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Abstract

Simple aspects of the evolution of one-dimensional cellular automata can
be captured by the first-order theory of phase-space, which uses one-step
evolution as its main predicate. Formulas in this logic can thus be used to
express statements such as “there exists a 3-cycle” or properties of the global
map such as surjectivity. Since this theory has been shown to be decidable
by using two-way infinite Büchi automata, it is possible to evaluate these
formulas by manipulating the Büchi automata. We implement such a system
and report on the results as well as the tractability of larger problems.



Chapter 1

Introduction

Cellular automata are valuable systems for modeling computational processes
because of their simplicity and ability to represent the behavior of complex
systems. However, the same power that makes cellular automata useful also
makes them difficult to analyze. Model checking, or the use of methods
for formally specifying and verifying the behavior of advanced systems, is a
powerful tool for computer scientists today. We describe the implementation
of a model-checking procedure for cellular automata.

The theory inspiring this paper is presented by Sutner in [19] as a con-
structive proof that model-checking cellular automata is decidable. By model-
checking cellular automata, we refer to the analysis of properties of the global
map of the cellular automaton using formal methods. Sutner’s theory spec-
ifies properties of cellular automata as formulae in the first-order theory of
phase-space, and provides a method for evaluating these properties. Because
exponential and super-exponential constructions are required when evaluat-
ing these properties, it was unclear whether this method would be feasible for
real problems. Our implementation answers this question in the affirmative,
but also identifies current boundaries to our capabilities.

The natural predicate in the theory of phase-space is the global map of
the cellular automaton. To check predicates in this theory, we construct
a Büchi automaton which decides whether two bi-infinite words satisfy a
particular relation. The characters in the alphabet of such an automaton
consist of one character from each of the two component words. For example,
the equality relation = (A,B) can be checked by an trivial machine which
accepts only words in which both of the words A and B have the same
character at the each index. The relation → (A,B) corresponding to the
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global map requires a more complex automaton, the construction of which
is detailed below. Construction of more complicated formulas in the theory
is done inductively by performing appropriate operations on the automata
representing the appropriate sub-formulae.

Our implementation of the model-checking procedure uses Mathematica
for high-level specification and interface purposes. The low-level construc-
tion of automata is done in Java for performance purposes and results are
returned to Mathematica via JLink. To exemplify the requirements for an
efficient implementation, we note that complementation of a formula requires
determinizing the corresponding Büchi automaton. Running Safra’s deter-
minization algorithm on an automaton of n states can generate an automaton
of 2O(n logn) states [15]. Since complementation is required for most formulas,
this means that tractability is a serious concern for model-checking cellular
automata. Accordingly, we will also present several improvements to the
determinization algorithms which help to reduce the size of the resulting
machines.
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Chapter 2

Automata Theory

The study of automata on infinite words began in the 1960s, and was orig-
inally motivated by the desire to solve abstract problems in second-order
logic. In recent years, the focus has shifted to the use of these automata in
model-checking concurrent systems. We refer the reader to [20] for a canon-
ical source, and also to [12] for an accessible and updated reference. In this
chapter, we present definitions of the automata involved in this thesis, and
will provide a brief background as to their construction and use. There is
some variety regarding terminology in the literature; we will seek to keep our
definitions as consistent as possible by using these references as standards.

2.1 Definitions and Background

John von Neumann was the first to describe cellular automata, while search-
ing for a formalization of self-reproducing structures. Since their inception,
cellular automata have been used for a variety of modeling problems; an
excellent history of the field is presented in [16]. Variant definitions and ex-
tensions of the theory of cellular automata have been developed, so we clarify
our definition of a cellular automaton below.

The ω-automata are extensions of the concept of a finite automaton to
one-way infinite inputs. Their use is one of the simplest natural ways of de-
scribing and recognizing infinite words. The apparent similarity of a “cellular
automaton” to a “finite automaton” or “Büchi automaton” is an unfortunate
namespace collision; the cellular automaton is quite a distinct concept from
the classical automata we are about to discuss. We will endeavor to be as
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disambiguating as possible, but the word automaton alone never refers to a
cellular automaton.

2.1.1 Cellular Automata

Informally, a cellular automaton represents a set of cells and a rule which
dictates their evolution over time. In a simple example, we arrange the cells
in a one-dimensional line. Time occurs in discrete steps, and the contents
of each cell are updated at each step depending on the concept of their
neighbors. To view the evolution of these cells over time, we arrange the one-
dimensional rows above and below each other. An example is given below in
Figure 2.1, where we show the evolution of a configuration beginning with a
single black cell. Under the rule “assume the value of your right neighbor,”
the location of the black cell shifts to the left. This rule, or local map,
corresponds to Wolfram’s Rule 2 for elementary cellular automata.

Figure 2.1: The evolution of a simple cellular automaton.

We are now prepared to formally define this concept:

Definition A cellular automaton is a local map ρ : Σ2r+1 → Σ where r ≥ 0
is the radius of the automaton and Σ the alphabet. The radius of a cel-
lular automaton is the maximum distance at which a neighboring cell may
influence a cell’s content at the next time step. The alphabet of a cellular
automaton is the set of possible contents for a cell.
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Since the local map of a cellular automaton is a function from Σ2r+1 to Σ,
all cellular automata of a fixed alphabet and radius are enumerable. Wolfram
defines a simple enumeration for all the cellular automata of radius 1 and
alphabet {0, 1} in [23]; these automata are often referred to as the elementary
cellular automata, and form a natural starting point for examining properties
of cellular automata in general.

Certain extensions to our definition of cellular automata are immediately
apparent. First, it is worth noting that cellular automata may be defined in
an arbitrary number of dimensions. The most famous cellular automaton,
Conway’s Game of Life, is two-dimensional. In this thesis, we will confine
ourselves to the discussion of one-dimensional cellular automata out of ne-
cessity, since cellular automata in higher dimensions are not amenable to the
property-checking algorithms that we wish to demonstrate. Automata may
also have a larger alphabet or a larger radius than in our example, so that
the cells themselves have more than two possible values for their contents or
the local map references the value of more cells. We will discuss how our
methods apply to working with automata of various alphabets and radii, but
in general the assumption that we are dealing with the elementary cellular
automata is a useful and simplifying one.

We have thus far neglected the significant issue of the boundary conditions
for the environment of the cellular automaton. The boundary conditions may
be finite, so that the total number of cells is some finite number. When im-
plementing such boundary conditions, it is common practice for the terminal
cells in either direction to be treated as adjacent, so that the line of cells
forms a loop and a sufficient number of arguments can be passed to the local
map at each index. Another common practice is to assume that all cells past
the boundary have the value of zero, so that the values of the local map will
be constrained at the terminal cells.

Another natural boundary condition is a one-way or two-way infinite
line of blank cells. The initial configuration for an automaton with these
boundary conditions is thus a finite number of non-empty cells surrounded
by infinitely many empty cells in one or both directions. The configuration
could also be periodic, so that the infinitely recurrent pattern is nonempty in
one direction or both direction. In order to describe these configurations, we
need to develop tools to recognize infinite and bi-infinite words and languages:
this will be one motivation for our introduction of ω- and ζ-automata.

Definition A configuration is a function C → Σ relating the cells of the
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automaton to characters from the alphabet. It specifies the contents of each
cell present in the automaton at a given time step. A configuration is there-
fore representable as a finite word when the corresponding automaton has
finite boundary conditions, or as an infinite word when the corresponding
automaton has infinite boundary conditions.

