
Senior Thesis Abstract

Kevin Mc Inerney

March 21, 2008

I am studying one-dimensional cellular automata, in particular, I am looking
at statements that can be made about arbitrary cellular automata. A one-
dimensional cellular automata is an in�nite series of cells, each of which is in a
�nite number of states at a current discrete time step t. The automata also has
a transition relation which de�nes the state of the cells at time t+ 1. Formally,
a cellular automata A = (Q, δ) is a tuple where Q is the set of potential states
of the cells (the alphabet) and the transition relation δ : Qk → Q is a relation
taking a vector of k cells into a new cell. The relation is applied locally to each
cell and it's neighborhood (the k−1 cells adjacent to it) to obtain the new state
of the cell at the next time step. The local nature of the transition relation
is key to the de�ntion of a cellular automata. It is not necessary to know any
information beyond a cell's neighborhood to perform the update on that cell.
Moreover, the relation is the same for all cells of the automata, simplifying
computation and making the entire structure position-independent and local.

We may simulate the computation of a cellular automata A = (Q, δ) by
stating a current state and an update function. The state S ∈ Qωω (where
Qωω is the set of all possible two-way in�nite words on the alphabet Q) is a
two-way in�nite vector which contains the state of each of the component cells
of the automata. Note that although the order of the cells is important, it is not
necessary (or even possible) to state which is the �center� cell. To obtain the
next step of the automata, we de�ne an update function Fδ : Qωω → Qωω that
is obtained by applying the transition relation δto each cell of the current state
and that cell's neighboorhood and combining the results to obtain the next state
of the automata. By repeatedly applying F , we can simulate the computation
of the cellular automata on a given input state S.

Because the transition relation is local and position-independent, we do not
need to store any information about the state beyond the current cell and it's
neighborhood. Therefore, it is possible to simulate the application of F on a
state S of the automata by runnning a �nite state transducer on S. (A Finite
State Transducer (FST) is similar to a �nite state machine except you also
specify an output for each transition of the FST.) This allows us to use a simple,
elegant model to study the update function of an arbitrary cellular automata.
Forming the FST for the update function of a given cellular automata is not
computationaly di�cult. For a given transition relation δ : Qk → Q, we create
|Q|k−1

states, one for each of the possible combinations of the last k−1 symbols

1

read. From each state, we create |Q| transitions, labeling each with the letter
of the alphabet read, and the symbol to be output. We can then run FSM
reduction algorithms on the FST generated to get the minimal FST. When this
FST is run on a given state S, it will produce a new state S′ that is the result
of running the orginal cellular automata for one step.

As an aside, note that there are extensions of the concept of a Finite State
Machine that work on in�nte words. One such automata is the Büchi automata.
Büchi automata are nondeteriministic �nite state machines with modi�ed accep-
tance conditions. A Büchi automata is said to accept an in�nte word if starting
in the initial state, a run of the Büchi automata passes through a state in the set
of �nal states in�nitely often. It can be shown that the Büchi automata model
accepts all regular in�nite words. However, trying to determinize a Büchi au-
tomata directly does not work, as we �nd that the acceptance condition is not
su�cent. We must use a new kind of automata, known as a Rabin automata.
Again, Rabin automata are extensions of the Finite State Machine concept to
in�nite words, but with a di�erent acceptance condition. A Rabin automata's
acceptance conditions is a set of pairs of states (L,R) where the automata ac-
cepts a string if for one of the (L,R) pairs, the states in L are not hit in�nitely
often, and R is a set of states some of which must be hit in�nitely often.

