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Abstract 
Effective control of a high degree-of-freedom [DOF] manipulator increases in computational 

complexity with the number of joints. A controller for a many-joint arm must include algorithms 

for an inverse kinematics solver, a path planner, and object manipulation strategies. These 

algorithms have been developed for a planar "tentacle" arm composed of eight Robotis 

Dynamixel AX-12 servos in series. The goal is to be able to manipulate objects in real time. 

With the algorithms in place, a variety of operations are demonstrated on objects of different 

sizes using an actual tentacle arm. The work will be incorporated into the Tekkotsu robot 

programming framework. 

I. Introduction 

A. The Manipulation Task 

Traditional robotic arms/manipulators utilize a handful of degrees-of-freedom to move about 

their environments. In environments with few obstacles, these manipulators effectively 

accomplish many tasks, e.g., the space shuttle’s Canada Arm, with four degrees-of-freedom, 

deploys satellites, and various industrial robot arms perform painting, welding, and assembly 

tasks. However, in environments with numerous obstacles that hinder the manipulator’s reach, 

the lack of mobility due to low degrees of freedom severely limits these manipulators from 

completing the same tasks. For example, a manipulator with three degrees of freedom cannot 

easily maneuver around three consecutive obstacles.  With more degrees of freedom, however, 

manipulators can reach around multiple obstacles to reach a position that simpler manipulators 

could not. In the case of an arm reaching inside a narrow tunnel, a high degree of freedom arm 

can follow the tunnel’s curvature with better precision than a lower degree of freedom arm, 

leading to a farther reach. This has applications for robots being able to reach inside of rubble, 

manipulate the internals of a computer, or perform surgery without interfering with the 

surrounding tissue. However, controlling such a high degree-of-freedom manipulator is a 

computationally demanding task. We developed algorithms for effective control of a particular 

class of high degree-of-freedom manipulators: planar tentacle arms. 

B. Planar Tentacle 

Tentacles in nature, as in an octopus arm or an elephant’s trunk, are manipulators that have 

high degrees of freedom and are constructed in consecutive rotational joints. Using this as 

inspiration, we created a tentacle arm consisting of consecutive servos in series. To reduce the 

dimensionality, the servos all rotate in the same plane, fixing the arm’s mobility to a single 

plane. See Figure 1 for an example. 



  2 

• Hardware 

To run the system on real hardware, we constructed an eight-link tentacle hand-eye system 

from Robotis Dynamixel AX-12 servos, an acrylic (later metal) mast, and a Logitech webcam. 

The mast was fixed to the table using a C-clamp. The tentacle arm attached to the base of the 

mast as shown in Figure 1, and the webcam to a pan/tilt mount at the top. 

 
Figure 1: The planar tentacle arm with a dual-finger end effector. 

• Tekkotsu 

The Tekkotsu software framework [4] is a robot-independent platform to abstract logic of 

robotic systems, such as vision and motor control, from the hardware. For example, the vision 

system used to control an Aibo’s camera can run on any robot with a camera. This leads to easy 

portability of color segmentation, object detection, and other hardware independent tasks. We 

use Tekkotsu to control the arm as well as the webcam on a pan/tilt. The webcam allows for 

dynamic obstacle detection in the plane of the tentacle using Tekkotsu’s dual-coding vision 

system [5]. Furthermore, all kinematic data (how many joints exist as well as the geometries of 

the links) are easily accessible through the framework, leading to easily portable algorithms from 

one arm to another. 

• Requirements 

In order to manipulate its environment, a manipulator must solve the inverse kinematics 

problem (described in section II), be able to path plan, and utilize an environment-manipulation 

strategy depending on the type of obstacles perceived. Since the algorithms must work on a real 

robot, physical constraints exist: joints have a limited range of motion, links of the arm may not 

collide with obstacles in its working environment (workspace), and the arm must remain inside 

the workspace. The inverse kinematics algorithm generates a particular configuration of the arm 

that satisfies all physical constraints and places the end effector at a particular location. The path 

planner generates a trajectory of configurations from one state to another without violating any 

physical constraints. Lastly, a manipulation strategy must decide how to move objects in the 

workspace using the previous two components as tools. The goal is to have a system that 

skillfully manipulates objects in real time without any human intervention. 
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II. Inverse Kinematics (IK) 
Given the location and orientation of the base of the arm and a collection of obstacles in the 

workspace, what joint angles are required to place the end effector at a desired location and 

orientation? Answering this question analytically is possible for arms with two joints. The two 

solutions are known as “elbow-up” and “elbow-down” solutions, as seen in Figure 2.  

