
Senior Research Thesis
Direct Zero-Knowledge Proofs

Jeremiah Blocki
Advisor: Manuel Blum

May 1, 2009

Abstract

Definition A Zero-Knowledge Proof is an interactive protocol which
allows one party (the prover) to prove a statement (S) to another party (the
verifier) without revealing anything beyond the truth of S. The protocol allows
the prover and verifier to toss private coins.
If S is true then the prover should always be able to convince the ver-
ifier that the statement is true without revealing anything else. For
example, Goldreich, Micali, and Wigderson [1991] found a proto-
col which allowed the prover to convince a verifier that a graph G
is k-colorable without revealing anything else. Consequently, all lan-
guages in NP are known to have Zero-Knowledge Proofs because they
can be reduced to Graph Coloring. However, there are no known direct
Zero-Knowledge Proofs for many NP-Complete languages. I present
direct Zero-Knowledge Proof protocols for Subset Sum, Clique, SAT
and Integer Programming.

1 Introduction

1.1 Problem Description

A Zero-Knowledge Proof Protocol must satisfy three properties:

1. Completeness - if S is true then the Prover can always convince the
Verifier of this by following the protocol.

2. Soundness - if S is false then the protocol guarantees that with high
probability the Verifier will catch the Prover cheating.

1

3. Zero-Knowledge - The Verifier can simulate an identical interaction
transcripts without the Prover because he knows the results of his
private coin tosses. Informally, we say that the verifier learns nothing
more than ”S is true.” In particular the verifier will not know why S
is true and will not be able to prove to anyone that S is true.

1.2 Problem History

Goldreich et al. [1991] gave the first Zero Knowledge Proof scheme for an
NP-Complete language, Graph Coloring. Therefore, every language in NP
has a Zero-Knowledge Proof scheme by reduction to Graph Coloring. This
is nice in theory, but in practice it may be extremely difficult to reduce a
problem to Graph Coloring.

SAT was the first language shown to be NP-Complete language. Other
NP-Complete have been established by reductions either from SAT or an-
other NP-Complete language. Cook showed that SAT is NP-Complete by
considering the Tableau of a Turing Machine. Therefore, the first step in the
known reduction from Subset-Sum to Graph Coloring involves building a
Turing Machine to verify Subset-Sum solutions. For example here is the
Zero-Knowledge Proof protocol for Hamiltonian Cycle:

1. Built a Nondeterministic Turing Machine (M) which solves the Hamil-
tonian Cycle problem

2. Build a SAT formula φG based on the computation tableau of M(G)

3. Reduce the SAT instance φG to a Graph Coloring Instance GC

4. Run the Zero-Knowledge Proof scheme for Graph Coloring on GC

In theory this is fine, we have provided a Zero-Knowledge Proof Proto-
col for Hamiltonian Cycle. However, in practice no one would ever build a
Nondeterministic Turing Machine to solve Hamiltonian Cycle!

Definition A Direct Zero-Knowledge Proof protocol for a language L ∈ NP
is a Zero-Knowledge Proof protocol which does not reduce the language L
to some other language L′ in any of the steps.

Intuitively, a Direct Zero-Knowledge Proof protocol is one a program-
mer could implement assuming there is some way to commit and hide

2

information (one-way function, phyical methods etc..). This prevents the
prover from changing information during the protocol, but prevents the
verifier from seeing the information that the prover commited to maintain
Zero-Knowledge.

1.3 Applications

1. Password Authentication Protocols - Suppose that Alice knows the
solution to a Subset Sum problem. Because Subset Sum is NP − hard
it is reasonable to believe that nobody else will ever find the solution.
Now Alice can publish the Subset Sum problem and use her solution
as her password. Because she has the password (solution) she can
use Zero-Knowledge Proof techniques to convince others that she
knows the password without giving away any information about the
password.

2. Secure Multiparty Computation [Goldreich et al., 1987] - In many
cryptographic protocols it is necessary to enforce honesty and main-
tain privacy at the same time. These may seem like contradictory
goals, but using Zero-Knowledge Proofs it is often possible for a par-
ticipant to prove that his behavior is honest without revealing private
information.

