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Abstract

One of the hallmarks of human learning is the ability to apply knowledge learned
in previous situations to novel scenarios. In contrast, many machine learning al-
gorithms are explicitly designed to train and test on a single, unchanging distribu-
tion of examples. My work is aimed at better understanding how we can extend
machine learning algorithms as to enhance their ability to use knowledge from
previous experience in novel situations. My project explores two domains where
the ability to leverage knowledge learned in previous situations enables perfor-
mance improvements and new capabilities within a task domain. First, I focus
on the domain of signal classification, specifically for detecting seizure events in
EEG data recorded from patients with epilepsy. Second, I explore the domain of
learning real-world concepts with Bayesian networks. In both of these domains,
my approach relies on storing knowledge in a hierarchy with multiple levels of
abstraction.

1 Classification of Epileptiform Signals

This section presents experiments which employ a hierarchical knowledge framework for signal
classification. The problem domain of interest is electroencephalograph (EEG) brain activity sig-
nals from patients suffering from epilepsy. This problem domain is one where the advantages of a
hierarchical approach can have significant real-world impact.

1.1 Neurology of Epilepsy

Epilepsy is a neurological disorder which affects approximately 1% of the population. The disorder
is characterized by episodes of abnormally synchronous activity in the brain. Figure 2 shows EEG
recordings of normal and epileptiform brain activity. There are a range of clinical symptoms of such
episodes, but the disorder has the overall effect of significantly reducing the quality of life for those
who suffer from it. Several treatments exist to reduce the severity and frequency of epileptic seizures.
These methods include medication, surgery to remove parts of the brain most responsible for causing
the episodes, and implantation of stimulation devices to disrupt overly-synchronous brain activity.
Medication is insufficient for about a third of patients because it either produces intolerable side-
effects, or does not completely control seizure episodes (Ellis & Stevens, 2008). Removal of brain
tissue is not always possible, and has sometimes severe side-effects. For example, the amnesia of
the famous patient HM was caused by brain tissue removal in an effort to combat severe epilepsy.



1.1.1 Treatment with Neural Stimulation

Electrical stimulation of the brain is a promising direction for the treatment of epilepsy. The treat-
ment relies on the implantation of a battery-powered device into the skull of the patient. The device
has electrodes which disrupt overly-synchronous brain activity by delivering electric pulses to the
brain tissue. 1 shows one such device following surgical implantation into the skull of a patient.

The proper stimulations to administer to patients is a topic of current research. There are several
parameters to consider when using a stimulator. These include the duration of the electric pulse,
its amplitude, and frequency. Some studies use continuous stimulation of the brain, while others
administer pulses intermittently (Ellis & Stevens, 2008) For patient comfort, and to maximize battery
life of the devices, we would like to maximally disrupt epileptic episodes while minimizing the
amount of electrical stimulation delivered to the patient. This suggests a need for stimulators which
are reactive to the brain signals of a patient. Such reactive neural stimulation (RNS) devices exist,
but their signal classification capabilities are limited. Current RNS devices use signal classification
routines which are not tailored to individual patients (Anderson, Kossoff, Bergey, & Jallo, 2008).
The EEG signal manifestation of an epileptic event varies across patients, so any classifier which is
not tailored to individuals will likely have sub-optimal accuracy.

Figure 1: Radiographs showing a reactive neural stimulation (RNS) device implanted in the skull of
a patient. Such stimulators hold promise to become the most effective treatment of severe epilepsy.
These images are from a clinical study on the effectiveness of RNS devices by (Anderson et al.,
2008).

1.2 Approach

Reviewing the state of current RNS devices suggests that there are several factors to consider when
building classifiers of epileptiform signals:

1. We desire a large corpus of training data to make accurate, robust classifiers. This is es-
pecially important because the accuracy of an RNS device directly correlates with patient
comfort

2. Individual differences exist in EEG signals. Additionally, RNS devices are implanted in
different parts of the brain based on which regions are most responsible for causing epilep-
tiform activity. As a result, it might not be reasonable to expect a single classifier to work
well for all patients and brain regions.

3. Training data for an individual patient is limited because of the cost and risk involved in
data collection. Collecting data requires insertion of recording electrodes into the skull of



a patient. In practice, this data collection only occurs before a surgical procedure, and may
capture only minutes of epileptiform signal.

There are at least three approaches we might pursue which tradeoff the above three factors in varying
ways. First, we can create an aggregate classifier which uses data from many patients to increase
the size of the training corpus. This approach may sacrifice accuracy because it is not adapted
to particular patients. Second, we can make individualized classifiers – one for each patient. This
approach should learn classifiers which adapt to individual differences, but data sparsity may become
an issue. Third, we can develop a hierarchical approach to classification. Such an approach will
adapt to individuals by building a separate classifier for each patient, and combat data sparsity by
sharing abstract knowledge among individual classifiers. After introducing these three approaches
in more detail, their performance is compared on a data set of EEG signals recorded from several
patients who suffer from epilepsy.