 

 
Figure 2: Two-link IK solutions in "elbow-up" on the left and “elbow-down” on the right 

 

Using trigonometry, two pairs of joint angles 1θ  and 2θ  can be computed to allow the arm to 

place the end effector at the desired location of (x, y). From these two solutions, it is 

computationally simple to test whether either of these solutions meets all constraints: no joint 

exceeding physical limits, no two links colliding, no link colliding with an obstacle, and no link 

leaving the bounds of the workspace. For tentacle arms with higher degrees-of-freedom, more 

than two consecutive rotational joints lead to an infinite number of valid solutions. However, it is 

computationally infeasible to test all of these possible solutions until finding one that meets all 

constraints. Therefore, a different strategy for finding a solution is necessary. Sections A through 

D explain and analyze our strategy for finding a solution on a high degree-of-freedom arm that 

obeys all constraints. 

A. Previous Work 

• The Swan Neck 

Solutions to fundamental robotics problems can sometimes be found by observing nature. 

Hayashi and Kuipers [1] drew inspiration from the motion of a swan’s neck to propose an 

algorithm for controlling high degree-of-freedom arms. A swan uses its neck in a continuous 

fashion: as the head extends along a path, the segments behind it move so as to follow the same 

trajectory the head took. This approach was mimicked by Hayashi and Kuipers [1] by moving 

the tip of a simulated high-DOF arm composed of fixed-length segments to a goal location in an 

obstructed workspace. The algorithm assumed that the arm was initially wound in a spiral around 

its base. It decomposed the free space into a collection of connected rectangular regions, and 

used graph search to construct a path from the base to the goal while minimizing overall 

curvature. It then fit the arm to the path by dividing the path into equal-length segments and 

dividing the arm into pairs of links, and analytically solving each two-link IK problem. The arm 

could then unwrap itself from the base and reach the goal location by moving the tip along the 

path and constraining subsequent joints to follow the tip’s trajectory. 
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The swan neck approach is inefficient for moving between arbitrary workspace locations 

because the arm must rewrap itself around the base before proceeding out to the new goal. Other 

solutions to the IK problem have therefore been sought. But Hayashi and Kuipers’ curve 

decomposition idea has merit, and we have generalized it in our implementation, described in 

Section B. 

• Relaxation-Based Approach 

The first attempt at solving IK for the planar tentacle arm used a relaxation approach 

suggested by Professor Howie Choset. To trace a minimum-energy path in the workspace from 

the base of the arm to the goal using gradient descent, we defined a potential field with repulsive 

obstacles and an attractor at the goal location. Starting at the base of the arm in the potential 

field, trace the continuous path of least resistance, avoiding obstacles, until arriving at the 

attractor. The number of points on the path was a function of the length, and was usually several 

times greater than the number of links in the arm. Since gradient descent is susceptible to local 

minima, the strength of the attractor was increased whenever the algorithm became stuck. With 

this path defined, we used a relaxation process to alter the shape of the path until its length 

matched that of the arm. This relaxation process utilized two opposing forces. One directed a 

point to move toward the midpoint of its neighbors; this reduced both the curvature and overall 

length of the path. The second force moved points away from obstacles, which could increase the 

curvature and path length. The relative strengths of these two forces were adjusted depending on 

whether the path needed to grow or shrink. 

Once the path was at its target length, the arm was fitted to the path by starting at the base 

and swinging the first link until it intersected the path. This link was then pinned, and the 

algorithm proceeded to recursively fit the remainder of the arm to the remainder of the path. This 

heuristic did not always succeed because the fixed-length arm segments could not exactly fit a 

continuously curved path. If the end-effector undershot or overshot the goal, we adjusted the 

target path length by a proportion of this error. We ran the relaxation process once again, and 

then re-attempted to fit the arm to the new path. If multiple iterations were unsuccessful at 

placing the end-effector at the goal location, the algorithm reported failure. 