We are naturally interested in the evolution of configurations of cellular
automata over time. The formal discussion of properties associated with this
evolution is aided by the concepts of the global map and phase-space:

Definition The global map Gρ : Σn → Σn of a cellular automaton with
finite boundary conditions is the extension of the local map ρ to the entire
configuration. Extending the local map in an automaton with an infinite
boundary condition allows us to define a global map Gρ : ΣZ → ΣZ (or
Gρ : ΣN → ΣN, as appropriate). For notational convenience and clarity, we

will write x
ρ→ y for Gρ(x) = y.

Definition The phase-space of a cellular automaton ρ is the functional di-
graph of the global map Gρ. In other words, the phase-space is a directed
graph (V,E) where every vertex v ∈ V corresponds to a unique configura-
tion of the automaton, and each edge (u, v) ∈ E is present if and only if
Gρ(u) = v.

It is easy to see that interesting properties of cellular automata may be
characterized as statements about the phase-space. For example, suppose
that we are interested in determining whether the evolution of cellular au-
tomaton ρ results in a 3-cycle: a set {x, y, z} of configurations such that

x
ρ→ y

ρ→ z
ρ→ x. This property naturally translates into the assertion “the

phase-space contains a 3-cycle.”
If a cellular automaton has finite boundary conditions, the phase-space

is a finite graph which can be completely enumerated, so such a property
can be checked by a graph traversal algorithm such as depth-first search.
Cellular automata with infinite boundary conditions, however, have an un-
countable number of configurations and thus an uncountably infinite graph
for the phase-space. Validating assertions about the phase-space of cellu-
lar automata with infinite boundary conditions therefore requires a different
strategy. We will build up this strategy in the following sections; its imple-
mentation is the primary aim of this thesis. First, though, we focus on a
vital component: the automata which are used to recognize infinite words.
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2.1.2 ω-Automata

To properly define ω-automata, we first review the concept of a finite automa-
ton. Finite automata, used to recognize words over finite strings, should be
familiar from many applications in computer science.

Definition An automaton is a tuple (Q,Σ, δ) where Q is the set of states, Σ
is the alphabet, and δ ⊂ Q×Σ×Q is the transition relation. This definition
represents the basic transition system which is common to all automata. To
fully define a finite automaton, we require some notion of acceptance.

Definition A finite automaton is an automaton defined with a set of initial
states I ⊂ Q and a set of final states F ⊂ Q, to form a 5-tuple (Q,Σ, δ, I, F ).

An automaton is used to accept or reject words over its alphabet Σ, which
we can formalize using the concept of a run.

Definition A run of an automaton (Q,Σ, δ) over a finite word w ∈ Σn,
where w = w0w1...wn−1, is a sequence q0, q1, ..., qn such that all transitions
(qi, wi, qi+1) ∈ δ for 0 ≤ i < n. For a finite automaton, a run is accepting if
and only if q0 ∈ I and qn ∈ F .

Armed with the concept of runs, we formally define what it means to
recognize a word. A word w is recognized by an automaton A if there is at
least one accepting run on A for w. The language L(A) of an automaton A
is the set of words recognized by A. A set of finite words is recognizable if
and only if it is the language of some finite automaton. A finite automaton
A is empty if L(A) = ∅ and universal if L(A) = Σ∗.

Figure 2.2 shows an example of a simple finite automaton, which is for-
mally defined by ({1, 2}, {a, b}, {(1, a, 1), (1, b, 1), (1, b, 2)}, {1}, {2}). This
automaton recognizes the language (a + b)∗b, or the set of all strings over
{a, b} which have b as a terminal character. This machine also demonstrates
two properties that automata may have. First, it is incomplete; not all pos-
sible transitions are defined from every state. This is compatible with our
definition of a finite automaton above; we say that a run fails and may not be
accepting if one of the necessary transitions is undefined. Second, and more
importantly, it is nondeterministic: not all transitions are unambiguous.

Definition An automaton (Q,Σ, δ, I, F ) is nondeterministic if there is at
least one state q ∈ Q and one character σ ∈ Σ for which (q, σ, q′) ∈ δ and
(q, σ, q′′) ∈ δ with q′ 6= q′′. The automaton is also nondeterministic if |I| > 1.
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21
b

a,b

Figure 2.2: A simple finite automaton with alphabet {a, b}.

All automata on one-way infinite inputs are referred to as ω-automata.
They scan words over Σω much as finite automata scan words over Σn. In
addition, ω-automata differ from finite automata in their acceptance condi-
tions; we will see this best by example.

Definition A Büchi automaton is a tuple (Q,Σ, δ, I, F ) where (Q,Σ, δ) is
an automaton, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states.

A Büchi automaton is the simplest extension of the theory of finite au-
tomata to one-way infinite strings; its definition is virtually identical to that
of a finite automaton. Before discussing the languages recognized by Büchi
automaton, we must redefine a run for the one-way infinite case.

Definition A run of an automaton (Q,Σ, δ) on an infinite word w ∈ Σω,
where w = w0w1..., is a sequence q0, q1, ..., qn, ... such that all transitions
(qi, wi, qi+1) ∈ δ for i ∈ N. A state q is infinitely recurrent in this run if, for
all i ∈ N, there exists some j > i such that q = qj.

For a Büchi automaton, a run is accepting if any state in F is infinitely
recurrent. A word is recognized by a given ω-automaton if there is at least
one accepting run, and, as in the finite case, the language of a ω-automaton
remains the set of words recognized by that automaton. Büchi automata are
also a natural way to define the recognizability of sets of infinite words; a
language L ⊂ Σω is recognizable if and only if there is some Büchi automaton
A such that L is the language of A. An ω-automaton A is empty if L(A) = ∅
and universal if L(A) = Σω.
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Figure 2.3: A simple Büchi automaton.

An example of a Büchi automaton is given in Figure 2.3. This machine
recognizes all infinite words over {a, b} which contain only finitely many a’s.
It also exemplifies an important property of Büchi automata: a word is not
necessarily recognized if an final state is reached at every time step by a
different run. It is necessary for a single run to exist which reaches a final
state infinitely often. This distinction is important when the automaton in
Figure 2.3 is run on the word (ab)ω; for all i ∈ N there is a run of the
automaton which reaches state 2 at time 2i. However, these runs all fail at
time 2i+ 1.

For finite automata, we can always construct a deterministic automa-
ton which recognizes the same language as a nondeterministic automaton
by using a power set construction. However, the same is not true of Büchi
automata: there exist recognizable languages L such that L is not the lan-
guage of any deterministic Büchi automaton. A formal proof, provided in
[12], relies on the notion of prefixes. While recommended to the interested
reader, it is beyond the scope of this thesis. The critical result for now is that
a new type of ω-automaton must be defined if we are to have a deterministic
ω-automaton equivalent in computational power to a Büchi automaton.

Definition A Rabin automaton is a tuple (Q,Σ, δ, i, R) where (Q,Σ, δ) is an
automaton, i is the the initial state, and R = {(Ej, Fj)} where Ej, Fj ⊂ Q
represents the acceptance condition, a set of Rabin pairs.