1.2.1 Classifier Notation

Following the standard supervised learning framework, we assume we are given (X,Y ) where xi is
a data vector and yi is a label corresponding to that data vector. In this work, we have m different
patients, so we denote the data for patient h as (Xh, Y h) The classifier used is a linear support
vector machine(SVM) where the output is computed by

f(x) = wT Φ(x) (1)

Where w is a learned weight vector, and Φ(x) is a function to map the data vector into a feature
vector. Training for a linear SVM attempts to minimize the expected loss by optimizing w

argmin
w

E[L(X,Y,w)] + ‖λw‖2 (2)

We use the L2 loss function for L. λ is a parameter controlling the amount of regularization. This
work uses LibLinear (Fan, Chang, Hsieh, Wang, & Lin, 2008) to solve the above problem with
a trust region Newton optimization method.

We can build m individualized classifiers, one for each of the m patients. To build an individualized
classifier for patient h we use the training technique above applied to only the data for that patient –
(Xh, Y h). This approach assumes we have m independent data distributions, and data samples for
patient h are i.i.d. samples from P (Xh). This independence assumption ignores similarities among
patients.

To build an aggregate classifier, we group the data for all patients into a single set. Thus we have the
aggregate training set (Xa, Y a) =

⋃
h

(Xh, Y h). Training for this classifier then proceeds using the

standard linear SVM technique described above. Note that by forming the set (Xa, Y a) we assume
data for all patients are drawn from the same distribution, P (Xa). The standard supervised learning
framework assumes that any data point x is an i.i.d. sample from P (Xa), regardless of which patient
generated x. This assumption contradicts our domain knowledge about the existence of individual
differences.

1.2.2 Hierarchical Classifier

Both the individualized and aggregate classifiers make assumptions about the structure of the classi-
fication problem which are incorrect. Viewing epilepsy classification as an instance of a multi-task
learning problems allows assumptions about the data which are better suited to the domain. The
general premise of multi-task learning is to explicitly model tasks such as epilepsy classification as
separate but related.

We can build a hierarchical approach to a multi-task learning problem using a method proposed by
(Ando & Zhang, 2005). For each task, we build a separate classifier. However, we assume that each
task shares an underlying structure We can learn about this underlying structure by observing any of
the tasks. Furthermore, modeling or understanding this shared underlying structure should facilitate
building classifiers for individual tasks. For epilepsy classification, we consider each patient as a
classification task, and we wish to discover a shared, underlying structure upon which we can build
classifiers. The multi-task learning framework allows us to consider each patient as separate while



leveraging the similarities between patients. Furthermore, the shared structure approach to multi-
task learning results in an efficient algorithm for linear SVM classifiers

A central question in the structure learning approach to multi-task learning is how to model the
shared problem structure. Because the linear SVM computes its output using Equation 1, one
method for creating a shared structure is to assume

w = vΘ (3)

Here Θ is a matrix shared across all classifiers. The purpose of this matrix is to map the feature
vector Φ(x) into a shared, low-dimensional subspace. Θ is learned in addition to the other terms
which compose w. Learning Θ corresponds to learning a function which maps the input data x into a
low-dimensional subspace which has (hopefully) high predictive power. There are several candidate
methods for learning Θ. Following the method proposed by (Ando & Zhang, 2005), we construct
Θ using singular value decomposition(SVD) applied to the weight matrix S where each row of S is
a weight vector si produced by training a linear SVM on Xi. Note that using SVD in this way is
qualitatively different than performing SVD or some other type of dimensionality reduction on the
input data itself.

Algorithm 1 Train Hierarchical Classifiers

Require: Input Data X1,X2, ...Xm

for i = 1 to m do
si ← TrainSVM(Xi)

end for
S ← [s1; s2; ...sm]
Ω← SVD(S)
Θ← Ω(1 : n, :)
for i = 1 to m do

wi ← Θsi

end for
return all wi

1.3 Experiments

The data set contains invasive (intracranial) EEG recordings from 21 epilepsy patients. For each
patient, there is approximately 24 hours of recording which took place during pre-surgical moni-
toring. This data set was provided by the Epilepsy Center of the University Hospital of Freiburg,
Germany. Signals representing epileptiform activity, called ictal events, were labeled by an expert.
The remainder of the data is called interictal because it either represents normal activity, or pre-ictal
warning signs of an oncoming seizure.

1.3.1 Signal Processing

Each data trace was segmented into non-overlapping frames of 1 second in duration. Note that the
sequential information is not used. Instead, each frame is treated as an isolated sample. This process
yielded approximately 88,000 samples per patient. Because ictal periods are fairly infrequent, less
than 1% of samples are of ictal events.

Each signal frame was transformed into a feature vector using a method similar to that in (Vincent,
Pineau, Guzman, & Avoli, 2007). Each frame was normalized by subtracting the mean and dividing
by the full range of the entire frame. The per-frame mean and range are used as features Each
frame was then apodized with a Hann window and converted to a power spectrum using the discrete
fast Fourier transform. 2 shows sample ictal and interictal signals, and their power spectra. The
power spectrum from 1-256 Hz is then divided into 128 frequency bands. The real and imaginary
components of each band of the FFT were combined into a single magnitude. This results in 130
features per frame (mean, range, 128 power spectrum bands).

1.3.2 Training

The signal processing technique gives for each patient a data set X already transformed with Φ.
Using these datasets, we can use the training techniques already described to develop individualized,
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Figure 2: Sample Signals and their Power Spectra. A one second window of EEG ictal (left) and in-
terictal (right) signals. The log power spectrum for each is also shown. Power at different frequency
bands are used as features in the classifiers.

aggregate, and hierarchical classifiers. The data was randomly split with 10% used for training, and
90% for testing. To counteract the extreme inbalance between the amount of positive and negative
examples, each positive example was repeated 1000 times in the training set.

