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Abstract 
 
This paper examines the problem of extracting structure knowledge from unstructured free text. 
The extraction process is modeled after construction grammars, essentially providing a means of 
putting together form and meaning. The knowledge base is not simply treated as a destination, but 
also an important partner in the extraction process. In particular, the ideas are implemented as a 
module closely tied to the Scone Knowledge Base system. I demonstrate that with a reasonable 
knowledge base and general construction rules, one can easily extract structured knowledge. 
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1 Introduction 
 
The ultimate goal of processing natural language in computer is really to be able to form 
an understanding of dialogue and then reason over what has been understood. This paper 
aims to examine how we can move closer to this goal. The knowledge representation 
adopted is the Scone Knowledge Base (KB) system. This is in contrast the to customary 
representations used for knowledge – first order logic or lambda calculus. The Scone KB 
system is a flexible efficient system that models knowledge in a semantic network.  

I approach natural language understanding from the viewpoint that people are able to 
understand completely ungrammatical sentences (e.g. “john, mary lunch burritos”). 
Essentially, understanding natural language comes mostly from semantics. Hence, any 
approach to natural language understanding must first consider how the knowledge is 
going to be represented. 

Construction grammar is a family of grammars that emphasizes the connection between 
syntax and semantics. They provide a linguistic basis for the approach adopted by this 
paper. In particular, the notion of constructions adopted most closely follows that of 
Radical Construction Grammar.  

These ideas have been implemented in LISP as a practical language-processing engine 
meant to be used in conjunction with the Scone KB system.  

This paper also explores generalizing and learning over constructions.  

2 Scone Knowledge Base System 
 
The Scone KB system represents knowledge as a semantic network. In this paper, Scone 
elements are referred to when encased in curly brackets. For example, {physical object} 
refers to the Scone element that represents a typical physical object. An element can also 
have roles and relations specified over it. Furthermore, elements also have children or 
multiple parents and the roles and relations will be inherited accordingly. Scone 
efficiently supports multiple inheritance and exception.  

3 Constructions 
3.1 Overview 
 
Constructions are basic pairings of form and meaning. In theory, form can include 
phonological specifications, syntactical relations, etc.  However, a simplified version of 
constructions is adopted in this paper, in which form is limited to a pattern, which is 
defined by simply word order. This follows the ideas in Radical Construction Grammar. 



Semantics are represented by simply the Scone KB structure that is associated with the 
construction. For practical purposes, I also allow arbitrary LISP code to be part of the 
semantics.  

These following sections describe constructions as they have been implemented in the 
actual language engine. 

3.2 Variables and Element Restrictions 
 
In a construction, variables form bridge between form and meaning. Variables are 
normally associated with an element-restriction. This restriction can be specified by 
primitive elements (e.g. strings, numbers) or internal Scone elements.  

3.3 Patterns 
 
A pattern is essentially an ordered list of variables (or element-restrictions).  

Tokens form the input to the language engine. A token is ideally an element within the 
KB – this can be achieved by pre-processing the input stream. However, tokens can also 
be strings, which are then resolved by the language-processing engine. A series of tokens 
is said to match a construction when each element-restriction in the construction’s pattern 
matches the tokens, in the same order.  

3.4 Triggers 
 
Triggers provide constructions a means of communication with other high level 
processing system (e.g. a dialogue understanding system). They also serve to allow 
constructions to return multiple values.  

One trigger that is common across all constructions is the head trigger that specifies what 
is the representative element of the construction after it has been instantiated.  

3.5 Instantiation 
 
If a stream of tokens matches a construction, then one can choose to instantiate the 
construction to effectively produce the scone-network structure associated with the 
construction. Furthermore, the construction will also return an element (as specified by 
the head trigger), which in essence refers to whole entity produced by the construction. 
For example, if “green elephant” were matched, then the construction would return an 
elephant instance with having color green. 

This implies that the structure produced by one construction can be in place of a token to 
satisfy an element-restriction in another construction. This allows for a stream of tokens 
to be matched to some composition of constructions. 

In effect, constructions resemble Context-Free Grammar rules, with the specifications 
involving Scone elements. Further, each construction is paired with a semantic 
representation. 