We de�ne a �steps to� relation. The steps to relation is a logical extension
of the update function de�ned above. Spec�cally, for a given automata and two
states S, S′ of that automata, we are asking if F (S) = S′, where F is the update
function. We write this in logic as S → S′. Note that we can check this by
creating a new automata based on the FST generated by F . This automata
is de�ned over a new alphabet, the set of all pairs of characters in the orginal
alphabet of the cellular automata in question. We use the FST, except we make
all of the transitions occur if the �rst character matches the transition, and the
second matches what the FST would output. We also add a sink, which we
transition to in all other cases. All states of the machine are �nal states except
the sink. (Note that this machine accepts two states S, S′ only if the second is
right shifted so that a cell lines in S′ lines up with the end of it's neighborhood
in S.)

There is an algorithim, Safra's algorithim, that will deteriminize a Büchi
automata and produce a deterministic Rabin automata. However, Safra's algo-
rithm is quite complex, and the blowup in states is 2O(n logn) in the worst case.
One aim of the project (as we will see below) is to �nd automata where Safra's
algorithm has a less substatial blowup.

We are going to express properties of cellular automata(CA) as statements
in prepositional language extended with the steps to relation. We may then ask
questions such as: Does this CA have a three cycle? (∀x, y, z.(x → y ∧ y →
z ∧ z → x ∧ x 6= y ∧ y 6= z)). Moreover, we may express each of the component
parts of these statements as automata, and use standard techiniques (described
below) to combine them into prepositional logic statements.

One major di�culty is that the in�nite word automata generated are de-
signed for one-way in�nite words, and we must stretch them to create automata
for two way in�nite words. Spec�cally, we generate two automata one for the

2

forward in�nite word, and one for the backwards in�nite word. Because of
the position-independent nature of cellular automata, these two automata will
be identical. We then combine the two automata. Since states of cellular au-
tomata are shift invariant, we must be careful how we combine the automata.
Speci�cally, we must allow variaition in the inital states of the two automata.

We have already seen how to express the steps to relation as an automata.
To express the does not equal relation, we create a simple automata over a new
alphabet, the set of all pairs of characters in the orginal alphabet of the cellular
automata in question. We then create a two state machine, which remains in the
inital state so long as both elements of the pair of characters are the same, and
transitions to the �nal state at the �rst point where they di�er. The machine
then remains in the �nal state for the rest of the computation. This machine
accepts the string if the two states represented di�er in at least one location.
We may also make a simple extension of the machine to check if the two strings
are unequal where one of them is left or right shifted by a �nite amount.

We can now express the conjunction or disjunction of two prepositional state-
ments A,B by taking the resulting FSM's and performing the intersection of
them to get A∧B, and the union of them to get A∨B. Both of the combinations
are computationaly e�cent.

To obtain ¬A from the FSM representing A, we must �rst determinize the
FSM using Safra's algorithim, resulting in a Rabin automata. We can then
change the acceptance condition of the Rabin automata to get the complement.

To obtain ∃x(A(x)), we create the FSM for A as usual, except wherever
we would have a character from x, we instead place a wildcard, allowing any
character to be used. This will likely cause the automata generated to become
nondeterministic.

To obtain ∀x(A(x)), we simply use the logical equivalence ∀x(A(x)) ⇔
¬∃x(A(x)).

Once we have the desired automata, we can perform a simple graph al-
gorithm to determine whether an accepting path exits. Spec�cally, for a Ra-
bin automata, for a given acceptance pair (L,R) whether there exists a path
pop1 . . . pi . . . pnpi . . . pn such that po starts at an inital state and ends in a state
in R, and ∀k, k < i pk starts and ends in a state in R. For all pk with k ≥ i, we
also introduce the condition that the path does not pass through any states in
L. A relatively simple search technique will discover such a path if it exists. If
any such path exists, we can say that the statement the automaton represents
is true. If no such path exists, we can say that the statement the automaton
represents is false.

Note that because of the potentially exponetial blowup in states caused by
Safra's algorithm, this technique is not, in general, tractable. However, there are
some Büchi automata where the blowup due to Safra's algorithm is manageable.
Therefore, the goal of this thesis is to �nd a set of logical statements such that
the resulting automaton has a mangeable number of states.

3

