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1 Notation

• Let Jn be the set of positive integers from 1 to n.

• Let Jn = {jm|m ∈ Jn} be a set of n unique elements corresponding to the
n targets/objects.

• Let It = Jt correspond to the set of time steps from 1 to t.

• x
(j)
t is the true state of target j at time t.

• zt = (wt, yt) is the observation at time t.

• st, the data/measurement association value at time t, is equal to the index
j ∈ Jn of the single target that generated the measurement zt, or equal to
t if the measurement at time t is spurious.

• The shorthand sa:b denotes the set of variables {sm|a ≤ m ≤ b}.

• wt is the position component of the observation at time t.

• yt is the discrete component of the observation, which may provide identity
information.

2 Exact model

The observations and true states of each target are modeled using a factorial state-
space model, as shown in Figure 2.

3 Permutation representation of s1:t

In order to exploit an efficient representation of a distribution over permutations,
the entire sequence of data associations for the measurements at times 1 through t
are represented as a permutation σt of the set Jn ∪ It.

Define s
(j)
t = {i ∈ It|si = j} to be the set of time steps no later than t at which

target j is observed.

For all j ∈ Jn, define

σt(j) =

{

max(s
(j)
t ) if s

(j)
t 6= ∅;

j otherwise.
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Figure 1: Graphical model description of the state-space model

Thus, σt(j) is the most recent (as of time t) time step at which target j is observed,
or is equal to j if target j was never observed.

For all i ∈ It, likewise define

σt(i) =

{

max s
(si)
i−1 if s

(si)
i−1 6= ∅;

si otherwise.

Thus, if zi is spurious, i.e. si = i, then s
(si)
i−1 = ∅, and σt(i) = i. Otherwise, si ∈ Jn,

and thus σt(i) is equal to the most recent time step before time step t at which the
same target was observed as was observed at time step t, or is equal to the target
si if si was never observed before time step t.

Due to this definition, if target j was observed at least k times as of time step
t, σk

t (j) is the kth most recent time step at which target j was observed. (Note
that the superscript in σk

t (j) denotes the standard exponentiation operator in the
multiplicative group of permutations.) If target j was observed exactly k − 1 times

as of time step t, σk
t (j) = j. In general, if target j was observed exactly m = |s

(j)
t |

times as of time step t, σk
t (j) = σk mod m

t (j).

Let σ1:k
t (j) denote the set {σm

t (j)|1 ≤ m ≤ k}. Note that this set is equal to the

subset of the k largest elements of s
(j)
t , or is equal to s

(j)
t ∪ {j} if |s

(j)
t | < k, and

completely specifies the k most recent time steps at which target j was observed.

4 Exact independence

Note that due to the factorial structure of the model, given all of the measurements
z1:t and all of the data associations, the conditional distributions of the states of
each target are independent. As an equation, this is stated as

Pr[xt|z1:t, s1:t] =
∏

j∈Jn

Pr[x
(j)
t |z1:t, s1:t].

Furthermore, the conditional distribution of x
(j)
t does not depend on the precise

values of s1:t, but rather only on the boolean values s1:t = j, which is equivalently

represented by s
(j)
t . As an equation, this is stated by

Pr[x
(j)
t |z1:t, s1:t] = Pr[x

(j)
t |z1:t, s

(j)
t ].



5 Assumed Density Model

Following the approach of assumed density filtering, it is assumed as an approxi-
mation that the joint distribution Pr(σt, xt|z1:t) has a particular form, such that it
can be represented compactly while still allowing efficient inference. As each mea-
surement zt is processed sequentially, this approximate representation is maintained
and updated by performing one step of inference and then mapping the resultant
distribution back to a distribution of the assumed form.

More specifically, the distributions Pr(σt|z1:t) and Pr(xt|σt, z1:t) are represented
separately. Representing Prσt|z1:t

(σt) exactly would require O ((n + t)!) space, and
inference would have similarly intractable time complexity. Furthermore, the exact
representation size grows with t.

5.1 Independence/decoupling assumption

It is assumed that given all of the measurements z1:t and, for each target j, the most
recent time step at which it generated an observation, i.e. σt(j), the conditional
distributions of the states of each target are independent. As an equation, this
assumption can be stated as

Pr[x
(j)
t |z1:t, s

(j)
t ] ≈ Pr[x

(j)
t |z1:t, σt(j)].

Note that s
(j)
t is also equivalent to σ1:t

t (j). Intuitively, this assumption states that
given all of the measurements, knowing about more than the most recent data
association for a target provides no additional information about its current state.