A Rabin automaton is deterministic by definition, so δ defines at most one
transition (q, σ, q′) for each (q, σ), and the initial state i ∈ Q is unique. The
acceptance condition R = {(Ej, Fj)} is a set of pairs of sets of states. A run
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r = q0, q1, ... of a one-way infinite word is accepting if there exists some index
j such that r reaches Fj infinitely often and reaches Ej only finitely often.
The equivalence of Büchi automata and Rabin automata will be discussed
in Section 2.2.1. As an example, a Rabin automaton accepting the same
language as the Büchi automaton we saw earlier, that of only finitely many
a’s, is presented in Figure 2.4.

1

a

2
b

a

b

Figure 2.4: A simple Rabin automaton. The acceptance condition R is
{({1}, {2})}, so an accepting run is one which reaches state 1 finitely often
and state 2 infinitely often.

2.1.3 ζ-Automata

While there is some room for opinion about the optimal representation of
ω-automata, there is a broad spectrum of definitions of ζ-automata. We
will follow [19] and [8] in our definition, which strives to be as simple and
conventional as possible. The resulting ζ-automaton is familiar after our
review of finite and ω-automata: a ζ-Büchi automaton is a generalization of
a Büchi automaton to accept two-way infinite words.

Definition A ζ-Büchi automaton, or ζ-automaton, is a tuple (Q,Σ, δ, I, F )
where (Q,Σ, δ) is an automaton, I ⊂ Q is the set of initial states, and
F ⊂ Q is the set of final states. A run of an automaton (Q,Σ, δ) on a
bi-infinite word w ∈ ΣZ, where w = ...w−1w0w1..., is a bi-infinite sequence
..., q−n, ..., q−1, q0, q1, ..., qn, ... such that all transitions (qi, wi, qi+1) ∈ δ for
i ∈ Z. A state q is infinitely recurrent in this run if, for all i ∈ Z, there exists
some j > i such that q = qj, and q is infinitely precurrent in this run if, for
all i ∈ Z, there exists some j < i such that q = qj.
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Let r be a run of ζ-automaton Z = (Q,Σ, δ, I, F ) on some bi-infinite
word w, with rI and rF the sets of infinitely precurrent and recurrent states,
respectively. Run r is accepting if rI ∩ I 6= ∅ and rF ∩ F 6= ∅. A bi-infinite
word w is recognized by a ζ-automaton A if there is an accepting run of A
on w, and the set of words recognized by A is the language L(A) of A. A
ζ-automaton A is empty if L(A) = ∅ and universal if L(A) = ΣZ.

This definition of a ζ-automaton allows us to specify precurrent and recur-
rent patterns in the bi-infinite word, and thus gives us a basis for describing
languages of bi-infinite words. A key distinction from the one-way infinite
case is that bi-infinite words have no natural coordinate system. While a
word over ΣN has a natural first character, and thus each character can be
indexed, there is no natural reference point for words over ΣZ. Bi-infinite
words are often described as having the property of shift-equivalence for this
reason, since a bi-infinite word where every character is shifted one place to
the right has not changed at all.

2.2 Algorithms and Operations

In order to obtain useful results with automata on infinite words, a few
common operations are required. Many of these are relatively, such as union
and intersection, and revolve around performing the corresponding operation
on the state set and transition relations of the automata. The operations
of determinization and complementation, in particular, require a bit more
consideration, primarily because of their computationally significant cost.

2.2.1 Determinization of ω-Automata

Determinization refers to the generation of an equivalent deterministic au-
tomaton given a nondeterministic one. For finite automata, the classical
result mentioned earlier was given by Rabin and Scott in [14]: for every
nondeterministic finite automaton, we can construct a deterministic finite
automaton which accepts precisely the same language. We review the Rabin-
Scott construction briefly for the sake of demonstrating its inapplicability to
automata on infinite words.

The Rabin-Scott construction uses a power set construction, where each
state in the deterministic automaton represents a set of states in the nonde-
terministic automaton. If {q0, q1, ..., qn} is the set of all runs of the nonde-
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terministic automaton on a given word, then {d0, d1, ..., dn} is the run on the
deterministic automaton, where di =

⋃
qi. Thus, given a nondeterministic

automaton (Q,Σ, δ, I, F ), the nondeterministic automaton (2Q,Σ, δ′, I ′, F ′)
accepts the same language, where

δ′ = {(Q1, σ,Q2) | Q2 =
⋃
q∈Q1

{q′ | (q, σ, q′) ∈ δ)}}

I ′ = {I}
F ′ = {q |q ∩ F 6= ∅}

The power set construction is simple and effective, but also exponential in the
worst case. Determinizing a finite automaton of n states therefore requires
O(2n) time and produces an automaton of O(2n) states in the worst case.

As hinted previously, the Rabin-Scott power set construction is ineffective
for determinizing automata on infinite words. We can informally explain
this by returning to the example automaton in Figure 2.3. A power set
construction on this automaton would record the states that any run could
be in at a given time. However, the automaton which resulted from a power
set construction would be incapable of distinguishing which run reached a
final state at a given time. When the automaton scans the word (ab)ω, for
example, there is a run which reaches state 2 after every other character.
This run always fails immediately afterwards, however, on the following a.
The power set automaton thus alternates between states labeled by {1} and
{1, 2}, and since {1, 2} is a final state, the run would be accepting and the
machine would incorrectly recognize the word.

From the failure of this attempt to determinize a Büchi automaton, we
can see that it is necessary to somehow record which run is reaching a final
state at a given time. Only by doing this can we ensure that a single run
reaches a final state infinitely often. As we briefly referenced above, we know
that a deterministic Büchi automaton cannot recognize every recognizable
language, so we look for a way to convert a Büchi automaton into a Rabin
automaton. The equivalence of Büchi and Rabin machines for recognizing
infinite words is given by R. McNaughton in [9]:

Theorem 2.1. Any recognizable subset of Σω can be recognized by a Rabin
automaton.

A constructive proof of McNaughton’s Theorem, given by S. Safra, de-
scribes a method for computing an equivalent Rabin automaton given a
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Büchi automaton. Conceptually, the algorithm memorizes occurrences of
final states, and records the points at which a given run returns to a final
state in order to ensure that a singular run in the Büchi automaton reaches a
final state infinitely often. We will omit a formal proof of correctness due to
length; the interested reader is referred to [15, 12]. Safra’s determinization
algorithm is presented here for reference and because improvements to this
algorithm feature prominently in our work.

Safra’s Construction

Given a Büchi automaton (Q,Σ, δ, I, F ), we build a Rabin automaton R =
(T,Σ, δ, I, F ) where the elements of T correspond to labeled trees. At a
high level, we will explore the state set of R by repeatedly constructing the
resulting tree after a transition in the automaton. Each node v in a tree
has a unique name drawn from [2n] (where |Q| = n), and is labeled with a
nonempty subset of Q, denoted by L(v). Nodes may be marked or unmarked,
and we hold as an invariant that the union of the labels of the children of v
is a strict subset of the label of v. The initial state of R is given by a simple
tree. If I ∩ F = ∅, the initial tree is one unmarked node labeled with I. If
I ⊂ F , the tree is one marked node labeled I. Otherwise, the tree consists
of an unmarked node labeled I with a marked child labeled I ∩ F .

We calculate the state set of R by performing transitions on the states.
On character α, we transform tree T as follows:

1. We perform the transition by α on the labels of each node, and erase
all marks.

2. For each node v, we create a new rightmost child of v with label L(v)∩
F . We mark the new node and assign it a name. In the standard
version of Safra’s construction, we use the smallest available integer.