3. Message Authentication Protocols - I will present a simple message
authentication protocol based on the Zero-Knowledge Proof protocol
for Subset-Sum. This is similar to message signing in RSA, with one
key difference. If Alice signs a message, then Bob can later prove to
anyone that Alice signed the message. In a message authentication
protocol Alice convinces Bob that she is the one sending this message,
but later Bob will not be able to convince anyone else that Alice sent
him the message.

As we noted before, most Zero-Knolwedge Proof protocols assume that
there is some way to commit and hide information. Typically this would
be achieved by a One-Way Function or through phyiscal means.

Definition A function f : {0, 1}∗ → {0, 1}∗ is one-way if there is a polynomial
time algorithm A f which computes f , and for every randomized polynomial
time algorithm A(y, r), polynomial p(n) and sufficiently large n

Pr
x∈{0,1}n,y∈{0,1}p(n)

[f (A(f (x), r)) = f (x)] ≤
1

p(n)

3

Intuitively, it is a function that is easy to compute, but hard to invert for
almost any value of x. If one-way functions do exist then it is easy to prove
that P , NP. Unfortuanatley, for NP−Complete languages it is unlikely that
we can remove this need to commit and hide information [Fortnow, 1987,
Boppana et al., 1987]. However, Ben-Or et al. [1988] showed that if there
are two provers, who are allowed to communicate before, but not during
the protocol, the assumption that One-Way Functions exist can be removed
entirely.

1.4 Results

In practice, it would be nice to have direct Zero-Knowledge Proof schemes. I
will present direct Zero-Knowledge Proof protocols for Subset Sum, Clique,
SAT and Integer Programming. All of these problems are NP-Complete.

2 Subset Sum

2.1 Problem Definition

Definition A Subset Sum instance I =< S,m > consists of a set S of integers
and an integer m. I is a yes instance if and only if

∃X ⊆ S,Σx∈Xx = m

The Subset Sum problem is well known to be NP-Complete [Karp, 1972].
For simplicity, I present a protocol for the Equal Partition Problem, a special
case of Subset Sum which is also known to be NP-Complete. Given a set
S = {v1, ..., vn} find a disjoint partition S = S1

⋃
S2 such that:

1. ‖S1‖ = ‖S2‖

2. S1
⋂

S2 = ∅

3. Σx∈S1x = Σx∈S2x

2.2 Protocol

Prover: Assume that that the prover knows such set X with

‖X‖ =
n
2

Define M = Σx∈Sx

4

1. Generate r1, ..., rn, where ri is chosen uniformly at random from {0, ...,M}

2. Compute R1, ...,Rn where Ri + ri = vi mod M + 1

3. Commit (but hide)
A = Σn

i=1ribi

and
B = Σn

i=1Ribi

where bi = 1 indicates that vi ∈ X and bi = 0 indicates vi < X.

4. Commit (but hide) a column permuted version of the following table:

v v1 v2 ...
r r1 r2 ...
R R1 R2 ...
vi ∈ X? b1 b2...

Verifier:
Now the verifier can ask to see exactly one of the following:

1. All of the triples (vi, ri,Ri) (checking that Ri + ri ≡ vi mod M + 1)

2. R1, ...,Rn, b1, ..., bn and A,B (checking that Σn
i=1biRi ≡ B mod M+1 and

A + B ≡ k mod M + 1)

3. r1, ..., rn, b1, ..., bn and A,B (checking that Σn
i=1biri ≡ 0 mod M + 1 and

A + B ≡ k mod M + 1)

If any check fails then the verifier rejects immediately.

Claim 2.1 The above protocol is a Zero-Knowledge Proof scheme

Proof We must show that the protocol satisfies the Zero-Knowledge, Com-
pleteness and Soundness conditions.

