

Natural Language Understanding with Knowledge

Jiquan Ngiam
May 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

(condensed rough draft)

Senior Thesis Advisor
Scott Fahlman (sef@cs.cmu.edu)

Abstract

This paper examines the problem of extracting structure knowledge from unstructured free text.
The extraction process is modeled after construction grammars, essentially providing a means of
putting together form and meaning. The knowledge base is not simply treated as a destination, but
also an important partner in the extraction process. In particular, the ideas are implemented as a
module closely tied to the Scone Knowledge Base system. I demonstrate that with a reasonable
knowledge base and general construction rules, one can easily extract structured knowledge.

Keywords: natural language processing, construction grammar, knowledge
representation

1 Introduction

The ultimate goal of processing natural language in computer is really to be able to form
an understanding of dialogue and then reason over what has been understood. This paper
aims to examine how we can move closer to this goal. The knowledge representation
adopted is the Scone Knowledge Base (KB) system. This is in contrast the to customary
representations used for knowledge – first order logic or lambda calculus. The Scone KB
system is a flexible efficient system that models knowledge in a semantic network.

I approach natural language understanding from the viewpoint that people are able to
understand completely ungrammatical sentences (e.g. “john, mary lunch burritos”).
Essentially, understanding natural language comes mostly from semantics. Hence, any
approach to natural language understanding must first consider how the knowledge is
going to be represented.

Construction grammar is a family of grammars that emphasizes the connection between
syntax and semantics. They provide a linguistic basis for the approach adopted by this
paper. In particular, the notion of constructions adopted most closely follows that of
Radical Construction Grammar.

These ideas have been implemented in LISP as a practical language-processing engine
meant to be used in conjunction with the Scone KB system.

This paper also explores generalizing and learning over constructions.

2 Scone Knowledge Base System

The Scone KB system represents knowledge as a semantic network. In this paper, Scone
elements are referred to when encased in curly brackets. For example, {physical object}
refers to the Scone element that represents a typical physical object. An element can also
have roles and relations specified over it. Furthermore, elements also have children or
multiple parents and the roles and relations will be inherited accordingly. Scone
efficiently supports multiple inheritance and exception.

3 Constructions
3.1 Overview

Constructions are basic pairings of form and meaning. In theory, form can include
phonological specifications, syntactical relations, etc. However, a simplified version of
constructions is adopted in this paper, in which form is limited to a pattern, which is
defined by simply word order. This follows the ideas in Radical Construction Grammar.

Semantics are represented by simply the Scone KB structure that is associated with the
construction. For practical purposes, I also allow arbitrary LISP code to be part of the
semantics.

These following sections describe constructions as they have been implemented in the
actual language engine.

3.2 Variables and Element Restrictions

In a construction, variables form bridge between form and meaning. Variables are
normally associated with an element-restriction. This restriction can be specified by
primitive elements (e.g. strings, numbers) or internal Scone elements.

3.3 Patterns

A pattern is essentially an ordered list of variables (or element-restrictions).

Tokens form the input to the language engine. A token is ideally an element within the
KB – this can be achieved by pre-processing the input stream. However, tokens can also
be strings, which are then resolved by the language-processing engine. A series of tokens
is said to match a construction when each element-restriction in the construction’s pattern
matches the tokens, in the same order.

3.4 Triggers

Triggers provide constructions a means of communication with other high level
processing system (e.g. a dialogue understanding system). They also serve to allow
constructions to return multiple values.

One trigger that is common across all constructions is the head trigger that specifies what
is the representative element of the construction after it has been instantiated.

3.5 Instantiation

If a stream of tokens matches a construction, then one can choose to instantiate the
construction to effectively produce the scone-network structure associated with the
construction. Furthermore, the construction will also return an element (as specified by
the head trigger), which in essence refers to whole entity produced by the construction.
For example, if “green elephant” were matched, then the construction would return an
elephant instance with having color green.

This implies that the structure produced by one construction can be in place of a token to
satisfy an element-restriction in another construction. This allows for a stream of tokens
to be matched to some composition of constructions.