1.3.3 Results

Table 1 shows the results for each type of classifier on the epilepsy classification task. The indi-
vidualized classifiers all learned a sufficient model to nearly always correctly identify the interictal
examples, but did so at a high false-negative rate. The individual classifiers’ low accuracy for ictal
samples is most likely due to a lack of training data. Because only 10% of the data was used for
training, the number of ictal samples in the training set was extremely low. For example, patient 1
had only 4 ictal examples in the training set. With such data scarcity, it is not surprising that the in-
dividual classifiers did not learn sufficiently robust models. The aggregate classifier overcame some
of the data scarcity issues because it observed all the training data at once in order to create its single
classifier. This resulted in more robust ictal detection, but at the cost of an increased false-positive
rate. The hierarchical classifiers show the best ictal classification accuracy, but perform compara-
tively poorly on interictal samples. The high ictal accuracy suggests that the hierarchical approach
is effectively leveraging all of the data and that learning about the underlying domain structure has
a positive effect.

Table 1: Accuracy for the Epilepsy Classification Task. Individual models were trained using only
data from the test patient. The aggregate approach trained a single model using the data from all
patients. The hierarchical approach builds an individualized model for each patient, but learns a
low-dimensional subspace with high predictive power by leveraging the data from all patients

Patient
Individual Aggregate Hierarchical

Ictal Inter Ictal Inter Ictal Inter

1 2.12 99.9 51.1 79.1 80.9 73.0
2 38.3 99.6 50.5 87.0 40.1 83.0
3 12.1 99.3 24.2 83.4 55.0 61.5
4 1.6 99.8 47.9 81.0 40.2 69.2
5 28.4 99.0 33.7 89.5 26.7 99.1

Average 16.5 99.5 41.5 84.0 48.6 77.1

1.4 Conclusion

This work presented an approach to classification of epileptiform signals which employs a hierarchi-
cal knowledge framework. The hierarchical approach learns at the high level an underlying domain
structure, and maintains a more specific knowledge level which is a classifier for each patient. This
approach was compared with two simple models of the domain. While the performance gain of the
hierarchical model was not overwhelming, this might be attributed to features of the problem domain



such as training data scarcity. This work contributes to a growing body of evidence that explicitly
modeling problems as multi-task learning is advantageous when the problem domain suggest such
a model is appropriate.

For the future design of RNS devices, a hierarchical approach to classification should provide a
principled way of customizing to an individual while still benefitting from the robustness obtained by
training on a large data set. The classifiers presented in this work are not expected to be immediately
useful for an RNS device for two reasons. First, the classifiers presented here did not reason about
time. Knowing that there is an ictal event in the current time frame should heavily bias what a
classifier predicts in the next time step. Second, the classifiers here did not consider the task of
prediction. To avoid any discomfort of the patient, it is best to prevent synchronous brain activity
from building into an ictal event.

2 Hierarchical Knowledge for One-Shot Learning in Bayes Nets

Humans are able to discover and exploit relationships between attributes (e.g. nationality and lan-
guage) and between attribute values (e.g. Brazilian and Portuguese) (Davies & Russell, 1987). Some
relationships are near-deterministic, including the relationship between birth country and native lan-
guage. We know, for example, that two individuals born in the same country are very likely to have
the same mother tongue, and we know in particular that individuals born in Brazil are very likely
to speak Portuguese. Other relationships are probabilistic, including the relationship between hair
color and eye color. We know that these attributes tend to be related, and we know about specific
relationships between values of these attributes (blondes often have blue eyes).

Suppose, for example, that after meeting several people from various countries, you meet a single
person from Randeria, a country that is completely new to you. You observe that the person has
blonde hair and speaks Randerian. Based on this single example, you may be very confident that the
next Randerian you meet will speak the same language, but less confident that this second Randerian
will also have blonde hair. Figure 3(a) shows a schematic representation of the observed data, and
Figure 3(b) shows conditional distributions that capture our expectations about the language and
hair color of the second Randerian. The Randeria problem just introduced is a special case of the
more general problem of one-shot learning (Fei-Fei, Fergus, & Perona, 2003). Here we describe and
evaluate a probabilistic model that can handle one-shot learning problems similar to the Randeria
problem.

One-shot learning has been previously considered in the psychological literature. One prominent
line of work has focused on “fast mapping” in word learning (Carey & Bartlett, 1978; Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002). Empirical studies of word learning have docu-
mented that children are able to learn the meaning of some new words given a single training ex-
ample and researchers have developed formal models (Colunga & Smith, 2005; Kemp, Perfors, &
Tenenbaum, 2007) that help to explain this ability. Our approach grows out of this literature, and
the work we describe builds on the hierarchical Bayesian model presented by Kemp et al. (2007).
Hierarchical Bayesian models (Gelman, Carlin, Stern, & Rubin, 2003) can include representations
at multiple levels of abstraction, and help to explain how humans acquire abstract knowledge that
supports rapid or one-shot learning given exposure to a novel situation.

Our hierarchical Bayesian approach is built on top of a standard method for learning Bayesian net-
works, also known as Bayes nets. A Bayes net captures relationships between attributes using prob-
ability distributions that specify how the value of a given attribute is generated given the values of its
parents. Our approach allows for two kinds of relationships: relationships where an attribute value is
a soft probabilistic function of the values of its parent attributes, and relationships where an attribute
value is generated in a near-deterministic way given the values of its parents (Figure 4b). By learn-
ing which relationships are probabilistic and which are near-deterministic, a Bayes net approach can
account for one-shot learning while preserving the ability to handle probabilistic relationships.

