
BlackSheep: Inferring white-box application behavior using
black-box techniques

Jiaqi Tan
Computer Science Senior Research Thesis

Extended Abstract

March 21, 2008

Abstract
We describe and evaluate a new technique for diagnos-
ing performance problems in distributed systems in a
scalable manner by exploiting and analyzing only local
(i.e. intra-node) black-box system metrics, and infer-
ring white-box application behavior. We study the novel
method of correlating white-box application event logs
with black-box system metrics to gain insight into the
behavior of a distributed system, and validate our ap-
proach through experiments on the Hadoop open-source
implementation of Google’s Map/Reduce distributed pro-
gramming model. We inject failures and real perfor-
mance problems gathered from failure data recorded in
Hadoop’s bug database.

1 Introduction
Finding the location and root cause of a failure in a dis-
tributed system is an inherently difficult problemexecu-
tion paths span multiple machines and can be arbitrar-
ily complex, so that a fault (a possibly latent defect in
the system) may manifest itself as an error (an externally
visible incorrect state of the system, such as erroneous
user output) many execution modules down the execu-
tion path, before the error even manifests itself as a fail-
ure (an incident in which the system fails to deliver ser-
vice). Tracing a system failure to its initial manifesta-
tion as an error requires either a characterization of ex-
ternally observable correct system states, so that system
states falling out of this set are indirectly detected and
marked as erroneous, or a characterization of erroneous
states, for direct detection. Tracing a system error to its
fault, on the other hand, requires detecting when software
behavior deviates from what the programmer intended it
to dothis requires knowledge of the intended semantics
of the program, which is not present in and is outside the
realm of consciousness of the program.

There are two broad classes of techniques for analyz-
ing systems and software. Black-box techniques treat the
software system as an enclosed, unobservable entity that

cannot be modified; we classify information sources that
do not reveal the execution path inside software compo-
nents as black-box, and techniques that do not require
source code nor machine code modification as black-box
techniques. White-box techniques provide views into the
internals and execution path of the software system; we
classify information sources that provide knowledge of
the original source code or execution path structure of
the software, such as knowledge of the order of func-
tion calls, as white-box, and we classify techniques that
require some form of source code modification as white-
box techniques. While white-box techniques to gather
white-box information are much wealthier sources of in-
formation than black-box sources, there is an inherent
trade-off between the richness of information that can be
extracted from software, and the cost of gathering that
information in terms of runtime overheads and ease of
deployment. Black-box techniques are easy to use at ex-
isting software installations and typically involve setting
up external software monitors that record general system
state, but provide limited information; white-box tech-
niques may involve significant initial programmer effort
to insert source code such as assertions (which are only
as good as the correctness of the assertions, creating a
dual problem), and providing a fine granularity of infor-
mation about control flow may have involve high over-
heads as large numbers of probe-and-record instructions
will be needed.

It immediately appears that white-box techniques are
necessary to trace a software error to the fault that is its
root-cause, because a fault arises out of a deviation of
software behavior from programmer intention, and pro-
grammer intentions are reflected in the execution path at
the granularity of control flow through functions. Cur-
rent techniques have danced this tightrope of the inher-
ent tension between overhead and information to try to
find a good leverage on the smallest possible information
source, while providing diagnostic value on this informa-
tion.

1



The difficulty of finding the location and root cause
of a failure in distributed systems is further complicated
by the fact that execution can take place on arbitrarily
many systems, leading to a possible explosion in the vol-
ume of trace data gathered. Again, there is a trade-off
between gleaning more information by combining trace
data across systems to obtain a system-wide view, and in-
curring higher bandwidth and processing costs of trans-
mitting large amounts of data across a network and pro-
cessing it.

