
A Hybrid Formulation of the Ordered Logical

Framework

Chris Martens

March 21, 2008

1 Introduction

The logical framework LF [5] is a powerful tool for encoding and carrying out the
metatheory of logics and programming languages in a mechanized way. However,
current work on LF has yielded little support for the metatheory of certain kinds
of logic that are useful for reasoning about state. One fruitful approach (for the
case of linear logic) has been to use hybrid logic, inspired by Kripke modal logic
and temporal logic, to give the metareasoning tool access to how the object
language context is being manipulated [10]. The goal of this thesis is to apply
the same approach to ordered logic, an setting capable of expressing even more
constraints.

1.1 Logical Frameworks

Logical frameworks have many purposes. They provide a way of formalizing
the definitions of logics and programming languages that we would otherwise
write by hand; moreover, they allow us to prove things about these definitions,
such as type safety, in a machine-checkable way. The practice of writing down
proofs about formal systems and having a computer check them is called mech-
anizing metatheory [7]. They are sometimes also used as theorem provers, logic
programming languages, and educational proof assistants.

The particular logical framework this work extends is LF, which has a par-
ticular niche in programming language research, mainly due to the unique way
it handles variable binding (that is, as part of the metalanguage). LF follows
the methodology of “judgments-as-types”, meaning the judgments of the object
language one writes down correspond to types in LF, and an object-language
derivation of a judgment is an LF term with the type corresponding to that
judgment.

1.2 Substructural Logics

Linear and ordered logics are called “substructural” because they lack certain
structrual properties a logic is generally assumed to have; in particular

1

• Weakening - If a context Γ proves a proposition A, adding an extra as-
sumption B to Γ still allows us to prove A

• Contraction - If Γ contains two copies of A and proves B, then Γ with
only one copy of A can still prove B

• Exchange - If Γ proves A, we can arbitrarily reorder the elements of Γ and
still be able to prove A.

What we will call unrestricted logic has all three structural properties.
Linear logic [4] lacks the first two of these; thus, every assumption in its

context must be used exactly once. For this reason it has been called the “logic
of resources” – linear logic sequents model exactly what resources must go in
for the consequent to come out. Note that in the absense of contraction, having
many copies of an assumption around is a different thing from having only one
copy around – our context now resembles not a set but a multiset.

Ordered logic lacks all three structural rules, meaning that not only must
each resource in the context be consumed, but it must be done in order. This
yields two implication connectives, ³ and ½, read “right implication” and “left
implication”, defined in a natural deduction fashion as follows:

Ω, A ` B

Ω ` A ³ B
³ I

Ω ` A ³ B ΩA ` A

Ω, ΩA ` B
³ E

A, Ω ` B

Ω ` A ½ B
½ I

Ω ` A ½ B ΩA ` A

ΩA, Ω ` B
½ E

Now the context more closely resembles a list of assumptions rather than a
set or multiset. The order in which the pieces of the context are put together
obviously matters; for left implication, we make the assumption on the left of
the current context, and analogously for right implication.

It is important to note that although we say ordered logic “lacks” these
structural rules, we are actually working toward a more expressive system. What
we ultimately want is the ability to talk about many different kinds of provability
(ordered, linear, unrestricted) and a way to move between them. Once we have
“hit bottom”, so to speak, in terms of a restricted structure, we can introduce
modalities to mobilize or unconstrain hypotheses, moving them between levels
of restrictedness.

As an example of why one might wish for the constraints present in purely
ordered logic, consider parsing natural language sentences. (This approach could

2

be used for formal languages as well.) We can write down a rule for sentence
formation:

np ³ vp ³ snt

That is, a sentence is a verb phrase to the right of a noun phrase.
We can add a few more rules:

tv ³ np ³ vp

det ³ np ³ np

dog ³ np

cat ³ np

the ³ det

chased ³ tv

The sentence “the dog chased the cat” indeed produces a snt under these
rules; the order that words must come in is restricted by the right implication.
If one were to think of these as types and write expressions to inhabit them,
it should be clear that the unrestricted notion of → would allow you to arbi-
trarily permute, duplicate or discard the argument terms such that all notion
of grammar is lost.