After reviewing related work and introducing our approach, we apply it to an everyday problem that
requires one-shot inferences—learning about people and their characteristics. Using demographic
data for immigrants who arrived at Ellis island in the early twentieth century, we introduce two one-
shot learning scenarios which correspond to real-world versions of the Randeria problem. We show



(a)

Nationality Language Hair

British English Red

British English Brown

Brazilian Portuguese Blonde

Brazilian Portuguese Brown

Spanish Spanish Brown

Spanish Basque Black

Randerian Randerian Blonde

Randerian ? ?

(b)

Randerian English
0

50

100
Language

Blonde Brown
0

50

100
Hair Color

Figure 3: Randeria one-shot learning problem. (a) After meeting people from several different
countries, you might discover that people from the same country tend to speak the same language.
(b) Discovering the pattern in (a) supports one-shot learning about people from a new country. After
observing a single Randerian, you might have strong expectations about the language spoken by a
subsequent Randerian, but weak expectations about her hair color.

(a)

H

E

N

L

B

(b)

H

E

N

L

B

Figure 4: Models that capture relations among five attributes: birth country (B), language (L), na-
tionality (N), eye color (E) and hair color (H). (a) A standard Bayes net can capture probabilistic
relationships between attributes, shown here as solid arrows. (b) Our model learns Bayes nets that
capture two kinds of relationships: near-deterministic relationships (dashed arrows) and probabilis-
tic relationships (solid arrows).

that our model makes more intuitive inferences and predicts unobserved data better than a standard
Bayesian network approach.

2.1 Logical Approaches To One-Shot Learning

One-shot learning has been previously considered by AI researchers, and the Randeria example
introduced above is directly inspired by the work of Davies and Russell (1987). These researchers
explore the role of determinations, or abstract logical statements that identify patterns of dependency
between attributes. For example, the statement that “people of the same nationality speak the same
language” is a determination that supports the conclusion that all citizens of Randeria are likely
to speak the same language. Because this rule is defined over attributes, it is independent of any
particular country and can be used to perform one-shot learning when exposed to a person from a
new country. Russell (1989) discusses how determinations can be learned given a database such as
the schematic example in Figure 3(a). The basic approach is to search through a hypothesis space of
possible determinations and identify hypotheses that are consistent with the entries in the database.

A probabilistic approach to learning determinations can improve on existing work in several re-
spects. First, a probabilistic approach can handle near-deterministic relations that are subject to
noise and exceptions. Some citizens of Randeria may be English speakers who were born in the
USA, and some countries (e.g. Spain) include different linguistic communities (e.g. Spanish speak-
ers and Basque speakers). Second, a probabilistic approach can incorporate soft probabilistic re-
lations, including the relationship between blonde hair and blue eyes. Russell (1989) allows for
weighted determinations which can help to deal with uncertainty, but a probabilistic approach pro-
vides a principled treatment of reasoning under uncertainty. Finally, a probabilistic approach can
provide a unified account of learning and using determinations. Logical approaches can rely on log-
ical inference to explain how determinations are used, but must typically invoke some other principle
to explain how these determinations are acquired.



There has traditionally been some tension between logical and probabilistic approaches to artifi-
cial intelligence, but several researchers have recently developed general-purpose frameworks that
combine logic and probability (Milch et al., 2005; Richardson & Domingos, 2006). Some of these
frameworks may be able to address the one-shot learning problems described earlier, but here we
take a different approach. General-purpose frameworks are impressive in their scope, but the flex-
ibility of these approaches often leads to very difficult learning problems. Here we describe a rel-
atively simple probabilistic approach that relies on one of the best known formalisms for capturing
relationships between attributes—Bayesian networks.

2.2 Learning Bayesian networks

A Bayesian network includes a graph and a set of distributions that specify probabilistic relation-
ships between attributes. This section introduces a standard approach to learning and using these
networks (Heckerman, Geiger, & Chickering, 1995).

A Bayes net can be represented as a pair (G, θ), where G is a directed acyclic graph over the
attributes of interest and θi specifies the conditional probability distribution for attribute i, or the
distribution over values of this attribute given the values of its parent attributes in graph G (Figure 5).
Figure 4a shows a Bayes net graph structure over some of the attributes in the Randeria problem.

λ

θG

D

Figure 5: Graphical model for Bayes net structure learning. (G, θ) is a Bayes net, where G is a
directed acyclic graph, and θi is a table that specifies the conditional probability distributions for
node i in the graph. Each row in θi is drawn from a symmetric Dirichlet distribution with parameter
λi.

We assume here that all attributes are categorical, and represent θi as a conditional probability table
(CPT) with one row for each setting of the parent attributes. Each row in θi specifies a multinomial
distribution over values of attribute i, and we assume that these rows are independently drawn from a
symmetric Dirichlet distribution with concentration parameter λi. A standard approach to structure
learning sets λi = 1 for all attributes in the graph, which corresponds to a uniform prior over possible
multinomial distributions for the rows in each CPT.