Figure 3 shows a solution produced by this algorithm. Its main strength is that it tries to 

produce low curvature solutions while maximizing distance from all obstacles. However, it does 

not always succeed. One reason is that following the potential field gradient to detour around an 

obstacle might not lead to a viable path of the required length; the only viable solution may lie on 

the other side of the obstacle. Another problem is that certain obstacle configurations could lead 

the relaxation algorithm to produce high curvature paths that exceed the turning limits of the 

joints, which the algorithm had no way to correct. 
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Figure 3: A sample solution from the initial relaxation algorithm. The base of the arm is at (0,0). The blue line 

is the gradient descent path, the green line is the relaxed curve of desired length, and the red line is the final 

link configuration found by fitting the arm to the relaxed curve. 

B. New Hybrid Approach 

Our new hybrid approach builds on the curve segmentation idea of Hayashi and Kuipers. 

Ignoring obstacles and joint angle limits, curve segmentation can put the end effector at any 

location that is within reach. We defined an initial curve using the same gradient descent 

approach as before, fitting the links along this curve using curve segmentation. In an attempt to 

avoid obstacle collisions and respect joint turning limits, we chose the appropriate non-colliding 

elbow-up or elbow-down solution to each two-link IK solution if one existed. 

Upon implementing this approach, a few shortcomings became apparent. If the gradient 

descent path was too long, some of the two-link IK problems had no solution. To combat this, we 

generalized the curve segmentation approach to explore a richer space of partitions of the arm 

segments by considering compound links instead of just single links. Another problem was that 

choosing between elbow-up and elbow-down solutions to each two-link IK problem was not 

sufficient to avoid all obstacle collisions. However, a collision-free solution can be produced by 

swinging obstructed links out of the way and using recursive decomposition to re-fit the 

remaining links. Finally, if the gradient descent path was short, the solution produced by curve 

segmentation could contain sharp angles that exceeded the turning limits of some of the joints. 

Introducing a post-processing step with a new relaxation strategy that enforces joint turning limit 

constraints would ensure a valid solution. In the following paragraphs, each step of the above 

algorithm is described in more detail. 

• Generating Structures 

The Hayashi and Kuipers curve segmentation method utilized a simple pair-wise partitioning 

of the arm. For an eight-link manipulator we denote this partition as (1,1)(1,1)(1,1)(1,1). We 

generalized this idea to search a richer combinatorial space that includes asymmetric partitions. 

For example, the configuration (2,1)(2,1)(1,1), shown in Figure 4, contains  two (2,1) structures,  

which means the first link contains two arm segments (the joint-angle between them is fixed to 
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have no bend) and the second link contains one segment. The minimal partitioning (4,4), where 

both links are composed of four arm segments, is shown in Figure 5. 

 
Figure 4: The asymmetric partitioning 

(2,1)(2,1)(1,1) contains a mixture of one-segment 

and two-segment links. The gradient descent path 

is shown in blue and the arm in red. 

 

 
Figure 5: The minimal partitioning (4,4).

A partitioning can fail if there are unresolvable collisions, or if joint turning limits are 

exceeded and post-processing relaxation is unable to correct the problem. If a partitioning fails, a 

new one is tried. By initially ignoring collisions and joint limits, fitting the links via curve 

segmentation can quickly determine if a candidate partitioning has any chance of placing the end 

effector at the goal location. 

• Collision Resolution 

If both of a two-link IK problem’s elbow-up and elbow-down solutions collide with 

obstacles, the offending links are marked but generating the arm configuration continues as if 

there were no collision. To resolve these, we start with the distal link that collides with an 

obstacle, pin the distal end of this link, detach the proximal end, and rotate the link until it is free 

of the obstacle. This is now a new IK problem to solve: fitting the remainder of the arm to a new 

curve resulting from re-running the gradient descent with the goal location being the proximal 

end of the link that was rotated. The algorithm succeeding in finding a solution to this sub-

problem assures a collision-free solution to the original problem. In the event that the sub-

problem cannot be solved, we rotate the colliding link in the opposite direction until it is again 

free of the obstacle to attempt to solve the new sub-problem. If this also fails, the partitioning is 

rejected. 

Figure 6 illustrates this process. The blue line is the path initially found by gradient descent. 

(The path doubles back on itself due to a local minimum in the potential field that must be 

overcome by increasing the gain of the attractor component.) The green line is the original (4,4) 

partitioning, in which link A collides with one of the obstacles. The collision resolution 

algorithm swings link A clear of the obstacle and then generates a gradient descent path (shown 

in magenta) to the new goal location. The remainder of the arm is then recursively fit to this 

magenta path, producing a (3,3) partitioning that reaches the new goal. Combining this solution 

with the distal portion of the original produces the final solution shown in red, where link B is 

the new position of link A. 
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Figure 6: Successfully resolving an obstacle collision. 