Major black-box techniques have included Pinpoint,
which instrumented the J2EE middleware platform to
trace message flows between software components, to as-
sociate particular groups of components with erroneous
transactions, and to find anomalous control flow paths
[2]. Cohen et. al.’s work has focused on using clustering
on black-box system metrics, and building informative
summaries of metrics to reduce the amount of informa-
tion that must be exchanged among the nodes of a dis-
tributed system to minimize bandwidth use [3], but can
only detect the location but not root-cause of anomalous
behavior. Magpie correlated resource usage information
operating system-provided resource accounting facilities
and output from application event logs to build causal
paths of applications on a single node using clustering
(that is extensible to multiple nodes, albeit at possibly
high cost) [1], but such accounting is at a syscall level
which is expensive to instrument on Unix-based systems.

Major white-box techniques have included Pip, which
relied on programmer-written expectations of correct
behavior, and recorded alarms of anomalous behavior
raised from within the software itself [5], but Pip is only
as good as the programmer-written expectations. Also,
Triage works on single-node (non-distributed) software
to uncover the faulty source code behavior or system
environment feature which caused a crash by using a
re-execution framework combined with a trial-and-error
automation of the intuitive human troubleshooting pro-
cess [6], but this method is an after-the-fact technique
that relies on the system being down to allow such root-
cause discovery (rather than diagnosis).

Also, distributed systems, such as Hadoop and other
Map/Reduce-type distributed parallel processing sys-
tems [7] [4], are designed for batch processing of large
datasets. These distributed systems see much fewer user-
initiated requests, so that there are much fewer runs on
which systems such as Cohen’s work, Magpie, and Pin-
point can perform clustering for learning the correct be-
havior of the system. Cohen et al.’s work, Magpie, Pin-
point, and Pip all assume the availability of large num-
bers of short-lived user-initiated requests, so that each
of these requests can be used as a sample for cluster-
ing for determining which requests are anomalous. This

model is well-suited to the vast majority of traditional
multi-tier web-based applications, with common tiers be-
ing a web-server front-end, an application server tier,
and a database back-end. Also, Hadoop has uninterest-
ing execution paths through its components, with only
one type of execution component (the TaskTracker), such
that path-based techniques such as Pinpoint’s Probabilis-
tic Context-Free Grammars and Pip will not be able to
get leverage from analyzing paths of execution flows.

Current techniques which allow for root-cause analy-
sis, such as Pip and Triage, require too much program-
mer input, which precludes the discovery of bugs that
programmers are unaware of, and do not allow for run-
time prognostics to be made for detecting errors before
they have resulted in failures. Also, both Pip and Triage
require access to program source code, which is not a
given, especially in commercial production sites. Even
black-box techniques such as Pinpoint are not necessar-
ily suited to production sites, because Pinpoint requires a
modified middleware, which production sites may not al-
low due to various concerns such as security, while tech-
niques such as Cohen et al.’s work do not allow for root-
cause analysis although it is amenable to deployment at
production sites.

The goal of this work is to develop techniques for
problem diagnosis on software deployed in production
environments. Production environments typically deploy
commercial or otherwise third-party software packages
for which source code is often not available, and produc-
tion environments typically have strict limits on avail-
ability and quality of serviceproduction systems strive to
achieve maximum throughput and minimum latencies on
servicing requests at a minimum cost. Also, production
environments will typically prohibit modifying even pro-
gram binaries for security and privacy concerns. Hence,
our techniques have minimal overhead, and do not re-
quire access to program source nor modifications to pro-
gram binaries.

A failure is an instance of service unavailability in a
software system, while an error is an incorrect state of
the system, and the root-cause of the failure is the fault
in the software its environment, which manifested as an
error that led to the failure. In general, white-box in-
formation is necessary to diagnose the root-cause of a
failure, because the notion of correctness, or the seman-
tics of program behavior, is needed to detect incorrect
behavior. However, white-box techniques for extracting
white-box information are not amenable to production
systems as they violate our requirement that our tech-
nique not require access to program source nor modi-
fications to binaries. We propose a new technique for
identifying the location and inferring the root-cause of a
failure in an online fashion on a distributed system that

2



is amenable to use on production systems. We achieve
this by usinga priori knowledge of the deployed soft-
ware to build inference models that allow for white-box
information about the phase of execution of software to
be inferred from black-box information. In addition, our
technique requires only intra-node information within a
given node, so that this technique is immediately scalable
to distributed systems containing arbitrarily many nodes.