Suppose that we observe a data matrix D, where the rows in D represent independent samples from
a Bayes net (G, θ). The posterior distribution over the components of the Bayes net is

p(G, θ|D,λ) ∝ p(D|G, θ)p(θ|G,λ)p(G) (4)

and we assume a uniform prior p(G) over graph structures G. Since we use conjugate Dirichlet
priors on the rows in each CPT, we can integrate out the parameters θ and work with the posterior
distribution p(G|D,λ) over graphs (Heckerman et al., 1995). We can sample from this distribution
using standard MCMC techniques for structure learning (Giudici & Castelo, 2003). If we assume
that any missing entries in D are missing at random, a bag of samples from P (G|D) can be used to
make predictions about these missing entries.

Bayesian networks have been widely used in the psychological literature to develop formal models
of learning and reasoning (Glymour, 2001; Gopnik et al., 2004) The standard approach to learn-
ing these networks, however, cannot address one-shot learning problems like the Randeria prob-
lem. This limitation depends critically on the difference between attributes (e.g. nationality) and
attribute values (e.g. Brazilian). Given enough data, the standard approach will be sensitive to near-
deterministic relationships between attribute values. After observing many Brazilian individuals,
for example, the standard approach will learn parameters for the network in Figure 4a that specify
a near-deterministic relationship between being Brazilian and speaking Portuguese. No amount of
experience, however, will allow the standard approach to exploit near-deterministic relationships
between attributes. The standard approach can learn that Brazilians tend to speak Portuguese, and



that Americans tend to speak English, and so on, but cannot arrive at the generalization that individ-
uals from a given country tend to speak the same language. The next section introduces a Bayesian
network approach that overcomes this limitation.

2.3 The Type-Learning Model

Our approach relies on the same basic machinery as the standard approach, except that we no longer
assume λ is fixed to a single, known value for all attributes in the graph. Instead we assume that
attributes come in one of two types: non-deterministic attributes are generated in a soft probabilistic
way by their parents in the graph, but near-deterministic attributes are generated according to a near-
deterministic function of their parent attributes. To capture the difference between these types of
attributes, we assume λi will be smaller for near-deterministic attributes than for non-deterministic
attributes. A small value of λi means that each row in CPT θi is expected have most of its probability
mass concentrated on a single value of attribute i. Setting λi = 1, which is a standard practice when
learning Bayes nets, means that each row of θi is drawn from a uniform prior over multinomial
distributions.

A type-based approach could be implemented by assuming that each λi is drawn from one of two
distributions: a distribution with a small mean for the near-deterministic attributes, and a distribution
with mean 1 for the non-deterministic attributes. Here we take a simpler approach, and assume that
λi = 1 for non-deterministic attributes but that λi = 0.01 for near-deterministic attributes. Note,
however, that the type assignment for each attribute is not known in advance and must be learned.

A type-based approach can be contrasted with a type-free approach that assumes that the λi are
independently generated from a continuous prior distribution such as an exponential distribution.
These two approaches incorporate different inductive biases and should lead to slightly different
predictions—for example, the type-based approach might be quicker to decide whether a given
attribute is near-deterministic (low λi) or non-deterministic (high λi). Future work can consider
whether a type-based or a type-free approach accounts better for human inferences. Note, however,
that both approaches are consistent with our core proposal, which is that learning different values of
λi for different attributes can allow a Bayes net approach to handle one-shot learning problems like
the Randeria problem.

Since the type assignments that determine λ are not known in advance, we work with a posterior
distribution created by summing over all possible values of λ:

p(G, θ|D) ∝ p(D|G, θ)p(θ|G)p(G) (5)

=
∑

λ

p(D|G, θ)p(θ|G,λ)p(G)p(λ) (6)

We use a uniform prior over type assignments, which amounts to a uniform prior over the two
possible values of λi for any attribute i. Standard MCMC techniques for structure learning can
be extended to sample from P (G,λ|D), but for the small data sets considered here we compute
Equation 6 by enumerating all possible values of λ. As for the standard approach in Equation 4, the
parameters θ can be integrated out for any given value of λ, and we make inferences about missing
values in D using a bag of samples from the learned distribution P (G,λ|D).

2.3.1 Related Work

A special case of our general approach has previously been discussed in the psychological literature.
Kemp et al. (2007) describe a Bayesian model that can discover, for example, that objects in the
same category tend to have the same same shape—in other words, that the relationship between
category label and shape is near-deterministic. Their model, however, works with a restricted class
of Bayes nets where there is an arrow from the category label attribute to each other attribute, and
where no other edges are allowed. The model developed here can handle Bayes nets with arbitrary
structure, including networks that specify relationships between attributes (e.g. hair color and eye
color) that do not correspond to category labels.

Our emphasis on near-deterministic relationships is consistent with previous suggestions that hu-
mans assume by default that causal relationships will be deterministic (Schulz & Sommerville,
2006). Previous researchers have developed probabilistic approaches that can exploit deterministic



Table 2: Passenger Data Attributes

Attribute Example # Values

Nationality Spain 24
Race Spanish 16
Language Spanish 12
Birth Country Spain 24

Complexion Dark 2
Hair Black 4
Eyes Brown 7

relationships when they are present. Closest to our own approach is the work of Lucas and Grif-
fiths (2007), who describe a hierarchical Bayesian model that can learn whether causal observations
are better explained by a deterministic relationship or a noisy-OR relationship between variables.
Note, however, that this model does not handle settings where a single network includes both near-
deterministic and non-deterministic relationships, and cannot address one-shot learning problems
like the Randeria problem considered here.