3.6 Example Constructions 
 
The following are some example constructions: 
 

Location-Action Construction 

Variables ( ?x {location} ) 
( ?y {action} ) 

Pattern “In” ( ?x {location} ) ( ?y {action} ) 

Semantics ?x is-the {location} of ?y 
 

Person-Action-Object Construction 

Variables ( ?x {person} ) 
( ?y {action} ) 
( ?z {physical object} ) 

Pattern ( ?x {person} ) ( ?y {action} ) ( ?z {physical object} ) 

Semantics ?w = a new instance of action ?y 
?x is-the {agent} of ?w 
?z is-the {object} of ?w 

 

Since the person­action­object construction produces ?w which is an action, it can be 
used to match part of the pattern for the location­action construction.  

4 Language Processing Engine 
4.1 Matching Engine 
 
The core of the language-processing engine is based on the Earley parser. Interpretation 
of a series of tokens is performed in three phases – a pre-processing phase, a core 
matching phase and finally instantiation.  

In the pre-processing phase, each variable of the pattern in each construction is linked to 
all other constructions that can produce some Scone structure that can satisfy the 
variable’s restriction. This sets up constructions in a way that represents a context-free 
grammar. 

The core of the matching engine is largely based on the Earley parser. In the matching 
phase, the interpreter runs left to right accumulating only constructions that are valid up 
till that token. In order to keep the space/time requirements manageable, the partially 
matched constructions are scored, ranked and pruned. 



The matching phase will conclude with all possible matches. From these, the best 
construction is selected based on its rank and instantiated. This happens in a recursive 
fashion depending on the composition of the final match. 

4.2 Scoring and Selection 
 
A weighting of various sub-scores performs scoring of constructions. The sub-scores for 
a construction include  

1. Length of the construction 
2. Completion (matched) status of the construction 
3. Base score for the construction 
4. How well the underlying elements match the tokens 

 

4.3 Practicalities  
 
One of the major objectives was to provide an engine that was practical and applicable to 
future projects that wish to process unstructured text together with Scone. Many options 
have been implemented to this extent to make the system extremely flexible and easy to 
use. 

For example, one would find that the same construction could often apply when matching 
to both individual variables and a set formed by individuals of that type. This is handled 
as a special case in the construction engine and a variable option can be set to enable it. 

4.4 Performance 
 
A performance evaluation of the engine will be included here. All demonstrations with 
the code take no more than a second for each sentence now. 

In general, the runtime of the engine can be bounded by the scoring mechanisms. One 
can easily limit the number of constructions allowed. The Earley parser on its own has a 
complexity of 

€ 

O(c ⋅ n3)  where n is the length of the input and c is the number of 
constructions. Since n is normally 15–20 in general English sentences, one can expect 
very reasonable performance with the engine. (I note that this complexity bound might 
not hold anymore with some of the changes to the engine introduced.) 

5 Context-Dependent Processing 
5.1 Handling Sets 
 
We often need to form sets based on the text. For example, a recipe might indicate for 
one to mix the tuna, mayonnaise, celery and salt. After forming the set, one might wish to 
characterize the typical member of the set, so that it can be used as part of another 
construction. More generally speaking, we need to characterize the roles and relations of 



elements based on context as well. This is a similar issue to general constructions 
described below.  

5.2 General and Specific Constructions 
 
Unfortunately, not all constructions can be linked to other constructions during pre-
processing. For example, in a very general construction that matches {color} {physical 
object}, it is not possible to use this construction in another construction that expects a 
{kitchen appliance} unless the production itself produces something of type {kitchen 
appliance}. Hence, the actual context of the text being processed matters.  

As a result, we categorize linked constructions in two different categories – those that can 
be determined before processing and those that need to be checked in context. In order to 
keep the number of constructions processed to a manageable size, the constructions for 
the latter category are kept to those that produce elements which are super-sets of the 
expected type. This does not cover all the cases but it is hypothesized that they are 
sufficient for most purposes.  

During processing, each construction is then linked to some representative element (pre-
existing in the KB). This element is used for checking the context.  

A true solution to this problem would be to actually instantiate constructions during 
processing and use those instantiations as representative elements. These instantiations 
are later removed when processing completes. This is however not implemented. 