One can then define a logic that combines all three reasoning approaches (un-
restricted, linear, and ordered) to engender powerful programming or reasoning
abilities. Consider the rules for linear implication, written with a (:

∆, A ` B

∆ ` A (B

∆ ` A (B ∆A ` A

∆ ./ ∆A ` B

The ./ here indicates “nondeterministic merge”, meaning that the contexts
are put together in an order-agnostic manner. Our placement of the hypothesis
A in the introduction rule is arbitrary.

In a combined reasoning system, we have unrestricted hypothesis in Γ, linear
ones in ∆, and ordered ones in Ω, so the basic typing judgment turns into
something like Γ; ∆; Ω ` M : A. The exact specifications of such a system,
however, are not important for getting a feel for how combined reasoning works.

If we revisit our natural language parsing example, we can consider relative
clauses, such as “whom the dog chased” – the word “whom” (for example)
precedes what is essentially a sentence missing a noun phrase. We can express
this with

(np (snt) ³ whom ½ rel

3

The (indicates that the noun phrase can be missing from anywhere in the
sentence; the ½ indicates that the relativizer (“whom”) should go on the left
of the incomplete sentence.

1.3 Ordered LF

Jeff Polakow’s thesis work [8] was a conservative extension of LF with the com-
bined reasoning described above. He introduced many examples of applications
of such a framework, wherein one can leverage the combined reasoning power
of the metalanguage to do unprecedented things with object languages.

One example is simply to use the framework as a logic programming tool
in which one could easily write the parsing example above. Other examples of
the logic programming tool (called Olli) leverage the fact that the ordered OLF
context can behave very naturally as a stack or a queue, including

• translating between λ-calculus terms and deBruijn-indexed terms

• constructing an abstract machine for evaluating Mini-ML

• mergesort

A more compelling example for using OLF as a metatheoretic tool is a CPS
(continuation passing style) language analysis. CPS-translated terms reflect the
evaluation order of the source language, and in a left-to-right, call-by-value di-
rect style, the CPS terms are such that continuation variables are used linearly,
and local parameters to continuations form a stack. Polakow gives an encoding
of CPS terms in OLF in which these occurrence invariants are captured im-
plicitly in the ordered types. For a more in-depth explanation of this example,
see [9].

1.4 The Problem

OLF is a suitable framework for carrying out metatheory using the power of
ordered logic. However, it has the unfortunate limitation of being unable to
express the statements of ordered metatheory. Consider, for example, the cut
elimination theorem for ordered logic:

Theorem 1 (Ordered Cut Admissibility). If ΩA ` A and Ω1, A, Ω2 ` C, then
Ω1, ΩA, Ω2 ` C.

Encoding this theorem in OLF turns out to be difficult because we have no
way to explicitly capture the structure of the context.

It is the eventual hope that the Hybrid LF formulation we are about to
present can solve this problem. Even without that, however, the hybrid for-
mulation gives us access to a lot of power not present in OLF. We will visit
examples of such possibilities at the end of this document.

4

2 Language

The language of LF is essentially the simply typed λ-calculus with dependent
function types and kinds. Its syntax is given as

terms M,N ::= λx.N | MN | c | x
types A ::= Πx : A.A′ | a M1 . . .Mn

kinds K ::= Πx : A.K | type

where kinds classify type families in the way that types classify terms, and
Πx : A. is the dependent form of types and kinds.

We will use → as an abbreviation for the degenerate case of Π types and
kinds where the body does not use the bound variable.

Most of this syntax is not needed to understand the new concepts introduced
in hybrid LF; it is here mainly for completeness.

2.1 Hybrid LF

Hybrid logic [2, 3, 1] was inspired by a combination of temporal logic and Kripke
modal logic.

The key notion of Hybrid LF is the notion of a world or label (this document
will use these terms interchangeably). The basic typing judgment, rather than
Γ ` M : A, becomes Γ ` M : A[p], where p is a world. This judgment can be
read “M has type A under Γ and uses the resources described by p”.

Consider the following example: if we have

x:A, y:B, z:C ` c x z z : D

we may wish to express that the term uses the hypothesis x once, z twice, and
y no times – indeed, we may wish to express that it uses x and the two zs in
the order that it does. Now the idea is to attach a label to the type (D in this
case) that does this. The initial thought might be just to say

x:A, y:B, z:C ` c x z z : D[x, z, z]

but this has the problem that the label’s well formedness (since it depends on
terms) could depend on the current context, and the whole problem in the
beginning was the inability to quantify over contexts. So we create a new
syntactic class of worlds:

p, q ::= α | p ∗ q | ε
where ε is the empty world and α is a world variable. For now we leave it vague
what ∗ should be other than joining two worlds together (this is not the final
definition of worlds for the ordered case; this is a pedagogical example of what
worlds can look like).