Our approach to one-shot learning relies critically on the concentration parameters λi used to define
the Dirichlet priors on the Bayes net parameters θ. We know of no previous work that explores one-
shot learning with Bayesian networks, but several previous researchers have emphasized the role of
the Dirichlet priors. One line of work explores structure learning in the standard setting where there
is a single value of λ for all nodes in the network, and has demonstrated that the value of this param-
eter plays an important role in determining the graph structure G that maximizes P (G|D) (Steck,
2008; Silander, Kontkanen, & Myllymäki, 2007). When λ is very small, the best graph structure
will often have very few edges, and as λ increases the number of edges in the inferred graph will
also tend to increase. This result suggests that the value of λ matters, and supports the idea that
predictive accuracy may be improved by choosing different λi values for near-deterministic and
non-deterministic nodes.

Previous authors have explored the possibility of learning a single λ parameter for the entire net-
work (Giudici & Green, 1999), but there are few attempts to learn different values of λi for different
attributes. One possible reason is that this approach is inconsistent with the assumption of likeli-
hood equivalence, or the assumption that networks in the same Markov equivalence class should
receive the same prior probability (Heckerman et al., 1995). Although likelihood equivalence is
often appealing, it will not always apply in settings where prior knowledge is available about net-
work parameters. Our setting is one example, and the knowledge in this case specifies that some
relationships are near-deterministic but that others are probabilistic.

2.4 Experiments

We evaluate our approach in two ways using a real-world data set. First, we directly model the
Randeria problem to show the practical consequences of modeling near-deterministic relationships.
Second, we use a larger test set to demonstrate the quantitative differences between inferences made
by our model and a standard Bayes net approach.

2.4.1 Passenger Data

Our experiments used a real-world version of the data set shown schematically in Figure 3(a). The
data specify physical and cultural properties of immigrants who arrived at Ellis Island during the
1920s and 1930s, and were extracted from passenger manifests available at ellisisland.org.
We took manifests for 4 ships and created a data set with 85 people and 7 categorical attributes1.
Table 2 shows each attribute, its number of possible values, and example values for one person. The
relationships between the attributes include both near-deterministic relationships (country deter-
mines language) and soft probabilistic relationships (hair color predicts eye color). Note, however,
that the near-deterministic relationships are not perfectly clean (e.g. not everyone from Spain speaks
Spanish).

1The data set is available online at www.andrew-maas.net
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Figure 6: Conditional distributions on the language and hair color of a new person given only the
information that she is Randerian. These marginals are analogous to those in Figure 3(b), but are
computed by models trained on real-world passenger data.

Our first experiment addresses the Randeria problem schematically described in Figure 3. Our sec-
ond experiment explores prediction of missing attributes when these hidden attributes were specifi-
cally chosen to create one-shot learning problems similar to the Randeria example. Both experiments
rely on learning the structure of a Bayesian network, and we first present structure-learning results
for the passenger data.

2.4.2 Learning Model Structure

Structure learning for the standard model can be achieved by drawing a MCMC sample from
P (G|D,λ), where each λi is set to 1. For the type-learning model we drew an MCMC sample
from P (G|D,λ) for each possible setting of λ. Given these samples, we constructed an approxi-
mate posterior P (G,λ|D) by computing the relative posterior probabilities of each pair (G,λ) then
normalizing.

Both models learned distributions on graph structures which capture some of the intuitive relation-
ships between the seven attributes. For example, both models predict with high confidence that there
is an edge between the birth country and nationality attributes. The structures assigned high proba-
bility by the type-learning model tend to have more edges than the structures preferred by the stan-
dard model. Adding more edges allows the model to explain certain attributes as near-deterministic
functions of their parents.

For any training set D, we use the above training technique to obtain structure distributions
P (G|D,λ) for the standard model and P (G,λ|D) for the type-learning model. These distributions
serve as the basis for predictions about unobserved attributes.

2.4.3 Meeting a Randerian

Our first test directly corresponds to the Randeria problem mentioned in the introduction. We took
the passenger data already described and added a record for a single Randerian—an individual with
blonde hair, a fair complexion, and blue eyes, but a new nationality, race, language and birth country.
Using the training technique described in the previous section, the models infer structure distribu-
tions and network parameters. Both models were then asked to predict the language and hair color of
a second individual that was known to be Randerian, but had no other attributes observed. Figure 6
shows the marginal distributions over language and hair-color for both models.

Only the type-learning model was able to confidently predict that a second Randerian would also
speak Randerian based on the single training instance provided. When predicting hair color,
both models produce similar distributions over the possible values. Despite allowing for near-
deterministic relationships, the type-learning model correctly realizes that hair color is not a near-
deterministic function of nationality.

2.4.4 One-Shot Learning Tests

Figure 6 suggests that the type-learning model matches our intuitive notion about correct perfor-
mance on the Randeria problem, and our next analysis explores a setting where model success can
be assessed more objectively. We took the passenger data and created a series of one-shot learning
problems for each attribute value. For example, we create a one-shot learning problem for the case
where Language=French by removing all French-speaking passengers except one from the training
set. The test set contains all of the French speakers that were removed, and the task is to predict the



Table 3: One-shot learning tests. Each model was shown a single instance with a given attribute
value (e.g. a single French-speaking passenger) and asked to make inferences about all other in-
stances with this attribute value.