3. For all nodes v and v′, where v is a left sibling of v′, remove all states
in L(v) from L(v′).

4. Remove all nodes with an empty label.

5. If the union of the labels of the children of v is equal to the label of v,
mark v and remove all children of v.
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The resulting tree represents a new state of R. We continue performing the
transitions until the graph is complete, and we have defined a transition from
every state on every character in Σ. The total number of trees is bounded
by 2O(n logn), where n = |Q|. The algorithm is guaranteed to terminate in
2O(n logn) time . The set F of final states is defined as {(Ei, Fi)|i ∈ 2n}, where
the state corresponding to tree T is in Ei if i is not the name of any node
present in T , and the state corresponding to tree T is in Fi if i is the name
of a marked node in T .

From a Büchi automaton with n states, this determinization algorithm
allows us to construct an equivalent Rabin automaton with 2O(n logn) states
and O(n) pairs of sets of states in the acceptance condition. While far from
attractive, this is good enough to render determinization practical in some
applications; remember that determinization of an automaton over finite
words results in a machine of O(2n) states. We will review the tractability
of Safra’s construction in greater detail when discussing our implementation
in Chapter 4.

2.2.2 Complementation of ω-Automata

When performing operations on ω-automata and the languages which they
recognize, we will frequently be interested in complementing an ω-automaton.
Given an ω-automaton A, the goal of a complementation algorithm is to
construct an automaton Ā which recognizes Σω \ L(A) = L̄(A). A significant
amount of work has been done in this area over the last 40 years; Vardi
provides a detailed survey in [22].

The best lower bound on the blowup of a Büchi automaton during com-
plementation, established by Yan in [24], demonstrates that in the worst
case an automaton of n states requires at least O((0.76n)n) states in an au-
tomaton representing the complement. We will omit presenting the majority
of results with respect to the complementation of Büchi automata; the in-
terested reader is referred to [22] and [17]. Two results in particular are
worth mentioning here: an algorithm for complementation presented in [12]
which makes use of Safra’s determinization algorithm, and a direct algorithm
for complementation recently presented in [17] which approaches the known
lower bound.

Rabin automata, because of their deterministic quality and the nature of
their acceptance condition, are naturally more amenable to complementation
than Büchi automata. Therefore, the first algorithm we use for complementa-
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tion begins by converting the Büchi automaton into an equivalent determin-
istic Rabin automaton via Safra’s construction. The construction of a Büchi
automaton which recognizes the complement language uses a cut-point con-
struction to keep track of the states that have been visited. We will avoid
detailing it further here, since we make no improvements to this construction
and the complete algorithm and proof of correctness is provided in [12]. For
the purposes of this thesis, the important elements are that the algorithm
utilizes Safra’s construction, and generates an automaton of 2O(n logn) states
given an input automaton of n states.

The complementation method proposed by Schewe in [17], by contrast,
does not require the determinization of the automaton. It generates a com-
plement automaton of O(n2(0.76n)n) states from an input automaton of n
states. This approaches the lower bound on complementation of Büchi au-
tomaton. However, several factors remain a barrier to the use of this method
for our purposes; these are discussed further in Sections 5.1.2 and 6.1.

2.2.3 Complementation of ζ-Automata

A proof that the family of languages recognized by ζ-automata is closed
under complementation was discussed in [11], but a constructive algorithm
for complementing such a language was not shown until the work of Culik
and Yu in [8]. The algorithm relies on the fact that the language recognized
by every ζ-automaton is what the authors describe as ωω-regular. A ωω-
regular set is a set which can be written as a finite union of languages of the
form ωABCω, where A,B,C are all the languages of finite automata. Such
an ωω-regular set is closed under complementation; the proof, found in [8],
requires taking the union of a finite but exponential number of ω-automata.

Intuitively, the complementation algorithm uses ω-automata to represent
the languages ωA and Cω. Suppose that we have a ζ-automaton Z recognizing
ωABCω, and some bi-infinite word w = ωabcω which is not in the language of
Z. Then, it stands to reason that at least one of (a /∈ A), (b /∈ B), (c /∈ C)
is true. Since we can check (a /∈ A) by complementing an ω-automaton that
recognize ωA, we can check to see if at least one of these properties is true
for a given bi-infinite word w.

A sticking point here is that a bi-infinite word w may be broken up into
many possible factorizations of the form ωabcω. A ζ-automaton recognizes a
word if any run on that word is accepting, so for every possible factorization
of w into ωabcω, at least one of (a /∈ A), (b /∈ B), (c /∈ C) must hold.
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The exponential number of ω-automata required comes first from the
necessity of checking A and B independently, and second from the fact that
a ζ-automaton may recognize words from the union of a finite number of sets
ωABCω. It is necessary to split these languages into pairwise-disjoint forms
before attempting to construct or complement the appropriate ω-automata.
The running time of complementation of ζ-automata therefore adds another
exponential factor to the running time of complementation of ω-automata.

16



Chapter 3

Model-Checking for Cellular
Automata

Our goal has been to answer questions about the behavior of cellular au-
tomata, and we employ the strategy of model-checking to that end. Model-
checking, a method of formally verifying assertions about the behavior of
systems, is described by Clarke et al. in [4] as consisting of three phases:
modeling, specification, and verification. The application of this process to
cellular automata allows us to answer our questions by proving properties of
phase-space of the automata.

The inspiration for this thesis is primarily due to the following theorem,
due to Sutner:

Theorem 3.1. model-checking for one-dimensional cellular automata is de-
cidable.

This chapter presents an overview of Sutner’s constructive proof of this
theorem, using Clarke’s phases of model-checking as a framework. The in-
terested reader is also referred to the original exposition of the proof in [19].
Note that in the figures in this chapter, we will often assume the alphabet Σ
of a cellular automaton is restricted to {0, 1} for simplicity.

3.1 Modeling

In modeling, a design is converted into a formalism which is accepted by a
model-checking tool. When applying model-checking to a cellular automaton,
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this consists of constructing a transition automaton to represent one step in
the evolution of the configuration.

The type of automaton used to model the evolution of a cellular automa-
ton is dependent on the boundary conditions in use. A cellular automaton
with finite boundary conditions can be checked using a finite automaton. For
one-way infinite boundary conditions we use ω-automata, and for two-way
infinite boundary conditions we use ζ-automata. We will explain the use of
ζ-automata; modeling transitions with finite or one-way infinite boundary
conditions is in fact slightly more difficult, even though verification becomes
vastly easier. The automata we construct to model the basic transition scan
words over Σ2, where Σ is the alphabet of the cellular automaton ρ that we
are modeling.