5

If we want to carry through with our example above, we need some way
of attaching worlds to resources. First of all, we need to allow world variable
assumptions into our context:

Γ ::= . . . | Γ, α : world

Next, we need a type constructor that internalizes the notion of A[p], called
@, defined as

Γ ` M : A[p]
Γ ` M : (A@p)[q]

Γ ` M : (A@p)[q]
Γ ` M : A[p]

Now we can express the notion of a variable in the context being attached
to a world by adding

α : world, x : A@α

to the context.
Going back to our example, we can now say something like

α : world, β : world, γ : world, x:A@α, y:B@β, z:C@γ ` c x z z : D[α ∗ γ ∗ γ]

to show that the term consumes x, z, and z.

2.2 Ordered Worlds

The missing piece now is what these worlds need to look like, and how they
need to behave, to be expressive enough for ordered (and in particular, com-
bined) metareasoning. At the very least we would like a system with the same
expressiveness as OLF.

In the formulation of HLF for linear logic, the ∗ operator is defined to form
a commutative monoid with ε; that is, it is associative and commutative, and
p, ε ∗ p, and p ∗ ε are all equivalent.

Our first attempt at adapting this system to combined reasoning with or-
dered logic was to introduce a new world connective, •, the same as ∗ but
noncommutative. This turns out to work for expressing the orderedness of the
context, but it does not work well in conjunction with commutative ∗, at least
for the purposes of encoding OLF. Instead, our only binary operator is •, and
we have a unary “mobility” operator on worlds, ¡, which allows the world it’s
applied to to move around freely in the otherwise ordered structure. Formally,
our world grammar is now

p, q ::= α | p • q | ¡p | ε

6

and we have the following equivalence axioms:

(p • q) • r ≡ p • (q • r)
p • ε ≡ p

ε • p ≡ p

¡p • q ≡ q • ¡p
¡ε ≡ ε

¡¡p ≡ ¡p
¡(¡p • ¡q) ≡ ¡p • ¡q

The first three axioms give associativity of • and unity of ε; the rest of the
axioms detail how the ¡ operator works. Its defining characteristic is that any
world under a ¡ can commute with any world adjacent to it. Additionally, any
world under a ¡ that consists of only other worlds under ¡s is equivalent to the
same world without the outer ¡.

Now we can encode right, left, linear, and unrestricted implication in our
system as follows:

Γ, α : world, x : A@α ` M : B[p • α]
Γ ` λx.AM : A ³ B[p]

³ I

Γ, α : world, x : A@α ` M : B[α • p]
Γ ` λx.AM : A ½ B[p]

½ I

Γ, α : world, x : A@(¡α) ` M : B[p • ¡α]
Γ ` λx.AM : A (B[p] (I

Γ, x : A@ε ` M : B[p]
Γ ` λx.AM : A → B[p] → I

Γ ` M1 : A ³ B[p] Γ ` M2 : A[q]
Γ ` M1M2 : B[p • q]

³ E

Γ ` M1 : A ½ B[p] Γ ` M2 : A[q]
Γ ` M1M2 : B[q • p]

½ E

Γ ` M1 : A (B[p] Γ ` M2 : A[¡q]
Γ ` M1M2 : B[p • ¡q] (E

Γ ` M1 : A → B[p] Γ ` M2 : A[ε]
Γ ` M1M2 : B[p] → E

7

(In actuality, we present these in something called spine form; they are
presented here in natural deduction style for pedagogical reasons.)

In addition to the addition of labels and the @ type operator, we add two
more type operators:

A ::= . . . | ∀p.A | ↓p.A

Intuitively, the ∀ operator quantifies over all worlds, and the ↓ operator binds
the “current” world. They are defined formally as follows.