In effect, constructions resemble Context-Free Grammar rules, with the specifications
involving Scone elements. Further, each construction is paired with a semantic
representation.

3.6 Example Constructions

The following are some example constructions:

Location-Action Construction

Variables (?x {location})
(?y {action})

Pattern “In” (?x {location}) (?y {action})

Semantics ?x is-the {location} of ?y

Person-Action-Object Construction

Variables (?x {person})
(?y {action})
(?z {physical object})

Pattern (?x {person}) (?y {action}) (?z {physical object})

Semantics ?w = a new instance of action ?y
?x is-the {agent} of ?w
?z is-the {object} of ?w

Since the person­action­object construction produces ?w which is an action, it can be
used to match part of the pattern for the location­action construction.

4 Language Processing Engine
4.1 Matching Engine

The core of the language-processing engine is based on the Earley parser. Interpretation
of a series of tokens is performed in three phases – a pre-processing phase, a core
matching phase and finally instantiation.

In the pre-processing phase, each variable of the pattern in each construction is linked to
all other constructions that can produce some Scone structure that can satisfy the
variable’s restriction. This sets up constructions in a way that represents a context-free
grammar.

The core of the matching engine is largely based on the Earley parser. In the matching
phase, the interpreter runs left to right accumulating only constructions that are valid up
till that token. In order to keep the space/time requirements manageable, the partially
matched constructions are scored, ranked and pruned.

The matching phase will conclude with all possible matches. From these, the best
construction is selected based on its rank and instantiated. This happens in a recursive
fashion depending on the composition of the final match.

4.2 Scoring and Selection

A weighting of various sub-scores performs scoring of constructions. The sub-scores for
a construction include

1. Length of the construction
2. Completion (matched) status of the construction
3. Base score for the construction
4. How well the underlying elements match the tokens

4.3 Practicalities

One of the major objectives was to provide an engine that was practical and applicable to
future projects that wish to process unstructured text together with Scone. Many options
have been implemented to this extent to make the system extremely flexible and easy to
use.

For example, one would find that the same construction could often apply when matching
to both individual variables and a set formed by individuals of that type. This is handled
as a special case in the construction engine and a variable option can be set to enable it.

4.4 Performance

A performance evaluation of the engine will be included here. All demonstrations with
the code take no more than a second for each sentence now.

In general, the runtime of the engine can be bounded by the scoring mechanisms. One
can easily limit the number of constructions allowed. The Earley parser on its own has a
complexity of

€

O(c ⋅ n3) where n is the length of the input and c is the number of
constructions. Since n is normally 15–20 in general English sentences, one can expect
very reasonable performance with the engine. (I note that this complexity bound might
not hold anymore with some of the changes to the engine introduced.)

5 Context-Dependent Processing
5.1 Handling Sets

We often need to form sets based on the text. For example, a recipe might indicate for
one to mix the tuna, mayonnaise, celery and salt. After forming the set, one might wish to
characterize the typical member of the set, so that it can be used as part of another
construction. More generally speaking, we need to characterize the roles and relations of

elements based on context as well. This is a similar issue to general constructions
described below.

5.2 General and Specific Constructions

Unfortunately, not all constructions can be linked to other constructions during pre-
processing. For example, in a very general construction that matches {color} {physical
object}, it is not possible to use this construction in another construction that expects a
{kitchen appliance} unless the production itself produces something of type {kitchen
appliance}. Hence, the actual context of the text being processed matters.

As a result, we categorize linked constructions in two different categories – those that can
be determined before processing and those that need to be checked in context. In order to
keep the number of constructions processed to a manageable size, the constructions for
the latter category are kept to those that produce elements which are super-sets of the
expected type. This does not cover all the cases but it is hypothesized that they are
sufficient for most purposes.

During processing, each construction is then linked to some representative element (pre-
existing in the KB). This element is used for checking the context.

A true solution to this problem would be to actually instantiate constructions during
processing and use those instantiations as representative elements. These instantiations
are later removed when processing completes. This is however not implemented.