Formally, given the cellular automaton ρ with alphabet Σ and radius r, we
define the transition automaton Tρ = (Q,Σ2, δ, I, F ). We let Q = Σ2r×Σr, so
that each state is of the form ((x1, ..., x2r), (y1, ..., yr)). Thus each state in the
automaton represents all of the context necessary for one application of the
local rule. The transition relation δ contains the relation (q1, (a, b), q2) if q1 =
((x1, ..., x2r), (y1, ..., yr)), q2 = ((x2, ..., x2r, a), (y2, ..., yr, b)), and ρ(x1, ..., x2r, a) =
b. The paths traversable by following the transitions in the automaton thus
represent all valid pairs of words x, y such that x

ρ→ y.
If the boundary conditions of ρ are two-way infinite, then T is a ζ-

automaton with I = F = Q. In this case, the transition automaton recog-
nizes any bi-infinite word which has an run that never fails. If the boundary
conditions of ρ are one-way infinite, then T is a Büchi automaton with F = Q,
and I is the set of states q ∈ Q which are of the form q = (0, 0, ..., a), (0, 0, ...b)
and ρ(0, ..., 0, a) = 0. This accounts for the finite boundary conditions at the
beginning of the configuration. If the boundary conditions of ρ are finite,
then T is a finite automaton with initial states I as in the one-way infinite
case, and final states F ⊂ Q of the form q = (a, 0, 0, ...), (b, 0, 0, ...) and
ρ(a, 0, 0, ...) = 0. A cellular automaton with finite, cyclic boundary condi-
tions, in which the first and last cells are adjacent, is modeled using a finite
automaton with the condition that the first and last few inputs must re-
main acceptable under the local map ρ, instead of the assumed empty cells
modeled by zeros above.

In all cases, the transition automaton scans the infinite word correspond-
ing to a pair of configurations (referred to below as tracks), and recognizes
the word if the second configuration is a successor of the first under the global
map of ρ. An example of the basic transition automaton for the elementary
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cellular automaton described by Wolfram’s Rule 30, assuming one-way in-
finite boundary conditions, is shown in Figure 3.1. This particular cellular
automaton is of interest because it exhibits chaotic behavior, and has been
proposed as a generator for pseudorandom numbers [23, 22].








































Figure 3.1: A basic transition automaton for ECA 30.

3.2 Specification

Specification in model-checking is simply the process of stating the properties
that a model or design must satisfy. In order to specify properties about
a cellular automaton ρ, we construct a first-order structure for our logical
theory with the phase-space of configurations and the binary predicate →.
The relation A→ B in this logic is true if and only if A

ρ→ B.
Many naturally arising questions about cellular automata have to do with

the evolution of various configurations under the automaton’s global map.
In order to answer these questions, we model them as assertions about the
phase-space of the cellular automaton. A first-order logical structure can be
constructed over the phase-space using the predicate of one-step evolution
of configurations. Thus, a question such as “is there a fixed point?” can be
translated to ∃X : X → X. More difficult questions such as “is there a
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three-cycle?” will require the notion of equality or inequality as well:

∃X, Y, Z : (X → Y ) ∧ (Y → Z) ∧ (Z → X) ∧ (X 6= Y )

3.3 Verification

To verify assertions, we build the corresponding ω- or ζ-automata and check
them for emptiness. Emptiness of an automaton indicates that no accepting
paths exist, and can be checked in linear time on the size of the automaton
using depth-first search. If no accepting paths exist, it is clear that the
assertion being modeled by the automaton is false. If accepting paths do
exist, they are witnesses for the properties in question.

We have already shown how to construct the transition automaton to
check the atomic predicate →. We will build the automata constructing to
more complicated formulae inductively, in a manner corresponding to the
construction of those formulae.

To check the equality relation, an automaton of one state suffices. This
machine, shown in Figure 3.2, simply checks that the character in each word
is equal at every index. The inequality automaton is almost as trivial; shown
in Figure 3.3, it requires two states and checks that there is some index where
the characters in the two words differ. These automata function in either the
one-way infinite or bi-infinite case.

1 [1, 1],[0, 0]

Figure 3.2: An automaton checking that two configurations are equal.
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2 [1, 1],[0, 0],[0, 1],[1, 0]

1

[0, 1],[1, 0]

[1, 1],[0, 0],[0, 1],[1, 0]

Figure 3.3: An automaton checking that two configurations are not equal.

Given two machines Aφ and Aψ modeling logical formulae φ and ψ, we
can construct a new automaton to model (φ∨ψ) by taking the disjoint sum of
Aφ and Aψ. Since these automata may be nondeterministic, this is as simple
as renaming the states of ψ to avoid intersection with those of φ. Similarly,
the conjunction (φ∧ψ) of two formulae can be modeled by taking the product
of the machines Aφ and Aψ. An example of this product construction, the
automaton which represents the formula (X → Y ) ∧ (X 6= Y ), is shown in
Figure 3.4.

A new issue presents itself here: if we try to produce the formula for
(X → Y ) ∨ (Y → Z), the first tracks in each machine do not correspond to
one another. We deal with this issue by maintaining a list which indicates
which configurations correspond to which tracks in each automaton. When
we operate on two automata with different sets of tracks, the new automaton
scans words with a larger number of tracks, such that each configuration is
treated appropriately. This allows us to intelligently merge, for example,
the two tracks corresponding to configuration Y in the example above. The
automaton which results is presented in Figure 3.5.

Existential quantifiers are handled by projection: erasing the track cor-
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5 [0, 0]

6

[0, 1]

7

[1, 1]

8

[0, 0]

9

[0, 1]10

[1, 0]

[1, 1]

[0, 0]

[0, 1]

[0, 0][0, 1]

[1, 0]

4

[0, 1]1

[0, 0]

2

[1, 1] [0, 1]

[0, 0]

[0, 1]

[1, 0]

3

[0, 0][1, 1]

Figure 3.4: An automaton checking (X → Y ) ∧ (X 6= Y ) for ECA 30.
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Figure 3.5: An automaton checking (X → Y ) ∨ (Y → Z) for ECA 30.

responding to the variable being bound. Conceptually, this is because we
no longer care what particular characters comprise the word in that track,
as long as there exists some possible sequence of characters which would al-
low an accepting run. To handle universal quantifiers, we convert them to
existential quantifiers.

Negation of a logical formula is simply complementation of the corre-
sponding automaton, as described in Sections 2.2.2 and 2.2.3. Because of
the exponential and super-exponential constructions involved in complemen-
tation, it represents the most expensive operation in terms of running time
and the size of the automaton generated. Universal quantifiers can thus
be doubly expensive: converting the expression ∀Y ∃X : X → Y to the
equivalent form ¬ ∃X : ¬(∃Y : X → Y ) may require us to perform comple-
mentation twice.

We are now prepared to verify assertions about the behavior of one-
dimensional cellular automata, although our casual use of exponential and
super-exponential algorithms indicates that computational feasibility may be
a concern.
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Chapter 4

Implementation of Safra’s
Construction

Considering the high-profile role that complementation plays in our model-
checking procedure, an efficient algorithm is extremely important. Of the two
algorithms for complementation discussed in Section 2.2.2, we chose to rely
primarily on the determinization-based algorithm using Safra’s construction
(this design decision is explained in Chapter 5). We implemented Safra’s
construction as a standalone package, so that future work on ω-automata
can easily reuse our implementation of this operation. Our intention is to
make this implementation, as well as the Java code from the model-checking
system, available under the GNU General Public License.

The running time and memory usage of the determinization algorithm are
obviously related to the size of the generated Rabin automaton. Since the
maximum size of the automaton generated by determinization is 2O(n logn), it
is clear that any optimizations which can be made are critically important.
We present several such optimizations to Safra’s construction below.

4.1 Improvements

A number of implementations of Safra’s construction are presented in the
literature. While some, such as [1], present incremental improvements to the
construction, our findings indicated that larger improvements were necessary
to keep the resulting automata within a size that would make model-checking
feasible.
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First, as specified in our definitions in Section 2.1.2, we allow our au-
tomata to be incomplete. If not every transition needs to be defined, this
allows a massive reduction in the number of transitions stored in memory.
This also acts to simplify further operations such as product constructions.