Γ, α : world ` M : A[p]
Γ ` M : ∀α.A[p]

Γ ` M : ∀α.A[p] Γ ` q : world

Γ ` M : [q/α]A[p]

Γ ` M : ([p/α]A)[p]
Γ ` M : ↓α.A[p]

Γ ` M : ↓α.A[p]
Γ ` M : [p/α]A[p]

Additionally, we add the universal quantification to kinds:

K ::= . . . | ∀p.K

defined analogously to the ∀ type operator.
This completes the definition of the extension to the logical framework.

3 Metatheory of Hybrid OLF

This section addresses properties we would like to prove of the framework we’ve
just defined.

3.1 A conservative extension

We would like to show that Hybrid OLF is a conservative extension of OLF. To
do this, we define an encoding of each OLF connective, and prove this encoding
“correct” with respect to OLF. “Correct” means two things: first, that every-
thing derivable in the image of the translation into Hybrid OLF is similarly
derivable in the domain (soundness); second, that everything derivable in OLF
is similarly derivable in the image of its translation (completeness).

8

3.1.1 Soundness

We have a translation (not defined here) from any of a set of OLF contexts
(Γ, ∆,Ω) to an HLF context (Γ) that defines a world for each variable in the
appropriate way, and similarly a translation from HLF contexts to eac OLF
context, relative to some world, that takes the relevant world variables and
pulls out from the context the term variables that are attached to them. Given
these, we can say the following:

Theorem 2 (Soundness). If a term M translated from OLF has type A[p] in
HLF, then in OLF it has type A under a context related to p.

The formal statement of soundness is more precise about how the contexts
and worlds relate, but this is the general idea.

3.1.2 Completeness

Given similar context translations and similar caveats about generality as above:

Theorem 3 (Completeness). Given a term M well-typed with A in OLF, the
translation of M is well-typed as A[p] in HLF, for all p correctly constructed
from the OLF context.

3.2 Other Theorems

We have conjectured decidability of typechecking, which is to say that the type-
checking process will always terminate. It is clear that this holds for at least
the fragment of our system in the image of the translation from OLF, since
typechecking of OLF has been proven decidable. The remainder is conjectured
to be decidable, given that a similar problem, namely the word problem for
semigroups, is decidable, but whether this works in the expected way is not yet
known.

4 Conclusion

We have shown that our hybrid logical framework is a conservative extension
of OLF, and thus it has the full power to express the OLF examples described
in the introduction. However, we would also like to know that we have gained
something over OLF. In particular, there are objects of this framework outside
of the image of the translation of OLF, given the ¡ operator on worlds, the ↓
operator on types and then ∀ operators on types and kinds.

In particular, I am hoping to explore how this framework can express some-
thing akin to the memory layout system described in [6]. This system uses a
mobility operator, similar to ¡ but on types, to express pointers into the heap –
data whose address in memory is arbitrary – whereas the adjacency properties
given of the ordered fuse (•) allow representation of structs and ordered pairs
whose adjacency in memory is critical.

9

Finally, the main projected goal for future work is to describe the metatheory
of ordered logic in this system.

References

[1] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization,
interpolation and complexity. Journal of Symbolic Logic, 66(3):977–1010,
2001.

[2] T. Braüner and V. de Paiva. Towards constructive hybrid logic. Elec. Proc.
of Methods for Modalities, 3, 2003.

[3] Torben Braüner and Valeria de Paiva. Intuitionistic hybrid logic. To ap-
pear., 2006.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143–
184, January 1993.

[6] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type
theory for memory allocation and data layout. In G. Morrisett, editor,
Conference Record of the 30th Annual Symposium on Principles of Pro-
gramming Languages (POPL’03), pages 172–184, New Orleans, Louisiana,
January 2003. ACM Press. Extended version available as Technical Report
CMU-CS-02-171, December 2002.

[7] Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI
1632.

[8] Jeff Polakow. Ordered Linear Logic and Applications. PhD thesis, School
of Computer Science, Carnegie Mellon University, May 2001. Available as
Technical Report CMU-CS-01-152.

[9] Jeff Polakow and Frank Pfenning. Properties of terms in continuation-
passing style in an ordered logical framework. In Joëlle Despeyroux, edi-
tor, 2nd Workshop on Logical Frameworks and Meta-languages (LFM’00),
Santa Barbara, California, June 2000. Proceedings available as INRIA
Technical Report.

[10] Jason Reed. A hybrid metalogical framework. Thesis Proposal Working
Draft, 2007.

10