• Post-Processing Relaxation Step 

The analytic portion of the hybrid algorithm is rapid, but it may produce solutions with 

steeper joint angles than the arm is physically capable of. We introduced a post-processing 

relaxation step in which all joints simultaneously adjust their positions to try to resolve any joint 

limit violations. Four forces act on all the joints. (1) If a joint’s angle exceeds its limits, the two 

links that meet at that joint are rotated outward by a small amount. Doing so alters the lengths of 

these links, which remain connected to the rest of the arm. (2) If a link is not at its correct length, 

its two endpoints are shifted slightly inward or outward, as appropriate. Doing so alters the 

angles of the joints at those endpoints. (3) If a link passes too close to an obstacle, both of its 

endpoints are moved slightly away from the obstacle. (4) If two non-consecutive links pass too 

close to each other, both links’ points are moved away from one another. Although these forces 

may, at times, work against each other, the overall effect is to adjust the arm configuration 

toward an equilibrium point where all constraints are satisfied. Figure 7 illustrates this process. A 

(4,4) partitioning with a sharp elbow angle (red line) is relaxed by moving other joints outward 

so that the middle joint can move inward and assume a more shallow angle (green line). 

The relaxation may not terminate because the constraints may not be solvable. However, 

empirically when a solution exists, it is found in fewer than 200 iterations, so the process is cut 

off at that point, rejecting that partitioning. 
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Figure 7: A successfully resolved joint angle violation. The red line corresponds to the initially generated (4,4) 

structure with a very sharp turn at the elbow, while the green line shows the relaxed configuration. 

C. Analysis 

• Behavior 

Figure 8 shows a path through a tightly constrained workspace where the arm must remain 

relatively straight to pass through a bottleneck, so the majority of the length accommodation 

occurs in the distal segments. The solution started with a (1,1)(1,1)(1,1)(1,1) partitioning and 

found a collision in the first segment that generated a seven-link sub-problem. This sub-problem 

used a (2,2)(2,1) partitioning and found a collision in the first link, resulting in a six-link sub-

problem that was solved with a (1,1)(1,1)(1,1) partitioning with a collision in the third link. The 

resulting three-link sub-problem was solved with a (2,1) partitioning, and this was the only sub-

problem that required relaxation. 

In Figure 9, the goal location is close to the arm, but the obstacles restrict the arm’s ability to 

bend. The solution resulted from a (1,1)(1,1)(1,1)(1,1) partitioning with a collision at the fourth 

link that was resolved by moving that link, successfully solving the remaining three link sub-

problem, and then relaxing the entire configuration. Figure 10 shows a solution where the arm 

winds around an obstacle in order to reach the target. The shorter green line shows that 

relaxation was invoked for a sub-problem after a collision resolution step, but was not required 

for the main problem. 
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Figure 8: Finding a solution in a heavily constrained workspace. 

 

 
Figure 9: A solution resolving collisions and 

exceeded joint limits. 

 
Figure 10: A solution

• Comparison with Initial Relaxation Algorithm 

In the initial algorithm, the correlation between changing the length of the overall path and 

changing the curvature led to unrecoverable situations. The new hybrid approach does not have 

the same faults, but presently it does not maximize distance to obstacles or find minimal 

curvature solutions. This tradeoff can be seen in the solution of the same problem by both 

algorithms: the first attempt in Figure 11 and the new hybrid approach in Figure 12. 
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Figure 11: Successful solution to this obstacle 

configuration and goal location found by the first 

path planning algorithm. Note the smooth 

continuous properties of the final configuration. 

 

 
Figure 12: Successful solution via the second, 

hybrid approach. Note the accordion shape of the 

final configuration: this is a higher curvature 

solution.

However, the new hybrid approach often succeeds where the first approach fails. Using the 

same gradient walk, Figure 13 shows the solution generated by the hybrid approach that goes 

between the obstacles, where the first approach would fail to bow out. Similarly, Figure 14 

shows a solution that successfully resolves a curve with high curvature that the first approach 

could not solve. 

 
Figure 13: A configuration which the hybrid 

solution solves that the first attempt could not due 

to failure to utilize free-space (space not inside 

obstacles). 

 
Figure 14: A solution that resolves a curve with 

high points of curvature.