5.2 Pruning assumption

Instead of representing the full joint distribution over σt ∈ SJn∪Jt
, portions of

σt are effectively marginalized out, and only the marginal distribution over the
resultant smaller permutation σ̂t is represented. Specifically, σt ∈ SJn∪Jt

is mapped
to σ̂t ∈ SSt

, where St ⊂ (St−1 ∪ {t}) ⊂ (Jt ∪ Jn), by the pruning operation πSt

given by the recurrence

σ̂t(x) = (πSt
◦ σt)(x) =

{

σt(x) if σt(x) ∈ St;

(πSt
◦ σ2

t )(x) otherwise.

Alternatively, viewing σt as the product of disjoint cycles, πSt
(σt) is simply equal to

the same product of disjoint cycles except that the elements not in St are removed
from the cycles.

5.3 Band-limited Fourier-domain representation

Instead of representing Prσ̂t|z1:t
(σ̂t|z1:t) exactly, it is represented approximately us-

ing a band-limited Fourier-domain representation[?] P̂rσ̂t|z1:t
, where P̂rσ̂t|z1:t

is a
function from a subset Λ|St| of the set of partitions of the number |St|. In the

simplest case, Λ|St| = {(|St|), (|St| − 1, 1)}, which allows P̂rσ̂t|z1:t
to represent in-

formation about first-order marginals of σ̂t. With this definition of Λ, P̂rσ̂t|z1:t
has

an O(|St|2) representation size, and typically |St| is limited to be O(n). Like the
Fourier-domain representation of a function over R, the Fourier-domain representa-
tion of a function of a group of permutations has the key property of linearity.



5.4 Compact representation of Pr(x
(j)
t |z1:t, σt(j))

Finally, it is assumed that Pr(x
(j)
t |z1:t, σt(j)) ≈ Pr(x

(j)
t |z1:t, σ̂t(j)). Each of these

j · |St| independent conditional distributions is then represented as a single Gaussian
distribution, such that the total representation of Pr(x|σt, z1:t) is O(j · |St|) in size.

6 Analysis of assumptions

6.1 Exact measurement case

Consider the case that measurements are exact and completely reveal the state of

the target, i.e. x
(j)
t is deterministic given zt and given that st = j. This case

is obviously not one of great interest, but it does illustrate the extreme case of
measurements being precise. This case might apply to measurements received as
precise GPS coordinates or by a high resolution overhead camera with an accurate
person detector. In this case,

Pr[x
(j)
t |z1:t, s

(j)
t ] = Pr[x

(j)
t |zi, σt(j) = i],

and thus the assumption clearly holds.

6.1.1 Case where measurements are not all of the same type, and
provide different partial information about the state

(TODO)

6.1.2 Case where measurements have non-uniform variance

(TODO)

7 Approximate inference

The procedure for processing a single measurement zt+1 and updating the ap-
proximate representation of Pr(xt, σt|z1:t) to the approximate representation of
Pr(xt+1, σt+1|z1:t+1) is broken up into several steps.

7.1 Prediction step for Pr(xt|z1:t, σt)

For all j and i, since Pr(x
(j)
t+1|z1:t, σt(j) = i) is assumed to be Gaussian,

Pr(x
(j)
t+1|z1:t, σt(j) = i) is also Gaussian and can be computed efficiently using the

Kalman filter prediction step that takes into account the state transition model for

x
(j)
t .

7.2 Conditioning x(j)

Suppose st = j 6= t (i.e. σt(j) = t).



Pr(x
(j)
t |z1:t, σt(j) = t)

∝ Pr(x
(j)
t , z1:t, σt(j) = t)

=

t−1
∑

i=1

Pr(x
(j)
t , z1:t, σt(j) = t, σt−1(j) = i)

=

t−1
∑

i=1

Pr(zt|x
(j)
t , z1:t−1, σt(j) = t, σt−1(j) = i) Pr(x

(j)
t , z1:t−1, σt(j) = t, σt−1(j) = i)

=

t−1
∑

i=1

Pr(zt|x
(j)
t , σt(j) = t) Pr(x

(j)
t , z1:t−1, σt(j) = t, σt−1(j) = i)

=

t−1
∑

i=1

Pr(zt|x
(j)
t , σt(j) = t) Pr(σt(j) = t|x

(j)
t , z1:t−1, σt−1(j) = i) Pr(x

(j)
t , z1:t−1, σt−1(j) = i)

=

t−1
∑

i=1

Pr(zt|x
(j)
t , σt(j) = t) Pr(σt(j) = t) Pr(x

(j)
t , z1:t−1, σt−1(j) = i)

∝
t−1
∑

i=1

Pr(zt|x
(j)
t , σt(j) = t) Pr(x

(j)
t |z1:t−1, σt−1(j) = i) Pr(σt−1(j) = i|z1:t−1).