6 Generalization
6.1 Overview

Generalization for constructions was motivated by how learning of language develops.
Children often learn that certain patterns of language translate into the same meaning and
then generalize over these patterns. An example of this generalization happens with past-
tense inflexions.

In the context of this paper, generalization serves as a means of supervised learning.

6.2 Generalizing over a Set

In this paper, I also explore an algorithm for generalization over a set that uses spreading
activation. The aim of generalization of a set is to provide a representative element(s) of
the set that serves as a means of determining if a new element should be part of this set or
not. The general algorithm places an amount of activation on each element in the set and
proceeds to pass this activation to its parent nodes via a transfer function. The algorithm
is analogous to a voting system.

6.3 Generalizing Constructions

From generalization of a set, one can also experiment with generalizing constructions. I
propose an algorithm for generalizing constructions and explore the limitations and
performance of the algorithm. At this stage, the generalization algorithm has been
implemented as a proof-of-concept.

7 Opportunistic Processing

This will be direction taken for the paper for the rest of the semester. I will be exploring
boundary conditions and what can be done with constructions do not fully match. Ideas
involved at this level processing to create placeholder elements that can be later filled in
when more information is available later.

8 Discussion

One might be motivated to ask how this approach differs from the CFG parsers that have
been widely used for syntactical parsing. Syntactical parsing with CFG parsers have
operated by first tagging words in sentences according to some basic types and then
building a parse tree over several rules. The approach here does not perform any tagging,
but instead uses elements from a KB in place of them. This allows for a more general
form of representation (the elements in the KB can be tagged) and further, allows for
establishing a link to semantics.

References

TBA

Appendix A – User Manual

To use the engine, one would want to first load up Scone into the LISP environment, and
then load “c-engine-loader.lisp”

The following are the macros/functions that will be of concerned at the user level:

(define-construction …)
(cp-init …)
(cp-interpret …)

(define-construction
 (name parent var-list pattern trigger-list &key base-score)
 &body scone-ops)

This macro provides a facility for defining constructions. A construction is essentially a
Scone element. The name argument specifies the English name to use for the
construction, while the parent argument specifies the parent construction (if any).

The var-list argument specifies a list of variables associated with the construction. Each
element of this list is another list in the following form (var-name option-1 option-2 …).
The first element of this list should always be a var-name (e.g. V1, V2). This name is
used to refer to the same variable later in the construction (or in children constructions).

Each option either specifies a variable restriction or a variable option. Valid options
include instance, string, inst-code, rel, role and match-set. If the instance option is
used, when the match is made, the element that the rest of the code operates on will be a
proper instance of the match. If the string option is used, the restriction type for the
variable is set to be a string match. The inst-code option specifies what instantiation code
to use for the variable. This is used in cases where the variable is not part of the pattern to
be matched, but instead something newly created. Variable restrictions are either strings,
Scone elements or predicate functions. If a string is used as a restriction, but the string
option is not enabled, then the function will attempt to resolve the string to a Scone
element. The rel and role options provide a means of specifying restrictions based on the
relations and roles of the elements. The match-set option makes is possible for the
restriction to match a {set} of elements such that the typical member matches the variable
restriction. [Options that will be available soon include: proper-indv, optional]

The pattern argument specifies the pattern to match to. This should be a list of var-
names, where the var-names either come from a parent construction, or is specified in the
var-list.

The trigger-list argument is again a list of lists. Each sub-list is a trigger and option pair.
A mandatory trigger for all constructions to specify is the *c-head* trigger; the option for
this trigger indicates which variable should be used as head (or production) of the
construction. It is also possible to specify *c-exp-eval* as the option for this trigger. This

will cause the head variable that is returned to be return value of the last expression in
scone-ops.

The optional base-score key argument assigns a base-score to the construction. This
score should be in a range between 0–1. The base-score defaults to 0.0

The scone-ops argument specifies the semantics of the construction. It essentially should
specify a list of Scone operations that will be evaluated when the construction is
instantiated. Note that this list of operations will be evaluated upon the definition of the
construction as well. If there is any code that should only be evaluated upon instantiation,
one can wrap it with (r-eval …)

(cp-init)

This is the construction processor initialization function. This function performs the pre-
processing steps to link up the constructions together so that matching later would be
faster. You only need to call this function once before doing the interpretations.