Zero-Knowledge The key intuition is that ri by itself is just a random
number. Similarly, Ri is just a random number without ri. Thus, at each step,
the verifier is shown numbers which he could have generated randomly.
Formally, the verifier could easily simulate choice 1 by himself as follows:

1. Pick r1, ..., rn uniformly at random.

5

2. Pick R1, ...,Rn such that

Ri + ri ≡ vi mod M + 1

Similarly, the verifier could simulate choice 3 as follows

1. Pick the r1, ..., rn from {0, ...,M}

2. Pick b1, ..., bn values uniformly at random such that

‖{i : bi = 1}‖ =
n
2

3. Pick A such that
Σn

i=1biri ≡ A mod M + 1

4. Pick B such that A + B ≡ k mod M + 1

Finally, the verifier can simulate choice 2 as follows:

1. Pick the R1, ...,Rn from {0, ...,M}

2. Pick b1, ..., bn values uniformly at random such that

‖{i : bi = 1}‖ =
n
2

3. Pick B such that
Σn

i=1biRi ≡ B mod M + 1

4. Pick A such that A + B ≡ k mod M + 1

Completeness If the prover knows of a set X then it is easy to verify there
is no way for him to be caught if he follows the protocol.

Soundess Suppose that one of the following was true

1. ∃i s.t
Ri + ri . v1 mod M + 1

2. Σn
i=1biRi . B mod M + 1

3. Σn
i=1biri . A mod M + 1

4. A + B . k mod M + 1

6

5. |{i : bi = 1}| , n
2

Then a verifier who selects from the three options uniformly at random
has at least a 1

3 chance of catching the prover.

Claim 2.2 Suppose that all four statements were always false, so that it is impos-
sible for the verifier to ever catch the prover. Then the set

X = {vi|bi = 1} ⊂ S

is the correct solution.

Proof First, note that |X| = n
2 by statement 4.

Σx∈Xx ≡ Σn
i=1bivi mod M + 1 (1)

≡ Σn
i=1bi(ri + Ri) mod M + 1 (2)

≡ Σn
i=1biri + Σn

i=1biRi mod M + 1 (3)
≡ A + B mod M + 1 (4)
≡ k mod M + 1 (5)

but Σx∈Xx ≤ Σx∈Sx ≤M. Therefore,

Σx∈Xx = k

2.3 Example

1. S = {59, 32, 23, 44, 60, 85, 90, 60}

2. k = 248

3. M = Σx∈S = 453

4. X = {44, 60, 85, 59}

2.3.1 Peggy

Peggy knows X and generates the following table, but hides all of the cells
of the table from Victor.

v 44 32 60 85 59 23 90 60
r 94 314 103 0 257 387 27 433
R 138 346 163 85 316 410 117 39
vi ∈ X? 1 0 1 1 1 0 0 0

A and B A B 0 0 0 0 0 0

7

2.3.2 Victor

Victor sees the following table

v * * * * * * * *
r * * * * * * * *
R * * * * * * * *
vi ∈ X? * * * * * * * *
A and B * * * * * * * *

Victor now has three choices:

1. Victor asks for proof that Ri + ri ≡ vi mod M + 1. In response Peggy
reveals this only this part of the table

v 44 32 60 85 59 23 90 60
r 94 314 103 0 257 387 27 433
R 138 346 163 85 316 410 117 39
vi ∈ X? * * * * * * * *
A and B? * * * * * * * *

2. Victor asks for proof that Σn
i=1biRi ≡ B mod M + 1 and that A + B ≡ k

mod M + 1. In response Peggy reveals another part of the table:

v * * * * * * * *
r * * * * * * * *
R 138 346 163 85 316 410 117 39
vi ∈ X? 1 0 1 1 1 0 0 0
A and B A B 0 0 0 0 0 0

3. Victor asks for proof that Σn
i=1biri ≡ 0 mod M + 1. In response Peggy

reveals part of the table

v * * * * * * * *
r 94 314 103 0 257 387 27 433
R * * * * * * * *
vi ∈ X? 1 0 1 1 1 0 0 0
A and B A B 0 0 0 0 0 0