Thus, in this case conditioning reduces to repeated application of the Kalman filter
conditioning rule, and depends only on first-order marginal probabilities of σt−1.

Suppose st 6= j (i.e. σt(j) = σt−1(j)). Then x
(j)
t is independent of zt given z1:t−1

and σt, and thus, Pr(x
(j)
t |z1:t, σt(j)) = Pr(x

(j)
t |z1:t−1, σt−1(j)); that is, the condi-

tioning step in this case is trivial.

7.3 Prediction and conditioning for σt

This inference step depends heavily on application of the branching rule, which
specifies a procedure for efficiently transforming a Fourier-domain representation of
a function over Sm to a Fourier-domain representation of a function over either Sm+1

or Sm−1. The two specific instances of this rule that are used allow the following
transformations:

1. simply restricting a function over Sm to Sm−1 (where an element of Sm−1

is viewed as an element of Sm that fixes m) in the Fourier domain;

2. extending the domain of a function over Sm−1 to Sm according to the rule
that elements of Sm that do not fix m map to the value 0.

Both of these transformations can be done in time linear in the size of the repre-
sentation. Additionally, transforming in the Fourier-domain a function f(σ) to the
function f(σ ◦ π) or to the function f(π ◦ σ) for any permutation π simply involves
a matrix multiplication, and for a first-order representation is O(m3/2), where m
is the size of the representation. This operation is O(m) if π is simply an adjacent
swap, due to sparsity of the resultant matrix.



Pr(σt+1|z1:t+1) =
∑

j

Pr(σt+1, st+1 = j|z1:t+1)

=
∑

j

Pr(σt+1, st+1 = j, zt+1|z1:t) · c

∝
∑

j

Pr(σt+1, st+1 = j, zt+1|z1:t)

where c = Pr(z1:t)/P (z1:t+1).

If j = t + 1:

Pr(σt+1, st = j, zt+1|z1:t) = Pr(zt+1|σt+1, st = j, z1:t) · Pr(σt+1|st+1 = t + 1, z1:t) · Pr(st+1 = t + 1).

Otherwise, j ∈ Jn:

Pr(σt+1, st = j, zt+1|z1:t) =
∑

i

Pr(σt+1, st = j, zt+1, σt+1(t + 1) = i|z1:t)

=
∑

i

Pr(zt+1|σt+1, st = j, σt+1(t + 1) = i, z1:t)×

Pr(σt+1, σt+1(t + 1) = i|st = j, z1:t) · Pr(st = j).

Assuming a first-order representation, the prediction and condition of σ has time
complexity O(n5).

7.4 Pruning

The prediction and conditioning step results in a permutation σt+1 one element
larger than σt. To avoid this increase in size, some element i ∈ St ∪ {t + 1} \ Jn is
marginalized out of σt+1. The particular element i is chosen out of the |St|+ 1− n
possible choices to minimize

Eσt+1|z1:t+1
[KL(Pr(xt+1|z1:t+1, σt+1)||Pr(xt+1|z1:t+1, σ̂t+1))],

where σ̂t+1 = πSt∪{t+1}\{i}(σt+1).

Eσt+1|z1:t+1
[KL(Pr(xt+1|z1:t+1, σt+1)||Pr(xt+1|z1:t+1, σ̂t+1))]

=
∑

σt+1

Pr(σt+1|z1:t+1)
∑

j

KL(Pr(x
(j)
t+1|z1:t+1, σt+1(j))||Pr(x

(j)
t+1|z1:t+1, σ̂t+1(j)))

=
∑

j

∑

i′

∑

i′′

Pr(σt+1(j) = i′, σ̂t+1(j) = i′′|z1:t+1)×

KL(Pr(x
(j)
t+1|z1:t+1, σt+1(j) = i′)||Pr(x

(j)
t+1|z1:t+1, σ̂t+1(j) = i′′)).

8 Remaining Work

• Now that an efficient procedure for performing inference using this Fourier-
domain representation has been developed, it will be implemented and
tested both on simulated data as well as on actual data, likely camera
data.

• This algorithm will be compared to alternative approaches such as Rao-
Blackwellized particle filter method, where the sampling is over sequences
of data associations.