6 Generalization 
6.1 Overview 
 
Generalization for constructions was motivated by how learning of language develops. 
Children often learn that certain patterns of language translate into the same meaning and 
then generalize over these patterns. An example of this generalization happens with past-
tense inflexions. 

In the context of this paper, generalization serves as a means of supervised learning. 

6.2 Generalizing over a Set 
 
In this paper, I also explore an algorithm for generalization over a set that uses spreading 
activation.  The aim of generalization of a set is to provide a representative element(s) of 
the set that serves as a means of determining if a new element should be part of this set or 
not.  The general algorithm places an amount of activation on each element in the set and 
proceeds to pass this activation to its parent nodes via a transfer function. The algorithm 
is analogous to a voting system.  

 



6.3 Generalizing Constructions 
 
From generalization of a set, one can also experiment with generalizing constructions. I 
propose an algorithm for generalizing constructions and explore the limitations and 
performance of the algorithm. At this stage, the generalization algorithm has been 
implemented as a proof-of-concept.  

7 Opportunistic Processing 
 
This will be direction taken for the paper for the rest of the semester. I will be exploring 
boundary conditions and what can be done with constructions do not fully match. Ideas 
involved at this level processing to create placeholder elements that can be later filled in 
when more information is available later. 

8 Discussion 
 
One might be motivated to ask how this approach differs from the CFG parsers that have 
been widely used for syntactical parsing. Syntactical parsing with CFG parsers have 
operated by first tagging words in sentences according to some basic types and then 
building a parse tree over several rules. The approach here does not perform any tagging, 
but instead uses elements from a KB in place of them. This allows for a more general 
form of representation (the elements in the KB can be tagged) and further, allows for 
establishing a link to semantics. 
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Appendix A – User Manual 
 
To use the engine, one would want to first load up Scone into the LISP environment, and 
then load “c-engine-loader.lisp”  

The following are the macros/functions that will be of concerned at the user level: 

(define-construction …) 
(cp-init …) 
(cp-interpret …) 
 

(define-construction 
    (name parent var-list pattern trigger-list &key base-score) 
     &body scone-ops) 
 
This macro provides a facility for defining constructions. A construction is essentially a 
Scone element. The name argument specifies the English name to use for the 
construction, while the parent argument specifies the parent construction (if any).  
 
The var-list argument specifies a list of variables associated with the construction. Each 
element of this list is another list in the following form (var-name option-1 option-2 …). 
The first element of this list should always be a var-name (e.g. V1, V2). This name is 
used to refer to the same variable later in the construction (or in children constructions).  

Each option either specifies a variable restriction or a variable option. Valid options 
include instance, string, inst-code, rel, role and match-set. If the instance option is 
used, when the match is made, the element that the rest of the code operates on will be a 
proper instance of the match. If the string option is used, the restriction type for the 
variable is set to be a string match. The inst-code option specifies what instantiation code 
to use for the variable. This is used in cases where the variable is not part of the pattern to 
be matched, but instead something newly created. Variable restrictions are either strings, 
Scone elements or predicate functions. If a string is used as a restriction, but the string 
option is not enabled, then the function will attempt to resolve the string to a Scone 
element. The rel and role options provide a means of specifying restrictions based on the 
relations and roles of the elements. The match-set option makes is possible for the 
restriction to match a {set} of elements such that the typical member matches the variable 
restriction. [Options that will be available soon include: proper-indv, optional] 

The pattern argument specifies the pattern to match to. This should be a list of var-
names, where the var-names either come from a parent construction, or is specified in the 
var-list. 

The trigger-list argument is again a list of lists. Each sub-list is a trigger and option pair. 
A mandatory trigger for all constructions to specify is the *c-head* trigger; the option for 
this trigger indicates which variable should be used as head (or production) of the 
construction. It is also possible to specify *c-exp-eval* as the option for this trigger. This 



will cause the head variable that is returned to be return value of the last expression in 
scone-ops. 

The optional base-score key argument assigns a base-score to the construction. This 
score should be in a range between 0–1. The base-score defaults to 0.0 

The scone-ops argument specifies the semantics of the construction. It essentially should 
specify a list of Scone operations that will be evaluated when the construction is 
instantiated. Note that this list of operations will be evaluated upon the definition of the 
construction as well. If there is any code that should only be evaluated upon instantiation, 
one can wrap it with (r-eval …) 

(cp-init) 

This is the construction processor initialization function. This function performs the pre-
processing steps to link up the constructions together so that matching later would be 
faster. You only need to call this function once before doing the interpretations. 