We demonstrate the efficacy of our root-cause diagno-
sis technique on Hadoop, the open-source implementa-
tion of the Map/Reduce distributed parallel programming
runtime environment and distributed filesystem, and fur-
ther demonstrate the applicability of our technique where
current techniques are not immediately applicable, on
Hadoop.

2 Approach

We describe the general framework of our approach and
algorithm for the online diagnosis of root-causes of fail-
ures in distributed systems. Prior to the deployment
of our algorithm, we conduct a simple study of the
externally-observable behavior of the target distributed
system to build models of externally-observable system
behaviorsystem signatures. Specifically, we consider
system behavior as represented by correlations of various
system metrics, as described in Section 2.1. Signatures
of both correct and incorrect system behavior are built,
and signatures of incorrect system behavior, or problem
signatures, are augmented with causal information to al-
low causal inferences to be made during diagnosis. Then,
erroneous behavior is detected as instances in which the
signature of observed system behavior deviates from sig-
natures of correct system behavior. The erroneous signa-
tures are then matched against the store of problem sig-
natures, from which causal information can be extracted
to allow root-cause diagnosis.

2.1 Correlated metrics

We consider black-box metrics that describe (i) aggregate
activity of system-level components, such as the disk,
virtual memory, and networking subsystems, and aggre-
gate CPU utilization in user-mode and kernel-mode, and
(ii) per-process CPU utilization in user-mode and kernel-
mode, and per-process memory utilization. We consider
each of the CPU, physical memory, virtual memory (pag-
ing), disk, and network, as separate subsystems of each
node in the distributed system, and consider, each of
these subsystems as resources that can be used. We also
take into account, where possible for us to record suitable
metrics (specifically CPU and memory utilizations), the
per-process utilization of these resources as well. Then,
from the correlations among groups of metrics, we can
identify, on a node, the particular subsystems that are in

use at given points in time; where per-process utiliza-
tions are available, we can also infer the subsystems of
the node that processes are engaging based on correla-
tions between metrics for the process and metrics for the
subsystem. Further, with white-box information about
the phase of execution that the software of the node is in,
we can characterize the workload of the software based
on a priori knowledge of the application, in terms of the
resource usage patterns of the particular execution phase.
For instance, when there is high correlation between con-
text switches and application CPU utilization, we can in-
fer that the application is spawning new worker processes
to handle incoming job requests.

2.2 Constructing Signatures

Prior to the deployment of our problem diagnosis algo-
rithm, a pre-deployment learning phase is conducted to
construct signatures of system behavior by an applica-
tion expert who is conversant with the workings of the
system, such as a system administrator. First, signatures
of correct system behavior are built based ona priori ex-
pert knowledge of the high-level phases of execution of
the application. The phases in the execution life-cycle of
the application are characterized by their workload char-
acteristics. Then, a small number of runs of the target
distributed system are executed, and black-box metrics
are collected from these runsonly metrics observed in ob-
servably correct runs (i.e. no errors nor failure manifes-
tations were observed) are considered. Next, the traces
of these black-box metrics are annotated with the known
phases in the execution life-cycle of the application, with
periods of the time-series traces classified as belonging
to one of the phases of execution of the application. The
corresponding correlations of the black-box metrics then
form signatures for each of the phases of execution of the
application. Next, signatures of incorrect system behav-
ior are built for known failure cases. For such known fail-
ure cases, we assume that realistic fault injection meth-
ods are available such that we are able to reproduce the
exact manifestation of the failures in the distributed sys-
tem (we demonstrate a few representative cases in Sec-
tion ??). Then, runs of the application with the faults in-
jected are executed, and black-box metrics are collected
from these runs. Given that the faults are known inci-
dents, we will be able to ascribe to the correlations causal
information. The representation of these is described in
Section 2.3