4.1.1 Transition Ordering

The order of the first two steps of Safra’s construction may be exchanged
without affecting the proof of correctness presented in [15]. These steps
represent constructing a new child of each node and transitioning the label
of each node according to the behavior of the nondeterministic automaton.
Previous definitions of Safra’s construction have constructed new children
first, and then transitioned the label of each node.

Our implementation provides an option to reverse the order of these steps.
After finding that it typically reduces state complexity in the automata gen-
erated during the model-checking procedure, we use this option as a default.
Transitioning the labels of each node first often reduces the number of states
in the label, leading to a smaller number of trees and creating a smaller Rabin
automaton.

4.1.2 Marking New Nodes

As a further optimization, new nodes which are created in step 2 of Safra’s
construction should be marked. This is also compatible with the proof of
correctness of the algorithm. Informally, a marked node represents a recur-
rent path intersecting the set of final states. Since the label of a new node is
a subset of the final states, it represents such a path. The traditional strat-
egy where a new node is not marked, may require a number of additional
transitions. Eventually this node will become marked in step 5 of Safra’s
construction, but the additional transitions to reach that point require addi-
tional time and increase the number of states in the automaton.

4.1.3 Advanced Node Renaming

Finally, an advanced heuristic for naming new nodes can be employed to
further reduce the size of the resulting Rabin automata. Safra’s construction
algorithm proceeds until all states have been fully explored, so transitions
leading to a previously seen state should be preferred over those leading to
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a new, equivalent state. When a new node is created, we check all possible
labels for that node to see if using any of them will make it more likely that
we will generate a previously-seen tree. This has the advantage of creating
the fastest possible return to a previously seen state, which accelerates the
process of Safra’s construction.

The disadvantage of this heuristic is the increased time required to check
all node labels. Since there are 2n possible labels for a node in the tree, and
some number of nodes are created simultaneously in each step, an intuition
might be that checking for a previously seen tree requires Ω(2n) time at each
step. However, we note that the default node-naming strategy is “use the
lowest available node name.” The only times when we should deviate from
this strategy, therefore, is when there is an already-seen tree with an unused
node ID less than its maximum node ID. The node renaming heuristic thus
reduces to storing a reference to each of these trees and renaming the missing
nodes appropriately during transitions of trees on the appropriate size.

Looking for existing trees that satisfy the condition, checking structural
similarity, and renaming the nodes appropriately can be done in a time pro-
portional to the size of the trees. This cost is asymptotically insignificant
compared to the benefit of reducing the size of the automaton.

4.2 Performance Analysis

Of critical interest is the question of whether our improvements make any
substantial difference to the performance of Safra’s construction. We ar-
gue that they do through presenting example determinizations and statistics
about the determinization of large numbers of ω-automata. These are also
useful in grasping the time and memory requirements of our algorithms.

4.2.1 Sample Determinizations

As a first example of the improvements to Safra’s construction defined above,
we demonstrate different ways to determinize a simple Büchi automaton.
Our example is the automaton presented in Figure 2.3, which recognizes the
language of strings over {a, b} with only finitely many a’s. Any combination
of our optimizations produces a correct automaton, so these machines are
all equivalent. Figure 4.1 demonstrates the unoptimized result of Safra’s
construction that is presented in [1]. In Figure 4.2, we demonstrate the
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result of marking new nodes when performing the same determinization, and
Figure 4.3 demonstrates the use of all our optimizations (except for advanced
node renaming) in the construction.
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Figure 4.1: Rabin automaton equivalent to the Büchi automaton in Figure
2.3, produced by the unmodified version of Safra’s construction. The accep-
tance condition for this automaton is {({1, 2}, {4})}.

Figure 4.2: Result of marking new nodes when determinizing the automa-
ton from Figure 2.3. The acceptance condition for this automaton is
{({1, 2}, {3})}.

Figure 4.3: Optimal Rabin automaton equivalent to the automaton from Fig-
ure 2.3, produced using the optimizations to Safra’s construction described
in Section 4.1. The acceptance condition for this automaton is {({1}, {2})}.
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Automata produced by determinization are not always so well behaved.
Figure 4.4 illustrates a Büchi automaton of four states over the alphabet
Σ = {1, 2, 3,#} presented in [1]. The determinization of the automaton with
none of our optimizations results in a Rabin automaton of 384 states, shown
in Figure 4.5.

1

2

1

3

2

4

31

1,2,3,#

2

1,2,3,#

3

1,2,3,#

Figure 4.4: A Büchi automaton which exhibits an exponential blowup in
state size under determinization. The results of determinization without and
with optimization are shown in Figures 4.5 and 4.6, respectively.
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Figure 4.5: The transition matrix of the Rabin automaton resulting from the
determinization of the automaton in Figure 4.4; it contains 376 states.
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Figure 4.6: The transition matrix of the automaton resulting from the de-
terminization of the automaton in Figure 4.4 if our optimizations are used;
it contains 256 states.
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As dramatic as the increase in state size caused by that determinization
is, worse examples abound. We once again turn to [1], this time for an
automaton which blows up to a total size of 13696 states under classical
determinization. With our optimizations, this is reduced to 10776 states, but
this is a hollow victory given that the original size of the automaton is only
5 states, and the alphabet Σ = {1, 2, 3, 4,#} contains only five characters.
The automaton is presented in Figure 4.7, the unoptimized determinization
in Figure 4.8, and the optimized determinization in Figure 4.9.

1

2

1

3

2

4

3

5

41

1,2,3,4,#

2

1,2,3,4,#

3

1,2,3,4,#

4

1,2,3,4,#

Figure 4.7: Another Büchi automaton exhibiting exponential blowup in state
size under determinization. Determinization results are given in Figures 4.8
and 4.9.
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Figure 4.8: The transition matrix of the Rabin automaton resulting from
the determinization of the automaton in Figure 4.7; it contains 13696 states.
Note in particular the structure to the bottom of the diagram, which includes
the initial state and a sink state.
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Figure 4.9: The transition matrix of the automaton resulting from the de-
terminization of the automaton in Figure 4.7 if our optimizations are used.
It contains 10776 states but nonetheless represents an improvement over the
unoptimized determinization.
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4.2.2 Performance Analysis

To further characterize the performance of Safra’s algorithm and our im-
provements in the determinization of Büchi automata, we present statistics
on the performance of both algorithms the determinization of randomized
Büchi automata. There is some discussion as to the correct means of gen-
erating a “random” automaton. Our first method of obtaining a sampling
creates a random graph, while a method that proved more useful in examining
performance was to sample the automata generated by the model-checking
engine.

A random sampling of Büchi automata is obtained by creating a random
graph, and varying the parameters of size and average connectivity. When
generating a random automaton of size n over an alphabet Σ of size k, there

are a possible (n2)(k)
2

transitions. To generate a random automaton, we begin
with an empty transition relation δ = ∅, and add each of these transitions
to δ with probability c ∈ [0, 1]. We describe c in this section as the average
connectivity of the automaton; note that this is semantically distinct from
the concept graph connectivity.

As a first sample, we processed 100 random Büchi automata from size
1 to 8 and connectivity 0.1 to 0.9. Our findings, detailed in Tables 4.1
and 4.2, seemed to indicate that our optimizations yielded a slightly better
performance in some cases and slightly worse performance in other cases. We
present the average number of states in the Rabin automata resulting from
determinization with and without our optimizations below.
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Table 4.1: Average size of Rabin automata produced by the unoptimized
determinization of Büchi automata of varying size and average connectivity.