(cp-interpret tokens-or-string &optional start-constructions) 

This is the main interpretation function that takes in a list of tokens or a string. If a string 
is passed into tokens-or-string, it will be separated into parts using space as a delimiter. 
Optionally, one can also specify start-constructions that determine what the overall 
constructions the entire list of tokens is expected to match to. If start-constructions are 
not specified, then all possible constructions will be considered. 

This function returns 3 values – the head element produced by a matching construction, 
the trigger table and the variable table associated with that construction. The trigger table 
is a mapping of triggers to options. The variable table maps each var-name of the 
matched construction to a specific Scone element or string.  

(cp-set-target-constructions target-construction) 

This serves as an alternative to using the start-constructions parameter in cp-interpret. 
This basically specifies the default construction type to use. Effectively, it expects a 
Scone element and downscans from it to determine the constructions to match for. 



Appendix B – Recipe Example 
 
The following examples on recipes require the core and cooking knowledge bases to be 
loaded.  

Example Construction: 

 
(define-construction  
 
  ;; Name 
  "a and b - forms a set" 
 
  ;; Parent  
  nil 
 
  ;; Variable List 
  ((v1 {edible} instance) (v2 {edible} instance) 
   (v3 "and" "or" string) 
   (v4 {set} (inst-code (new-indv nil {set})))) 
 
  ;; Pattern List 
  (v1 v3 v2) 
 
  ;; Trigger List 
  ((*c-head* v4)) 
 
  ;; Scone Operations 
  (new-is-a (get-the-x-role-of-y {member} v4) {edible}) 
  (x-is-a-y-of-z v1 {member} v4) 
  (x-is-a-y-of-z v2 {member} v4)) 
 

In this construction “a and b – forms a set” is the English name of the construction. 
There are 4 variables in the construction – v1 thru v4. v1 and v2 are used to match to two 
edible elements, while v3 is used to match to either the string “and” or “or”. v4 is not 
used in the pattern but is produced by the code, the inst-code option of v4 has been set to 
produce it. The head of the construction is v4, and there are 3 Scone operations which 
follow, essentially saying that the set produced represents a set of edible objects and that 
v1 and v2 are part of this set. 

The list of constructions used is available in the appendix. Note that the representation 
adopted for the actions are simplified so as to focus on the use of the construction engine. 

The following is the original text of a recipe: 

Chocolate Chip Butter Cookies 

Melt butter in a microwave or double boiler; stir in vanilla. Cool completely. In a large 
bowl, combine flour and sugar; stir in butter mixture and chocolate chips (mixture will be 
crumbly). Shape into 1-in. balls. Place 2 in. apart on ungreased baking sheets; flatten 
slightly. Bake at 375 degrees F for 12 minutes or until edges begin to brown. Cool on 
wire racks. 



The constructions defined (see appendix) allows for the following sentences to be 
matched as expected. 

(cp-interpret "Melt butter in a microwave or double-boiler") 
(cp-interpret "stir in vanilla") 
(cp-interpret "Cool completely") 
(cp-interpret "In a large bowl , combine flour and sugar") 
(cp-interpret "Stir in butter mixture and chocolate chips") 
(cp-interpret "Shape into 1 in. balls") 
(cp-interpret "flatten slightly") 
(cp-interpret "Cool on wire racks") 
(cp-interpret "Place on ungreased baking sheets") 
(cp-interpret "Place 2 in. apart on ungreased baking sheets") 
(cp-interpret "Bake at 375 degrees F") 
 

The constructions also generalized to various other sentences in other recipes. 

(cp-interpret "In a bowl , mix together tuna , celery , mayonnaise and salt") 
(cp-interpret "Mix into cheese mixture") 
(cp-interpret "Combine the chocolate chips and cream in a medium metal bowl") 
(cp-interpret "Stir pecan halves into the chocolate") 
 

However, there were many other sentences that could not successfully processed as well. 
This was mainly due to other patterns of representations that were not yet captured by the 
constructions or the simple representation used here. 

 