D. Implementation 

The algorithm was first prototyped in MATLAB, allowing for easier graphical representation 

of the algorithm’s actions. It was then ported to C++ as an extension to Tekkotsu. The C++ 

version runs orders of magnitude faster than the MATLAB prototype due to the C++ version 

running natively. In worst case, the algorithm takes no more than ten seconds to complete on a 

Pentium 4 machine.  



  11 

E. Assumptions 

This hybrid-approach algorithm exploits the assumption that all of the obstacles are convex. 

If all of the obstacles are not convex, then the gradient descent step could fail to define a path 

from the start to the goal. This is acceptable since all of the links in use are rectangular and all 

obstacles perceived are circular. Furthermore, each link is represented as a line in the algorithm 

but physically has width. This is overcome by bloating every obstacle by half the width of the 

widest link. If a segment does not intersect a bloated obstacle, then it is impossible for the link 

that corresponds to that segment to collide with the actual obstacle. 

III. Path Planning 
Given two arm configurations, a start and an end, and a collection of obstacles, what 

trajectory of joint configurations can move the arm from the start to the end without causing any 

collisions? Many analytic solutions exist for solving this problem, such as computing the line-of-

sight graph or Voronoi diagrams, but these require substantial pre-processing on the workspace. 

To path plan in a dynamic environment in real time, the employed algorithm is not guaranteed to 

find a solution, but the algorithm works well in practice. 

A. Rapidly-Exploring Random Trees (RRTs) 

• Generating RRTs 

We opted to use rapidly-exploring random trees (RRTs), developed by LaValle and Kuffner 

[2]. Our algorithm to generate RRTs is a randomized algorithm that attempts to explore as much 

of the configuration-space (the space of all possible configurations of the arm) as possible when 

attempting to find a path. Obstacles in the arm’s environment have clearly defined boundaries, 

but since each joint is rotational, the obstacle’s projection in configuration-space is a complex 

shape. Computing these complex obstacle boundaries in configuration-space is a taxing 

procedure, so the RRT algorithm forgoes this step through randomization.  First, we create two 

trees, one rooted at the start configuration and the other at the desired end configuration. On each 

iteration, the algorithm generates random configurations R until it finds one that does not 

intersect any obstacles. Then it finds the closest configuration S to R in the tree rooted at the 

start. It then creates a new node N that is a small step from S toward R, and connects N to S in 

the tree. Next, it finds the closest configuration T in the tree rooted at the goal, and creates a new 

node M that is a small step from T toward N, connecting M to T in its tree. See Figure 15. 
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Figure 15: A 2D joint space single RRT iteration; see text for explanation. Our tentacle works in 8D joint 

space. 

 

If either N or M collides with an obstacle, the algorithm discards N or M and proceeds to the 

next iteration. Finally, the algorithm runs a second iteration with the roles of the two trees 

swapped. By interpolating between nodes, the algorithm moves each joint a constant fraction of 

its linear error from the desired node’s corresponding joint. In two-space, this is drawing a short 

segment (such as the dotted lines in Figure 15) toward the other point. Repeating this process of 

gradually stepping each tree toward the randomly generated configurations as well as each other 

will eventually lead to a node that will be reachable from both trees. Following the paths along 

both of these trees from the roots to this node yields a valid non-colliding path. 

This process builds trees in configuration-space whose generated configurations are 

guaranteed to neither collide with obstacles by themselves, nor collide when transitioning 

between connected configurations due to the small steps between those configurations. 

Extracting a collision-free trajectory for an arm to travel along requires a single walk per tree, 

which is simple. Furthermore, it does not require any preprocessing of the workspace or 

configuration-space, which is ideal for a dynamic environment. 

• Exploiting Biases 

In order to bias the generation of the trees to more quickly and efficiently explore the 

configuration space for a tentacle arm, we exploit both the methods of finding the closest 

configuration in a tree to some other configuration and expanding a configuration toward some 

other configuration. When finding the closest configuration in a tree to some other configuration, 

we use a custom error function to compare configurations and take the closest one as the one 

with smallest error. An ideal error function would be the total amount of new workspace area 

covered by one configuration that isn’t covered in the other. Unfortunately, this is a 

computationally expensive operation, so we must use a heuristic that successfully biases the 

majority of the configuration space. On average for a tentacle arm in a random configuration, 

moving joints early in the chain is more likely to drastically change the workspace area of the 
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arm than moving joints further along the chain. Calculating the difference between 

corresponding joints of two configurations and weighting the difference of joints closer to the 

base higher than joints closer to the end effector successfully exploits this concept. Even though 

there are cases where this fails, such as a configuration that puts the end effector directly next to 

the base of the arm, it works well enough in practice. 

