1. The MRF
is tested similarly, but with a 1-ply search. 60 games are played, 30 as white and 30 as black. Since Gnugo
has a small random factor built in into its engine, not all games are identical. The x-axis is in hundreds of
iterations.
A trend can be seen for the Neural Network, but the MRF is not very convincing.

4 Training using Self-Play

4.1 Training

The use of self-play through temporal difference learning (typically TD(0)) to train an evaluator has began
with Tesauro’s TD-Gammon. This was also used in a variety of systems for training a Go evaluator ([4, 3]).
the use of TD(0) makes the training scheme extremely simple: The network is given the output of the
evaluator one move later. At a terminal position (end of game), the network is given the ground truth (as
evaluated using Gnugo).

6

4 TRAINING USING SELF-PLAY 4.2 Evaluation

Figure 3: Neural Network Test Results

Figure 4: MRF Test Results

The Neural Network is trained to 5500 iterations. Self play using the Markov Random Field scheme has not
be evaluated.

4.2 Evaluation

A few simple hand constructed positions are tested. The board is first evaluated relative to Black, then
relative to White, and the results averaged. Image contrast has been increased to facilitate viewing.

7

5 CONCLUSION

Input NN Output Recurrent NN output

Results are similar to Gnugo evaluation. Except that the recurrant output for the second case is worse.

5 Conclusion

Neural Networks perform reasonably well with a good learning trend up to about 1500 iterations. It is not
certain why performance decreases after 1500 iterations, but it may be due to a subtle form of overfitting
caused by the differences between training scheme (randomized play) and the testing scheme (deterministic
play). Selfplay using TD(0) as suggested by NeuroGo [4] should able to prevent this and is a direction to be
investigated in the future.

Increasing the depth of the neural network from 3 to 4 improves performance though complete results are
not available at time of writing.

MRF’s produce decent performance but due to its poor evaluation speed, a deeper search cannot be per-
formed. This limits the use of MRFs as an evaluation function. Additionally, the number of free parameters
in the MRF scheme is much larger than the number of free parameters in the Neural Network scheme;
therefore more training iterations will be necessary to achieve reasonable results. Additionally, possible non-
convergence of belief propagation is a concern. The MRF scheme however has a much stronger theoretical
basis than the Neural Network scheme.

Also deterministic play as method of evaluating the strength of an evaluation function has limited value, as
it is possible for a stronger evaluation function to lose more frequently than a weaker evaluation function
due to particular subtleties in its play which Gnugo is able to exploit. Randomized play for testing makes
sense only if both players are using randomized play. Otherwise the deterministic player has an extremely
large advantage.

5.1 Testing

The Neural Network is tested by using it as an evaluator in a 2-ply search against Gnugo at level 1. 60 games
are played, 30 as white and 30 as black. Since Gnugo has a small random factor built in into its engine, not
all games are identical. The x-axis is in hundreds of iterations.

8

6 EXTENDING MONTE-CARLO GO

Figure 5: Self Play Neural Network Test Results

As expected, the rate of improvement of self-play is slower than the rate of improvement of training against
Gnugo.

6 Extending Monte-Carlo Go

It is clear that a search tree scheme is highly inappropriate due to the depth and breadth of the Go. Recent
work in 9x9 Go suggested the use of Monte-Carlo search. A specific Monte-Carlo scheme called Upper
Confidence Trees (UCT) was implemented [8].

6.1 Summary of UCT

UCT describes an online learning scheme for the K-armed bandit problem. The K-arm bandit problem is an
analogy to a slot machine with K arms. Pulling an arm results in a reward with some probability associated
with the arm. The aim is to maximize sum of rewards. The reward probability for each arm is unknown.

The paper [8] describes such an algorithm for determining the best move.

A search tree is grown iteratively. In each iteration, one leaf of the tree is expanded.

UCT Loop Body:

Let c = root of search tree
While c is not a leaf

Let c = maxVc(s)(Children(c))
End While
Insert all possible moves after c as children of c
Pick a random child of c
Play a random game, returning 0 or 1.

Vc(s) = X̄s +
√

2 log Tc

Ts

where Ts is the number of times node s was played
and X̄s is the expectation that s results in a win.

(number of times s resulted in a win, divided by number of times s was played)

Other subtleties such as the minimax scheme are left out of the description above. Additionally much work
was done to require the “random game” to play only “reasonable” moves. This was improved the playing
standard of the basic Monte-Carlo implementation significantly.

9

6.2 UCT Issues 7 FUTURE WORK

6.2 UCT Issues

UCT plays well only when the game is roughly balanced (both sides have a chance of winning). This is due
to the use of the 0/1 valuation of the random game (Territorial values are too unstable). Therefore if the
program believes it is winning, it will start to make weak moves. And if the program believes it is losing, it
will begin to make unreasonable moves.

6.3 Application of Evaluator to Prune UCT Search

We will now concentrate upon the use of the final neural network trained using Gnugo, and applying it. A
simple way of using the evaluator is to use it to prune moves and get the UCT search to concentrate on only
reasonable moves. Due to the slow performance of the evaluator, we can only perform pruning on the first
few levels of the search tree.
Additionally, the first move has a high likelihood of being played poorly.

6.4 Evaluation and Results

Since this is a modification on the UCT scheme, we use the basic UCT implementation as the baseline for
evaluation. 20,000 iterations are used for both the basic UCT scheme and the Pruned UCT scheme. For each
variation, 20,000 games are played. We only prune the top level of the tree. We are currently investigating
pruning a few more levels. Initial experiments suggest good results.
Variation Parameters:

Random Opening To eliminate the problem of a poor first move, activation of this parameter causes the
first move to be played in a random position in the 3× 3 grid in the center of the board

x Ply Eval How many plys deep do I search using the evaluator to get a score for the position. if x = 0,
we directly evaluate the position to obtain a score. if x = 1, we do a 1-ply search to get a score for the
position.

Variation Win Rate
Random Opening

0 Ply Eval
75%

No Random Opening
0 Ply Eval

85%

Random Opening
1 Ply Eval

70%

No Random Opening
1 Ply Eval

80%

It is interesting to note that that the 0 Ply Eval performs better on average than the 1 Ply Eval. Investigations
in progress.
As expected. the program performs better without random openings as the pruning scheme will automatically
prioritize better moves, where the straight UCT scheme has difficulties. Random openings “level the ground”
for the opening allowing the naive UCT to play better openings.

7 Future Work

• Deeper investigation in MCGo variations

• Experiment with a scheme which uses subtrees as features for boosting (As opposed to paths in [5].

10

REFERENCES REFERENCES

References

[1] B. Bouzy (2003). Mathematical Morphology Applied to Computer Go

[2] E. de Groote (2005). Machine Learning in Go.

[3] Markus Enzenberger (1996). The Integration of A Priori Knowledge into a Go Playing Network

[4] Nicol N. Schraudolph, Peter Dayan and Terrence J. Sejnowski (1994). Temporal Difference Learning of
Positional Evaluation in the Game of Go.

[5] Thore Graepel et al (2000). Go, SVM Go.

[6] T. Heskes. "Stable Fixed Points of Loopy Belief Propagation Are Minima of the Bethe Free Energy"

[7] A. L. Yuille. "A Double-Loop Algorithm to Minimize the Bethe and Kikuchi Free Energies". In Neural
Computation 2001.

[8] Sylvain Gello, et al (2006). “Modifications of UCT with Patterns in Monte-Carlo Go”

11