2.3 From correlation to causality: Inference Graphs
to representa priori models

Signatures of correct and incorrect system behavior are
represented using Inference Graphs, which represent the
relationships between groups of metrics. Signatures of
correct behavior do not contain any causal information,

3



and describe the correlations between metrics. Each met-
ric or group of related metrics is represented by a ver-
tex in the graph, and the edge weights of the graph rep-
resent the learned correlations between the metrics (or
groups of metrics) in problem-free runs during the pre-
deployment phase. The Inference Graphs of signatures
of correct behavior are undirected graphs. Signatures of
incorrect behavior encode causal information by speci-
fying the direction of causation as edge directions in the
Inference Graph. Based on his domain knowledge of the
behavior of the system, and of the fault that was injected
in the pre-deployment phase, the application expert can
encode his knowledge about how the fault propagates in
its manifestation across the various metrics. For instance,
a deadlock could begin as a fall in CPU utilization, that
causes a drop in disk activity in a write-intensive phase of
execution, so that the direction of causation here is from
CPU utilization to the volume of disk writes.

2.4 Online classification

The runtime phase of our algorithm involves continu-
ously recording black-box metrics on each node, and
building undirected Inference Graphs based on the cor-
relations between observed metrics. This serves as a sig-
nature of the current state of the system. The current sig-
nature is compared against signatures of correct system
behaviorif a match is achieved, then the system is deter-
mined to be behaving correctly and the diagnosis pro-
cess stops. If the current signature fails to match any of
the signatures of correct behavior, then the current signa-
ture is matched against the problem signaturesif a match
is found, then the causal information encoded in the di-
rected graph of the matched problem signature provides
root-cause attribution to the offending subsystem of the
system. If a match is not found, then the algorithm is
only able to isolate the failure to the node, but is not able
to perform root-cause analysis.

2.5 Augmenting signatures

Current signatures that match neither signatures of cor-
rect nor incorrect system behavior are then stored. The
unmatched signatures can then be collected for off-site
analysis by the application expert. This would involve
first clustering unknown signatures, and computing the
similarity of each cluster to existing signatures to pro-
vide candidate guesses to the application expert. Then,
on determining that the given unknown signature is a
problem signature, the application expert can proceed to
add causality information to the signature. The signa-
tures used for online diagnosis can thus be periodically
updated and augmented by the application expert.

References
[1] P. Barham, A. Donnelly, R. Isaacs, R. Mortier.Using

Magpie for request extraction and workload mod-
elling. Proc. 6th Symposium on Operating Sys-
tems Design & Implementation, San Francisco, CA,
2004.

[2] M. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer.
Pinpoint: Problem Determination in Large, Dy-
namic Internet Services. Proc. International
Conference on Dependable Systems and Networks,
Bethesda, MD, 2002.

[3] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T.
Kelly, A. Fox. Capturing, Indexing, Clustering, and
Retrieving System History.Proc. 2003 Symposium
on Operating Systems Principles, New York, NY.

[4] J. Dean, S. Ghemawat.MapReduce: Simplified Data
Processing on Large Clusters. Proc. 6th Sympo-
sium on Operating Systems Design & Implementa-
tion, San Francisco, CA, 2004.

[5] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M.
Shah, A. Vahdat.Pip: Detecting the Unexpected in
Distributed Systems. Proc. 3rd Symposium on
Networked Systems Design & Implementation, San
Jose, CA, 2006.

[6] J. Tucek, S. Lu, C. Huang, S. Xanthos, Y. Zhou.
Triage: diagnosing production run failures at the
user’s site. Proc. 21st Symposium onOperating
Systems Principles, Stevenson, WA, 2007.

[7] Hadoop. http://lucene.apache.org/hadoop, 2007.

4