Furthermore, we can alter the method of expanding a node to move toward another node to 

explore more of the configuration-space per step. Instead of taking a single small step from a 

configuration toward the other and stopping, we continue to take consecutive small steps toward 

the other configuration until a configuration with a collision is generated or the target 

configuration is reached, connecting each step as a chain in the tree. LaValle and Kuffner call 

this the RRT-Connect method, which has the property of searching longer paths down the 

configuration space than the original RRT growth method. This helps by requiring fewer 

iterations to explore heavily constrained environments, yielding a speed up in time. Since the 

tentacle arm could potentially work in heavily constrained environments, we use this RRT 

growth variant for all tree expansions. 

• Post-processing Step 

There is no guarantee that a generated path from the start configuration to the end 

configuration is optimal. In the scheme of generating random configurations to grow toward, a 

path may cause the arm to take steps that do not contribute to moving closer to the end 

configuration. In an effort to root out these meaningless steps, we perform a post-processing step 

on the path. Over a number of iterations proportional to the total number of steps in the path, we 

randomly pick two configurations in the path and see if a direct interpolation between the two 

paths is possible, and if so, replace these steps with the direct interpolation, eliminating any 

detours. Although still not guaranteed to be optimal, choosing enough pairs of configurations to 

short cut yields a new path that takes fewer unnecessary steps. 

B. Implementation (C++) 

The implementation of this algorithm is written in C++. The algorithm works for tentacle 

arms of an arbitrary number of joints and any rectangular geometric links. To optimize it for use 

with the actual tentacle arm we constructed, we compared two methods for computing the closest 

configuration in a tree: a brute-force search and an approximate nearest neighbor (ANN) 

algorithm [1]. For all cases considered where the arm had a potential path from start to end, the 

brute-force approach was approximately twice as fast as the ANN algorithm. Thus, calculating 

the closest configuration in a tree is done via brute force. Furthermore, we pre-allocated a pool of 

nodes to avoid the costs of memory management mid-iteration. This leads to a faster run time 

and allows the same memory space to be used in multiple consecutive runs of the algorithm for a 

lesser re-run time. Lastly, the collision detection methods were specifically optimized for any 

pair of rectangular or circular obstacles. Since the robot has rectangular links and perceives 

circular obstacles, this covers all possible collision cases. 

C. Analysis 

The RRT approach is an excellent choice for path planning with tentacle arms. It is good for 

high dimensionality since the algorithm linearly depends on dimensionality. This means that as 

more joints are used in a tentacle arm, which increases the dimensionality, the algorithm remains 

scalable. Furthermore, the RRT approach is probabilistically complete; given enough time and 
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space, the algorithm will find a path if one exists. This guarantee is desirable, but depending on 

how constrained the workspace is, real-world time and space constraints could run out before a 

path is found. We empirically chose a cutoff level that usually finds a path if one exists. It is also 

worth noting that of all portions of the manipulation task, this step takes the most amount of 

time. Further optimizations to this step would greatly help the overall performance of the system. 

IV. Manipulation 

A. Maintain Contact 

Given methods for solving inverse kinematics and path planning, we implemented a strategy 

of choosing particular configurations and paths to achieve some goal. The tentacle has a dual 

fingered end effector (see Figures 1 and 16), so to move an object from one position in the 

workspace to another, the path the arm takes must place the end effector in contact with the 

object and maintain contact with that object while moving in order to push it to a desired 

location. One way to do this is to enforce this constraint on the configurations added to the RRT 

in the path planning step.  

The constraint must be introduced every time the RRT interpolates between nodes to ensure 

that all paths generated in the RRT satisfy the constraint. Therefore, we needed a generalized 

procedure to satisfy the contact constraint between two configurations. Given the two 

configurations, where the arm is moving from and where the arm is moving to, it is easy to 

compute the trajectory of the end effector in the workspace. Maintaining contact with the 

obstacle along this trajectory necessitates that the angle of the end effector is almost 

perpendicular to the direction of movement. Figure 16 shows a situation where the arm needs to 

move to the right, so the end effector’s workspace angle points almost straight down. 