Büchi States 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 1 1 1 1 1 1 1 1 1
2 1 2 3 3 3 3 3 3 2
3 3 9 13 16 15 13 11 7 5
4 8 41 75 68 49 28 15 10 6
5 20 375 530 211 81 39 19 11 6
6 91 1101 2531 270 104 42 19 11 7
7 259 5792 4519 532 75 36 18 12 7
8 1920 38396 2756 249 68 33 20 12 7

Table 4.2: Average size of Rabin automata produced by the optimized de-
terminization of Büchi automata of varying size and average connectivity.

Büchi States 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 1 1 1 1 1 1 1 1 1
2 1 2 3 3 3 3 3 3 3
3 3 8 14 17 13 13 10 8 5
4 8 31 82 73 54 29 16 9 5
5 20 250 378 214 78 39 19 11 6
6 83 1416 1785 369 91 40 20 11 7
7 391 7165 3034 300 82 35 19 12 7
8 844 41591 2493 267 74 33 19 12 7
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However, further investigation indicated that this average-case perfor-
mance was misleading. First, the random-graph method of generating an
automaton is not a good sampling: this machine is frequently empty or triv-
ial. This reduces the number of samples which undergo significant processing,
so there is an increased amount of variance in the data. Furthermore, the ma-
chines thus constructed are not representative of automata generated during
the model-checking procedure.

In order to generate a more representative sample, we used the machines
generated when checking for injectivity in each of the elementary cellular au-
tomata (see Section 5.2.2 for details of this procedure). Examining the effect
of our optimizations in determinization of these machines, we found that the
typical result was a 10-15% reduction in the size of the resulting automaton.
The results are shown in Figure 4.10. While it remains premature to com-
ment on the efficiency of our methods for all Büchi automata, we may be
reasonably confident in their utility for our purposes.

Finally, a characterization of the performance of our implementation of
Safra’s construction would be incomplete without a discussion of time and
memory usage. A good example automaton for stress-testing our implemen-
tation, is an automaton also exhibiting superexponential blowup. Presented
in [20], it is shown in Figure 4.11. The Rabin automaton generated from de-
terminization of this automaton contains 979,314 states if our optimizations
are used, or 1,107,016 states if they are not.

As a relative benchmark, this automaton requires approximately 3 min-
utes 26 seconds to generate on a 2.4 GHz Intel Core 2 Duo processor. It
uses approximately 1308 megabytes of RAM during this procedure. Since
this automaton is significantly larger than any we have encountered during
model-checking, it is reasonable to be optimistic about the performance of
our algorithm. However, this level of memory usage could potentially be an
issue in performing operations on multiple automata, and future improve-
ments to the model-checking engine should also work on reducing memory
overhead.
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Figure 4.10: Effects of our optimizations to Safra’s construction in reducing
the size of automata produced by the model-checking system.
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1,2,3,4,5,#

2

1,2,3,4,5,#

3

1,2,3,4,5,#
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1,2,3,4,5,#

5

1,2,3,4,5,#

Figure 4.11: This Büchi automaton produces a Rabin automaton of 979,314
states when determinized.
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Chapter 5

Model-Checking Engine

The implementation of our model-checking system is written primarily in
Java, with an interface in Mathematica. Using Mathematica’s JLink ca-
pability, we combine the advanced user interface and parsing features of
Mathematica with a more powerful, efficient back-end written in Java.

5.1 Design Decisions

5.1.1 Implementation Languages

A major design decision in the implementation of our model-checking system
was the use of Mathematica for the user interface and parser and Java for the
back-end implementation of the algorithm. The decision to use Mathematica
was influenced by the natural ease of parsing logical formulae in a functional
programming language, as well as the fact that Mathematica is frequently
used in the study of cellular automata.

Java suggested itself as a programming language when it became clear
that an efficient implementation of Safra’s construction and of the model-
checking utility would require the heavy use of hashtables. A more impor-
tant reason for the use of Java, however, is the use of Mathematica’s JLink
interface. This allows for extremely easy integration of the two components,
and the efficient passing of data between the user interface and the high-
performance back-end.
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5.1.2 Complementation Algorithm

Also deserving of explanation is our decision to use an algorithm based on
explicit determinization and Safra’s construction for the complementation of
ω-automata, rather than a method based on direct complementation. Safra’s
construction is an iterative process which generates the accessible part of a
Rabin automaton based on exploration of the graph formed by the state set
and transition relation. In contrast, the method for direct complementation
presented in [17] creates the entire automaton, including inaccessible parts,
and requires referencing and performing ranking operations on a set of objects
of size O(nn).

In the worst case scenario, complementation of the Büchi automaton
via determinization and Safra’s construction will produce a larger automa-
ton than direct complementation. However, we know that complementa-
tion of Büchi automata, even via the direct method, has a lower bound of
O((0.76n)n) in the worst case. The best known algorithm generates an au-
tomaton of O(n2(0.76n)n) states on an input of n states. Thus, even a Büchi
automaton of 10 states can generate an automaton of 6,428,888,930 states.
Because it the complementation method does not iteratively construct the
graph, an implementation may generate this many states even in cases where
the the majority of the graph is inaccessible. We therefore use Safra’s con-
struction and the associated complementation algorithm, and resign ourselves
to the fact that the problems where direct complementation outperforms our
algorithm are beyond our current computational resources.

5.2 Usage

The use of the model-checking software is best explained via examples. Sim-
ple properties such as surjectivity and injectivity are of interest to those
studying cellular automata, but also simple enough in their formulation to
make ideal candidates for model-checking.

5.2.1 Checking Surjectivity

A given automaton ρ is surjective if every configuration C has at least one
predecessor P such that P

ρ→ C. In the theory of phase-space, this property
can be expressed as

∀x ∃y : y → x
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Our Mathematica parser translates this formula into an expression that is
decidable in the model-checking system. This is accomplished by replacing
any universal quantifiers with appropriate existential quantifiers,

¬∃x ¬∃y : y → x

parsing the components of the formula appropriately,

¬(∃x(¬∃y(y → x))))

and converting the resulting formula into a series of operations to pass via
JLink to the model-checking functions:

setCA[ρ];

isEmpty[

project[ x,

not[

project[ y,

step[y, x]

]

]

]

];

The preamble setCA sets the appropriate fields in the parser to allow us to
work with the automaton ρ. The notation step signals for construction of
the basic transition automaton, while the syntax project[y, A] calls for
erasing the track corresponding to y from automaton A. The operator not

calls for complementation.
It is important to note why, instead of complementing the entire automa-

ton, we made a call to isEmpty. The automaton passed to isEmpty has had
all tracks erased. If it is empty, this indicates that there are no witnesses
for the underlying proposition. Otherwise, every accepting run corresponds
to a witness. It is true that we could complement the automaton and check
for universality. However, emptiness for Büchi automata can be checked in
linear time via depth-first search, so the most efficient way of evaluating the
expression is to check for emptiness.

If the automaton is empty, then there are no witnesses for

∃x ¬∃y →ρ (y, x)
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or we know that there does not exist a configuration in the phase-space
which lacks a predecessor. Therefore, we can safely conclude that if this
Büchi automaton is empty, the cellular automaton ρ is surjective. Note also
that if the automaton had not been empty, the depth-first search process
which tested emptiness could also produce a list of witnesses.