Missing
Attribute

KL Divergence Accuracy (%)
TL Standard TL Standard

Nationality 1.46 2.72 73 58
Race 1.74 2.16 63 36
Language 1.38 2.16 60 60
Country 1.23 2.32 82 45

Complexion 1.99 1.96 13 18
Hair 3.22 3.28 0 0
Eyes 3.26 3.33 0 0

language of each individual given all of their other attributes. In other words, we explore whether the
models can confidently identify French speakers after observing a single example of this category.
We repeated this process for each value of each attribute in the passenger data.

To evaluate the models we measure both model accuracy and model confidence. We expect that
near-deterministic relations will allow confident predictions based on a single training instance, and
use Kullback-Leibler(KL) divergence as a metric of model confidence. We considered the models’
inferred marginals as approximating distributions to the true marginal, KL(true||inferred). The true
marginal is a point-mass distribution which assigns all of its probability to the correct attribute
value. In this case, the KL-divergence simplifies to −log[p(vt)] where p(vt) is the probability a
model assigns to the true attribute value.

Table 3 shows the results of the one-shot learning tests for both models. As expected, the type-
learning model made more confident inferences for attributes with near-deterministic relations given
only a single training example. Given a single instance of a passenger from a new country, for
example, the model achieves high accuracy and confidence (as measured by a low KL divergence)
when predicting the country attribute for subsequent passengers from that country. In contrast, the
standard model was often unable to make confident one-shot inferences. Although this model made
inferences from the single target instance at a rate better than chance, it had substantially lower
confidence and accuracy for attributes with near-deterministic relations. Both models performed
comparably for the three non-deterministic attributes. We do not expect one-shot learning to be
possible for these attributes, and accuracy was low in all cases.

2.4.5 Randomized Test Set

Our results so far suggest that the type-learning model outperforms the standard model when applied
to one-shot learning problems. It is important, however, to verify that this success is not achieved
at a cost to performance on more traditional inference tasks. We therefore considered a second task
where twenty passengers are randomly chosen from the full set of 85 to serve as a test set. Since the
test set is randomly chosen, one-shot learning is very unlikely to be required.

In a first experiment, the models inferred attribute values for data instances that were otherwise fully
observed. This problem corresponds to meeting a new person and making an inference about a
single attribute (e.g. language) after observing all of his or her other attributes. The results of this
experiment are shown in Table 4. The accuracies achieved by the two models are comparable. Rea-
soning about relation type should not significantly impact model accuracy in this scenario because
there was sufficient training data overcome the uninformative prior placed by the standard model on
the CPTs of the Bayesian network. Note, however, that the KL divergence metric shows a substantial
difference in the confidence of the two models. For the variables with near-deterministic relations,
the type learning model has half the KL divergence of the standard model for some variables. For
variables with non-deterministic relations, the type learning and standard models have similar KL
divergences.

We then ran a second experiment where the number of attributes observed for the target individual
varied from 6 down to 1. For each number of observed attributes k, we averaged across all possible
ways in which an instance could have only k attributes visible during inference. For example, to



Table 4: Standard learning tests. The models infer attribute values for passengers that are otherwise
fully observed.

Missing
Attribute

KL Divergence Accuracy (%)
TL Standard TL Standard

Nationality 0.57 1.46 85 85
Race 0.81 0.96 85 85
Language 0.32 0.74 90 85
Country 1.24 1.85 70 65
Complexion 0.44 0.46 85 85
Hair 1.21 1.35 50 40
Eyes 1.24 1.43 45 45
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Figure 7: Performance on the standard learning test as the number of observed attributes for each
test instance decreases. The four curves in each plot show average results for two models and two
types of variables: near-deterministic variables and non-deterministic variables (See Table 2). Over
the entire range of observed attributes, the type-learning model achieves higher confidence than the
standard model as measured by the KL divergence metric.

compute the inference performance for language with k = 1 observed attribute, we considered
predictions of language given nationality, language given race, language given country, and so on.

Figure 7 shows how model performance degrades as the number of variables observed during in-
ference decreases. The models achieve similar accuracies for each number of observed variables,
suggesting that the more complex graph structures learned by the type learning model do not have
detrimental effects on inference as the number of observed variables decreases. The KL metric
shows that even as the number of observed attributes decreases, the type learning model is able to
make inferences with substantially higher confidence.

2.5 Modeling Human One-Shot Learning

The type learning model is inspired in part by the idea that human learners are able to detect and
exploit near-deterministic relationships between variables. Our second set of analyses evaluates our
approach as an account of human learning. We consider a study of one-shot learning conducted
by Billman and Dávila (Billman & Davila, 1 October 2001). Participants in this study observed
instances of three categories, and then observed a single instance of a new category. One training
example was enough to support inferences about this new category, and we demonstrate that the
type learning model can account for this result.

The data provided during training are summarized in the left section of Table 5. Each column in
the table represents an animal, and the animals vary along six dimensions. Category labels for
each animal were provided during training, and there was a deterministic relationship between the
category of an animal and its values along two of the dimensions. These two relevant dimensions
are shown as the top two rows in Table 5: note that any two instances with the same category label
share the same values along these dimensions. The two relevant dimensions were randomized across
participants. In some cases, for example, an animal’s mode of locomotion and its sound were the



Table 5: Training and Test Data for the Human Learning Experiment. Each column is an animal
instance.