 

 
Figure 16: The end-effector maintaining contact with an object 

 

However, there is no guarantee that the trajectory between the two configurations will align 

with the end effector’s orientation in either configuration. Therefore, we introduce new 

configurations in between the original two configurations being interpolated. Using an analytic 

IK solver employing only the last three joints of the arm, we generate configurations that rotate 

the end effector about the object until its angle is almost perpendicular to the direction of travel. 

If a desired orientation is unattainable, we reject the interpolation. After generating the 
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configuration with an orientation close enough to perpendicular to the direction of travel, we 

attempt to change the orientation of the configuration being interpolated to in the RRT step to be 

the same as the direction of travel. This ensures that the end effector will keep an appropriate 

relative angle to the direction of travel during movement. If that orientation is unattainable, 

however, we then reject the interpolation. If these steps succeed, they guarantee that any two 

connected nodes accepted into the RRT maintain the desired contact constraint. 

B. Shortcomings 

Upon implementing this approach, it became apparent that this strategy over-constrained the 

allowable configuration space for the RRT. In order to find a valid path in an acceptable amount 

of time, the allowable discrepancy between the direction of travel for the end effector and its 

relative angle needed to be wider than the allowable discrepancy of the physical dual-finger 

manipulator. Attempting to find a path using the dual-finger’s allowable discrepancy rarely 

succeeded in finding a path. Furthermore, introducing obstacles in the workspace for situations 

where a path was found also rarely found a path in an acceptable amount of time. Both of these 

observations suggest that introducing the contact constraint on the RRT for a high dimensionality 

arm over-constrains the algorithm. Observing the algorithm’s behavior confirmed that this is due 

to the majority of interpolations using the RRT-Connect method failing to reach their goal 

configurations. 

The over-constraint problem is likely due to the combination of having high dimensionality 

for the arm as well as only allowing a small range of discrepancy in end effector angle and 

direction of travel. In future work, using an end effector with a larger allowable discrepancy for 

the tentacle arm may allow this strategy to succeed. Unfortunately, we did not have time to 

complete this. Furthermore, alternative strategies for maintaining the contact constraint over a 

path should be considered. 

V. Conclusions 

A. System Wide Analysis 

Despite the shortcomings of the implemented manipulation strategies, the system effectively 

allows for dynamic path planning to place the end effector in any reachable position. Even in 

heavily constrained environments, the system effectively maneuvers around multiple obstacles. 

In our implementation, the path planning stage takes orders of magnitude more time than the 

inverse kinematics stage. However, in the worst case the combination of inverse kinematics and 

path planning takes no more than a minute. This is an acceptable level of real-time behavior, but 

improvements to the path planning stage could greatly improve overall running time. 

The system can effectively perform tasks if non-static end effectors are used. For example, 

given a closable gripper, the manipulator could obtain form closure on an object and move it 

around the work space. With an end effector that maintains form closure, there would be no need 

to maintain the contact constraint during the path planning stage, which the system can handle. 

This task seems menial, but it can be achieved in heavily constrained environments. 
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B. Future Work 

• 3D 

This system works in a two-dimensional world, so a natural extension is to expand these 

concepts into three dimensions. The path planning step is easily extended to three dimensions 

since only the computational geometry changes. However, the inverse kinematics and 

manipulation strategies may require more substantial changes to effectively work in three 

dimensions. If such a system existed, many new tasks could easily be accomplished, such as 

using a robotic arm to build a block tower or dynamically grasp objects along their centers of 

gravity. For example, Professor Howie Choset’s snake-robots effectively work in 3D. 

• IK and Path Planning Interaction 

In some cases, the inverse kinematics algorithm’s solution to place an end effector at a 

desired location may lead to heavy computation in the path planning stage. The IK algorithm 

could be biased to incorporate the current state of the arm in how it generates a solution 

configuration. Ideally this would lead to a more reliable real-time system that aptly finds inverse 

kinematics solutions and reduces the amount of time required to path plan. 

• The Arm Itself as an Effector 

Instead of relying on a unique end effector for manipulation techniques, the arm itself could 

be used as a manipulator. To effectively move a ball around the workspace, the arm could wrap 

around the ball with the distal joints (as seen in Figure 17) and use the remaining joints to move 

the effector. 

 

 
Figure 17: Using the distal joints as an effector to wrap a ball. 
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