(cp-interpret tokens-or-string &optional start-constructions)

This is the main interpretation function that takes in a list of tokens or a string. If a string
is passed into tokens-or-string, it will be separated into parts using space as a delimiter.
Optionally, one can also specify start-constructions that determine what the overall
constructions the entire list of tokens is expected to match to. If start-constructions are
not specified, then all possible constructions will be considered.

This function returns 3 values – the head element produced by a matching construction,
the trigger table and the variable table associated with that construction. The trigger table
is a mapping of triggers to options. The variable table maps each var-name of the
matched construction to a specific Scone element or string.

(cp-set-target-constructions target-construction)

This serves as an alternative to using the start-constructions parameter in cp-interpret.
This basically specifies the default construction type to use. Effectively, it expects a
Scone element and downscans from it to determine the constructions to match for.

Appendix B – Recipe Example

The following examples on recipes require the core and cooking knowledge bases to be
loaded.

Example Construction:

(define-construction

 ;; Name
 "a and b - forms a set"

 ;; Parent
 nil

 ;; Variable List
 ((v1 {edible} instance) (v2 {edible} instance)
 (v3 "and" "or" string)
 (v4 {set} (inst-code (new-indv nil {set}))))

 ;; Pattern List
 (v1 v3 v2)

 ;; Trigger List
 ((*c-head* v4))

 ;; Scone Operations
 (new-is-a (get-the-x-role-of-y {member} v4) {edible})
 (x-is-a-y-of-z v1 {member} v4)
 (x-is-a-y-of-z v2 {member} v4))

In this construction “a and b – forms a set” is the English name of the construction.
There are 4 variables in the construction – v1 thru v4. v1 and v2 are used to match to two
edible elements, while v3 is used to match to either the string “and” or “or”. v4 is not
used in the pattern but is produced by the code, the inst-code option of v4 has been set to
produce it. The head of the construction is v4, and there are 3 Scone operations which
follow, essentially saying that the set produced represents a set of edible objects and that
v1 and v2 are part of this set.

The list of constructions used is available in the appendix. Note that the representation
adopted for the actions are simplified so as to focus on the use of the construction engine.

The following is the original text of a recipe:

Chocolate Chip Butter Cookies

Melt butter in a microwave or double boiler; stir in vanilla. Cool completely. In a large
bowl, combine flour and sugar; stir in butter mixture and chocolate chips (mixture will be
crumbly). Shape into 1-in. balls. Place 2 in. apart on ungreased baking sheets; flatten
slightly. Bake at 375 degrees F for 12 minutes or until edges begin to brown. Cool on
wire racks.

The constructions defined (see appendix) allows for the following sentences to be
matched as expected.

(cp-interpret "Melt butter in a microwave or double-boiler")
(cp-interpret "stir in vanilla")
(cp-interpret "Cool completely")
(cp-interpret "In a large bowl , combine flour and sugar")
(cp-interpret "Stir in butter mixture and chocolate chips")
(cp-interpret "Shape into 1 in. balls")
(cp-interpret "flatten slightly")
(cp-interpret "Cool on wire racks")
(cp-interpret "Place on ungreased baking sheets")
(cp-interpret "Place 2 in. apart on ungreased baking sheets")
(cp-interpret "Bake at 375 degrees F")

The constructions also generalized to various other sentences in other recipes.

(cp-interpret "In a bowl , mix together tuna , celery , mayonnaise and salt")
(cp-interpret "Mix into cheese mixture")
(cp-interpret "Combine the chocolate chips and cream in a medium metal bowl")
(cp-interpret "Stir pecan halves into the chocolate")

However, there were many other sentences that could not successfully processed as well.
This was mainly due to other patterns of representations that were not yet captured by the
constructions or the simple representation used here.