8

2.4 Extending the Protocol to regular Subset Sum

The protocol can be adapted to the Subset Sum problem, though there is one
major technicality. Our protocol cannot reveal the size (|X|) of our Subset
Sum solution X ⊂ S. We no longer guarantee that |X| = |S|

2 . To fix this we
create a new set S′ by padding the set S with |S| zero entries. Clearly, we
cannot generate any new Subset Sums with S′ because we just added 0 a
bunch of times. However, if there was a solution X ⊂ S of size |X| < |S|, we
can create X′ ⊂ S′ of size |S| by padding X with zeros. Thus we may assume
without loss of generality that our Subset Sum solutions in S′ have size |S

′
|

2 .

2.5 A Message Authentication Protocol using Subset Sum

Given a set S and a number k suppose that Alice is the only person that
knows the solution X to this Subset-Sum problem. Now to authenticate an
m-bit message, Alice can define a new set

S′ = S
⋃
{2dlog2 Me+1, ..., 2dlog2 Me+m

}

Notice that a m-bit message can also be interpreted as subset

T ⊂ {2dlog2 Me, ..., 2dlog2 Me+m
}

Now Alice sets X′ = X
⋃

T and k′ = Σx∈X′x. To authenticate the message to
Bob, Alice simply proves that she has X′ such that

Σx∈X′x = k′

Notice that it is easy for anyone to compute k′ given k and the original
message (T), so Alice is never giving away information about X. Also, it is
easy for anyone, including Bob, to reconstruct T (and hence Alice’s message)
from k′. Hence, anyone who had X′would be able to immediately construct
X. As long as Alice is the only person who knows X so she will also be
the only person who knows X′. Notice that Alice can prove to Bob what

message she is sending, but even after Bob is convinced he will be unable
to prove to anyone else that Alice sent him this message.

3 Clique

3.1 Problem Definition

Definition A Clique instance I =< G, k > is a undirected graph G and an
integer k. I is a yes instance if and only if G contains a clique of size ≥ k.

9

Clique was one of Richard Karp’s original 21 NP-complete problems [Karp,
1972].
Let MG denote the adjacency matrix of G.

3.2 Protocol

Prover:

1. Generate an isomorphic graph G′

2. Write down (but hide) MG′

Verifier:

1. Ask to see that G′ is isomorphic to G (the prover just reveals MG′ and
the permutation).

2. Ask to see that G′ contains a k− clique (the prover reveals which nodes
are in the k-clique and reveals the corresponding cells in the adjacenty
matrix ...these should all be 1).

Claim 3.1 The above protocol is a Zero-Knowledge Proof scheme

Proof We must show that the protocol satisfies the Zero-Knowledge, Com-
pleteness and Soundness conditions.

Zero-Knowledge Victor could simulate option 1 by simply generating an
isomorphic graph and writing down MG′ . Victor can simulate option 2 by
just picking k nodes at random and writing down some adjaceny matrix
there all of the edges between these nodes is 1.

Completeness If the prover knows of a k − clique in the graph then the
prover can always write down an isomoprhic graph G′ for which he knows
a k − clique and never get caught.

Soundess If the prover does not know of a k-clique then either G′ is not
isomorphic or the prover does not know of a k-clique in G′ either. In either
case the verifier can catch the cheat with probability 1

2 by selecting from the
two options randomly.

Note: Essentially the same protocol works for many graph problems such
as: Hamiltonian Path/Cycle, Subgraph Isomporphism, Independent Set
and Vertex Cover

10

3.3 A More Efficient Zero-Knowledge Proof Protocol for Graph
3-Coloring

Given a graph G with n vertices, a 3-Coloring is a partition of the vertices
into three sets V1,V2,V3 such that there are no edges between the sets

i , j→ E(Vi,V j) = ∅

generate a new graph G′ with 3n vertices by adding 2n vertices (but no new
edges). Clearly, G′ is 3-Colorable if and only if G is 3-Colorable. Also, note
that G′ can be partitioned into |V′1| = |V