In the particular case of surjectivity, the counterexamples would be “Gar-
den of Eden” configurations. These are configurations for which no prede-
cessor exists. The construction of Garden of Eden configurations has been
an area of active study with respect to cellular automata (additional detail is
provided in [10, 16]), so generating such configurations automatically is one
possible use of our model-checking application.

When we ran this algorithm on each of the elementary cellular automata
with one-way infinite boundary conditions, we determined that the only sur-
jective elementary cellular automata are those characterized by Wolfram’s
rules 51, 60, 85, 86, 89, 90, 101, 102, 105, 106, 149, 150, 153, 154, 165, 166,
169, 170, 195, and 204.

5.2.2 Checking Injectivity

A cellular automaton is injective if every configuration has at most one pre-
decessor. The corresponding assertion can be expressed as in our theory
as

¬ ∃X, Y, Z : (X → Z) ∧ (Y → Z) ∧ (X 6= Y )

The parser translates this formula into the following expression:

¬ (∃x (∃y (∃z : (x→ z) ∧ (y → z) ∧ (x 6= y)))))

We can see that the series of commands given to the model-checking is slightly
more complicated than when checking surjectivity:

setCA[ρ];

isEmpty[

project[x,

project[y,

project[z,

and[

and[
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step[x, z],

step[y, z]],

unequal[x, y]

]

]

]

];

The new notation and simply signals for construction of the product automa-
ton of its two arguments. We also have an operation or which constructs the
disjoint sum of its arguments.

If the automaton is empty, then there are no witnesses for

∃X, Y, Z : (X → Z) ∧ (Y → Z) ∧ (X 6= Y )

so we know that no two configurations in the phase-space map to the same
configuration under the global map of the cellular automaton. Therefore, the
corresponding cellular automaton ρ is surjective.

When we ran this algorithm on each of the elementary cellular automata
with one-way infinite boundary conditions, we determined that the only in-
jective elementary cellular automata are those characterized by Wolfram’s
rules 15, 51, 60, 195, 204, and 240. As an aside, this implies that rules 51,
60, 195 and 204 are bijective.
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Chapter 6

Extensions

Many significant improvements are possible to our model-checking system.
In this chapter we discuss several possible extensions to the system which
might greatly improve its performance or capabilities.

6.1 Improving Complementation

As discussed briefly before, methods of direct complementation offer the po-
tential for significantly improving the worst-case runtime and size complexity
of complementation. The asymptotically best known algorithm, presented in
[17], is within O(n2) of the lower bound on complementation. However, as
we discussed in Section 5.1.2, a method which constructs only the accessible
portion of the automaton is critical for our purposes. Any work on Schewe’s
algorithm which allowed this could be translated into a significant improve-
ment in the efficiency of our model-checking algorithms. Work to avoid
explicit determinization via the use of antichains, presented in [5] and [3],
also represents a significant potential improvement in algorithmic efficiency
and should be investigated in this context.

Some improvement may be possible even without additional theoretical
work, however. An algorithm for simultaneous determinization and comple-
mentation of ω-automata is presented in [6]. Implementing the algorithm de-
veloped by Emerson and Jutla in place of Safra’s construction has the poten-
tial to improve our constructions by an exponential factor, and would require
only the additional step of converting Rabin automata back to equivalent
Büchi automata. Additionally, it would be worthwhile to test the average-
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case performance against Safra’s construction to ensure that the worst-case
exponential improvement proven by Emerson and Jutla also extends to typ-
ical examples.

6.2 Parallelization

With recent advances in high-performance parallel computing, it is natural
to ask whether any additional mileage can be obtained from parallelizing the
algorithms involved in our model-checking system. The obvious candidate
for parallelization is the complementation of Büchi automata because of the
massive cost involved. Another task which could from parallelization might
be the complementation of ζ-automata, since multiple complementations of
ω-automata can be performed simultaneously in that process. However, the
number of simultaneous complementations in this procedure is several orders
of magnitude less than the number of states explored during one complemen-
tation of an ω-automaton.

The iterative determinization of a Büchi automaton is essentially a pro-
cess of graph exploration. This can be modeled by depth-first search or
breadth-first search on the state set. Some relevant work by Barnat et al.
in [2] explored an algorithm for parallelization of breadth-first search with
respect to model-checking problems in linear temporal logic. An adaptation
of this algorithm could be extremely valuable in accelerating parallelization.
The critical obstacles to overcome in any such algorithm are the synchro-
nization of data between multiple processors and the distribution of work.
In this respect, it may be possible to exploit the underlying structure of the
Büchi automata to improve the performance of parallelization. As an exam-
ple, consider the Büchi automaton in Figure 6.1. This automaton recognizes
the language (a + b + c)∗((a + b)ω + (b + c)ω + (a + c)ω), or the set of all
one-way innite words over {a, b, c} with nitely many as, nitely many bs, or
nitely many cs. The result of determinization, shown in Figure 6.2, indicates
a natural strategy for parallel graph exploration. The resulting Rabin au-
tomaton consists of a root node, three intermediate nodes, and six strongly
connected components, suggesting that each of the components could be ex-
plored in parallel, minimizing the need for synchronization and providing
excellent distribution of work.
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Figure 6.1: A Büchi automaton recognizing the language (a + b + c)∗((a +
b)ω + (b+ c)ω + (a+ c)ω).
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Figure 6.2: A Rabin automaton equivalent to the machine above. Note the
large number of strongly connected components, implying a high potential
for parallelization.
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6.3 More Expressive Logics

In [19], it is established that the first-order logic we use to describe properties
of the global map of cellular automata is decidable. It is left as an open
question, however, whether the algorithm we use to decide these properties
can be generalized and applied to more expressive logics. We know that some
properties, such as the reachability of a given configuration, are undecidable
[18] in the general case.

An extension to this theory is presented in [7] using results about ω-
automatic structures. This shows that a logic containing counting and cardi-
nality quantifiers is decidable for one-dimensional cellular automata. Using
this logic, for example, we would be able to determine whether there were
countably or uncountably many fixed points or cycles of given lengths. The
extension of our model-checking system to include this logic would thus sig-
nificantly increase the properties verifiable by the system.
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Chapter 7

Conclusion

In this thesis, we have made several contributions towards the study of cel-
lular automata and ω-automata. First, we have made significant progress
towards demonstrating the feasibility of model-checking cellular automata.
While our implementation is far from comprehensive, it clearly indicates
that Sutner’s procedure for model-checking cellular automata is amenable
to practical use. Further work on this implementation should yield more
information about the capabilities and limits of this technique with today’s
hardware limitations.

Second, we have provided a reference implementation for Safra’s deter-
minization algorithm, and demonstrated several optimizations for the con-
struction. We are hopeful that this implementation could form the core of a
common library for operations on ω-automata. Such a library, particularly if
it included the future work discussed earlier in this thesis, could greatly facili-
tate the study of automata on infinite words. Automata on infinite words are
being used more for model-checking various systems, and a common library
for using these automata could aid researchers and engineers.

Finally, our implementation of the model-checking system is itself a useful
tool for the study of cellular automata. We have shown how the system
can already be used to check common properties such as injectivity and
surjectivity, and discussed how it could be improved in several ways. With
continuing work, this system should be capable of demonstrating important
properties of cellular automata. It is our hope that further development
work on the system will produce a valuable tool for students, researchers,
and scientists who use cellular automata in their work.
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