Training Test

Relevant
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 6 5
1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 4 5

Not
Relevant

1 1 3 3 2 3 2 3 1 3 2 3 4 5 5 8 5
1 3 1 3 2 1 2 2 3 3 2 2 4 5 5 5 7
1 1 2 2 1 2 2 3 1 2 2 3 4 5 5 5 4
1 2 1 2 1 1 3 3 2 2 3 3 4 5 5 4 4

Label 1 1 1 1 2 2 2 2 3 3 3 3 4 ? ? ? ?

two relevant dimensions, and any animals that flew and made a whistling sound were members of
the same category.

Following the training phase, participants were shown a novel item: an instance of a novel category
that had new values along each dimension. In Table 5, the novel item is represented by the single
column with category label 4. Participants were then shown a sequence of test animals, and asked to
respond ‘yes’ or ‘no’ depending on whether each animal belonged to the same category as the novel
item (i.e. category 4 in Table 5). These test items varied in the number of attributes that matched the
novel item, and in the extent to which the matching attributes overlapped with the relevant attributes.
Some representative test animals are shown in the right part of Table 5. Half of the test items were
‘yes’ items: they matched the novel item along the two relevant dimensions, and should therefore
belong to the same category as the novel item. Given only a single example of the novel category,
participants were able to distinguish the ‘yes’ items from the ‘no’ items, and chose the correct
response for 76% of the test items.

To model this task, we consider Bayes Nets defined over the seven variables shown in Table 5. One
of these variables—the category label—is qualitatively different from the others, and we assume
that the remaining attributes are generated from this variable. In other words, we restrict the space
of possible graph structures so that all candidate edges emerge from the category label variable. Our
approach is therefore closely related to a Naive Bayes classifier, and to similar approaches from the
psychological literature (Rehder & Burnett, 2005).

Given the 12 training examples, the standard model and the type learning model both learn a distri-
bution over graph structures. Since the space of possible structures is relatively small, we create an
exact posterior distribution by enumerating all structures and computing the relative probability of
each one. Both models discover that the edges most likely to exist are the edges joining the category
label to the two relevant dimensions, but other edges are also assigned non-negligible probability.
These additional edges appear to capture some of the statistical properties that are weakly present
in Table 5: for example, items in category 1 never have value 3 along dimension 6, but this value
appears half of the time for items in categories 2 and 3. The type learning model discovered that
the two relevant attribute variables were near-deterministic functions of the category label with 99%
probability. All other variables were treated as having soft probabilistic relations. After observing
the 12 training examples, each model observed the novel item and then made inferences about the
category label of each item in the test set. To model the yes/no choice used in the behavioral ex-
periment, we assume that a model says ‘yes’ to a test item if the posterior probability that this item
belongs to the same category as the novel item exceeds 50%.

Figure 8 shows the percentage of correct responses for the ‘yes’ items (i.e. the items that matched
the novel item along the two relevant dimensions). These responses are organized into three groups:
responses for ‘yes’ items that match the novel item only along the two relevant dimensions, and
responses for test items that match along two or three dimensions. (Billman & Davila, 1 October
2001) suggest that 76% of the ‘yes’ items are correctly identified, but do not report the percentage
of ‘yes’ responses for each group. They state, however, that there is no correlation between the
probability that an item is successfully identified and the number of dimensions along which it
matches the novel item, and we therefore assume that the percentage of ‘yes’ responses is roughly
76% for all groups.
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Figure 8: Behavioral data and model predictions on a one-shot learning task. The left groups of
bars shows the percentage of correct ‘yes’ responses for ‘yes’ items that matched the novel item
only along the two relevant dimensions. The two remaining groups show results for ‘yes’ items that
matched the novel item along three or four dimensions respectively.

As shown in Figure 8, the type-learning model performs the task perfectly, saying ‘yes’ with greater
than 90% confidence for all cases. The responses of the standard model depend on the number of
attributes shared by the novel item and a given test item. When a test item shares only the two
relevant attributes, the model says ‘no’ in all cases, but when a test item shares four attributes, the
model says ‘yes’ in all cases. This profile of responses departs significantly from the behavioral data
in Figure 8, and suggests that the type-learning model accounts better than the standard model for
one-shot learning in humans.

2.6 Conclusion

Humans often make accurate inferences given a single example of a novel situation, and we pre-
sented a model that attempts to match this ability. Our model uses a Bayes net to capture relation-
ships between attributes, and learns which of these relationships are soft and probabilistic and which
are near-deterministic. The ability to exploit near-deterministic relationships gives our approach a
different inductive bias than a standard Bayes net approach, and we showed that this inductive bias
supports one-shot learning about novel situations.

Here we focused on a specific one-shot learning problem—the Randeria problem—that is motivated
by real-world inferences made by human learners. Future studies can design behavioral experiments
to test our approach, and can explore, for example, how people make inferences about unobserved
entries in the passenger data that we analyzed. Future experimental studies can also explore one-shot
learning in other settings. Kemp et al. (2007) describe a special case of our approach that helps to
explain word-learning data collected by Smith et al. (2002), and our current approach should account
for all of the findings captured by this previous model. This previous model, however, can only learn
Bayesian networks that belong to a very restricted class. Future studies of one-shot learning can test
our prediction that people can learn and reason about a much broader class of relationships.
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