′

2| = |V
′

3| = n such that

i , j→ E(V′i ,V
′

j) = ∅

Let M be the adjacency matrix of G′. The prover commits, but hides, a
permuted version of M (π(M)), as well as the permuted sets Ci = π(V′i). The
Verifier can ask to see

1. C1,C2,C3 and the parts of π(M) which would correspond to possible
edges between the sets (expecting all 0 entries)

2. Proof that π(M) is a valid permutation of M (expecting to be shown a
valid permutation π such that π(M) = M)

The proof achieves 1
2 soundess in one round, which is better then the

O(1
n) soundness achieved by Goldreich et al. [1991].

4 SAT

4.1 Definition of Problem

SAT is the original NP-Complete problem Cook [1971]. For simplicity, I
present a Zero-Knowledge Proof for the Exactly One in 3 − SAT problem,
which is also well known to be NP-Complete Schaefer [1978]. We are given
a 3 − SAT formula φ with variables x1, ..., xn and clausese C1, ...,Cm.

Ci = {`i,1, `i,2, `i,3}

4.2 Protocol

Prover:

11

1. For each variable xi (replace xi with x̄i and replace x̄i with xi) with
probability 1

2 . Notice that the formula remains equivalent when we
do this. Let Nxi : {xi} → {xi, x̄i} denote these choices.

2. Permute the variables and the clauses. Let x′i and C′j denote the
permuted clauses and variables. Let π1 denote the permutation of the
xi, and π2 denote teh permutation of the clauses.

3. Commit (but hide) the new list of clauses {π2(C1), ..., π2(C2)}

4. Commit (but hide) the satisfying assignment to the permuted formula

Verifier: The verifier can ask for

1. A Proof that the new formula is equivalent (the prover can just reveal
{π2(C1), ..., π2(C2)}, π1, π2, and Nxi ,∀i and the verifier can check that
the formula is indeed equivalent).

2. Proof that a particular clause π2(Ci) is satisfied by the hidden assign-
ment (Suppose that Ci = {`1, `2, `3}, then the prover reveals the assign-
ment for π1(`1), π1(`2), π1(`3), all the other clauses remain hidden as
well as the permutaions)

Claim 4.1 The above protocol is a Zero-Knowledge Proof Protocol for 3-SAT

Proof We must show that the protocol satisfies the Zero-Knowledge, Com-
pleteness and Soundness conditions.

Zero Knowledge: The verifier could simulate this protocol by himself.

1. If he chooses option 1 then generateπ1, π2,Nxi∀i at random (randomly
permute the variables and clauses)

2. If he chooses option 2 then generate π1, π2 randomly permute the
variables and clauses then randomly select a clause π2(Ci), and ran-
domly make up a partial assignment such that the clause is true (in
the assignment exactly one of the literals will be true).

Completeness: If Peggy knows of a satisfying assignment, she can never
be caught by Victor if she just uses the actual assignment.

Soundness: If the Prover does not know of a satsifying assignment then
she can either

12

1. Write down some other nonequivalent formula (getting caught by
option 1)

2. Write down some assignment which doesn’t satsify all clauses (getting
caught in option 1 with probility at least 1

m)

With some work the protocol can be extended to regular SAT.

5 Integer Programming

5.1 Introduction to Problem

Without loss of generality linear program is a set of equations of the form

a1x1 + . . . + anxn = d

where d, a1, ..., an are constants and x1, ..., xn are variables. 0-1 Integer Pro-
gramming is also one of Karp’s 21 NP-Complete problems [Karp, 1972]. It
adds the constraint xi ∈ {0, 1}. This problem is very similar to the Subset
Sum problem (with S = {a1, ..., an} and d = m) except that we may now have
multiple constraints. The Zero-Knowledge Proof techniques are also very
similar.

5.2 Protocol

Given constraints
a1,ix1 + . . . + an,ixn = di

for i = 1, . . . ,m. Set M = maxi Σn
j=1a j,i.

Prover:

1. Create dummy variables xn+1, ..., x2n such that xn+i = x̄i.

2. Pick y1, ..., y2n uniformly at random from {0, ...,M}. For the first row,
write down (but hide) y1, ..., y2n.

3. Compute z1, ..., z2n such that

yi + zi ≡ xi

For the second row, write down (but hide) z1, ..., z2n.

4. For the other rows, write down (but hide) a1,i, ..., an,i, a1,i, ..., an,i

13

5. (In practice the prover also permute the columns, for ease of anaylsis
and explanation we pretend that everything is writen in the natural
order)

6. For each equation, compute and write down (but hide)

v1,i =< z1, ..., zn > · < a1, ..., an > mod M + 1

7. Compute and write down (but hide)

v2,i =< y1, ..., yn > · < a1, ..., an > mod M + 1

Verifier:

1. Proof that the permutated 0-1 Integer Program is equivalent (the
prover just shows the permuation of the columns)

2. Show that zi + yi ≡ {0, 1} mod M + 1 for all 0 < i ≤ 2n (in fact for
exactly n values of i, zi + yi ≡ 1 mod M + 1)

3. Show that

v1,i =< z1, ..., zn > · < a1,i, ..., an,i > mod M + 1

was computed correctly

4. Show that

v2,i =< y1, ..., yn > · < a1,i, ..., an,i > mod M + 1

was computed correctly for each equation

5. Show that
v1,i + v2,i ≡ di mod M + 1

for each equation

Note: The technique can be extended to regular Integer Programming
where we have constraints of the form x′i ∈ {0, ..., 2

m
}. Simply replace x′i

with xi,1, ..., xi,m ∈ {0, 1} to represent each bit of x′i .

Claim 5.1 The above protocol is Zero-Knowledge

14

Proof We must show that the protocol satisfies the Zero-Knowledge, Com-
pleteness and Soundness conditions.

Zero Knowledge: The verifier could simulate this protocol by himself. No-
tice that yi, zi are independently random numbers when viewed separately.
So any step where we only see yi or zi does not reveal anything. Victor
could also generate v1,i, v2,i in the last step by picking all of the yi values at
random to obtain vi,1 and then setting v2,1 to guarantee that

v1,i + v2,i ≡ di mod M + 1

In fact the step where Victor sees the yi, zi values and nothing else is ok.
There should be exactly n values of i s.t yi + zi ≡ 1 mod M + 1 and exactly n
values of i s.t yi + zi ≡ 1 mod M + 1. Victor could have simply picked ran-
dom yi values and then picked the zi values so that both statements are true.

Completeness: Clearly, if Peggy follows the protocol she cannot get caught
cheating.

Soundness: Suppose Peggy is trying to cheat. To not be caught she must
write down an equivalent 0 − 1 Integer Program and pick yi, zi values such
that:

1. For n values of i
zi + yi ≡ 1 mod M + 1

2. For the other n values of i

zi + yi ≡ 0 mod M + 1

3. For all j,

< z1, ..., zn > · < a1, j, ..., an, j > + < y1, ..., yn > · < a1, j, ..., an, j >≡ d j mod M+1

But then we can set

xi ≡ zi + yi ≡ 1 mod M + 1

Noting that xi ∈ {0, 1} and for all j

Σixiai, j ≡ d j mod M + 1

15

But
Σixiai, j < M + 1

Therefore, for all j
Σixiai, j = d j

So if Peggy cheats she will get caught with reasonable probability.

References

M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover inter-
active proofs: How to remove intractability assumptions. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 113–
131. ACM New York, NY, USA, 1988.

RB Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25(2):127–132, 1987.

S.A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158.
ACM New York, NY, USA, 1971.

L. Fortnow. The complexity of perfect zero-knowledge. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing, pages 204–209.
ACM New York, NY, USA, 1987.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM New York, NY, USA, 1987.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM (JACM), 38(3):690–728, 1991.

R.M. Karp. Reductibility among combinatorial problems. Univ. of California,
1972.

T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 216–226. ACM
New York, NY, USA, 1978.

16

