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Abstract

Visual odometry makes use of an image sequence to estimate the motion of a robot and
optionally the structure of the world. The low-cost and small-size of cameras, combined
with the high-information content of the images they capture make them ideal for robot
platforms. In this work, we develop a visual odometry system based on stereo input.
The output of the algorithm is a 3D map of the environment as well as camera/robot
trajectory suitable for mobile robots localization and navigation tasks. Our algorithm
makes use of Structure-From-Motion techniques by exploiting the projective geometry
between 3D point landmarks in the world and their projection into 2D imagery. To es-
tablish 2D-3D correspondences over multiple frames, we tracks CenSurE features from a
stereo camera. By combining the 3D depth information from the stereo process with ro-
bust pose estimation using RANSAC and relative orientation, we show that it is possible
to robustly estimate camera pose over time. Furthermore, we show that careful use of
Sparse-Bundle-Adjustment (SBA) produces refined solutions that estimate both world
structure and camera motion. We compare different approaches within this framework
and show that relative orientation is superior to using absolute orientation to estimate
pose. Secondly, we introduce a novel track selection process that improves the fault
tolerance of SBA to short baseline feature tracks. We test our algorithm on outdoor and
indoor environments and present results showing its effectiveness.
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Introduction

Navigating an unknown environment is a key task for a variety of mobile robots ap-
plications. The robot needs to be able to keep track of where it is in the world, a
process called localization, and simultaneously build and maintain a map of the envi-
ronment suitable for navigation, a process called mapping. As localization and mapping
must be performed simultaneously, this problem is commonly known as Simultaneous
Localization And Mapping (SLAM).

The SLAM problem has been studied extensively [1, 2], with particular emphasis
on LIDAR as the primary sensor. Recently, there has been renewed interest in vision-
based SLAM (vSLAM, or visual odometry)*, as cameras offer low cost, high information
content sensors that are eminently suitable for human environments. Recent advances
in Computer Vision also places within reach a variety of synergistic capabilities, such as
object detection, recognition, scene and terrain classification. The main goal of visual
odometry is to recover the camera motion and the 3D structure of the world concurrently
by exploiting the projective geometry relating multiple views.

In this thesis, we study the vSLAM problem without relying on other sensors. The
aim is to be able to use a camera to estimate the robot’s trajectory as well as to build
a 3D model of the world structure. Having the ability to generate maps from camera
input only has many advantages. In addition to being integrated seamlessly in our lives,
cameras are low-cost, small-sized, low-power consumption and high-information content
sensors that makes them ideal for a variety of applications, especially the development
of small-sized intelligent units.

Deployment of cameras as a navigation sensor seems to possess many advantages over
other sensors. However, there are several issues to be addressed in dealing with visual
input. The most important issue is error accumulation and propagation. This issue is
not restricted to visual input only. A motion estimation algorithm would necessarily
suffer from an accumulated unbounded error, as typical motion estimation algorithms

*We will use the terms interchangeably.



2 Chapter 1. Introduction

are iterative. However, error propagation is more exaggerated with the noisy nature of
images. Further, 3D motion estimation has 6 degrees of freedom (DoF), which makes it
more complicated than a 4 DoF problem in a 2D plane. It is important to stress the fact
that a vision-based localization and mapping algorithm could benefit from other sensors
inputs in an integrated system. In fact, the best vision-based navigation performance,
in terms of distance covered, is a combination of motion estimate from a stereo camera
as well as an Inertial Measurement Unit (IMU), see [3].

In this thesis, we focus on motion estimation and map building from only visual
input in order to advance the core technology. Omnce a robust camera-based motion
and mapping algorithm has been developed, it could be integrated with other sensors
to provide a higher level of robustness. In this thesis, we do not claim to achieve the
most robust visual odometry system, but analyse the problem carefully and propose
possible enhancements that can further increase the robustness of camera-based motion
estimation. In particular, the research question we try to address is:

Given a stream of images from a calibrated camera, can
we estimate the camera position and 3D world structure
robustly and efficiently over time?

The problem is graphically depicted in Figure 1.1, where a typical stream of images
is shown as well as an illustrative trajectory.

1.1 Approaches to Visual Odometry

There has been significant interest in visual odometry recently (e.g. [4, 5, 6, 3, 7]).
Solutions to the problem can be categorized into two groups: (1) Structure-From-Motion
(SEM) techniques, which draw from multi-view projective geometry (e.g. [8, 4, 3]) and
(2) Probabilistic Filtering approaches (e.g. [7]), which draw from the state estimation
literature and are popular in Robotics. Although filtering approaches, which include the
Kalman and Particle Filters, provide accurate estimates, they assume a small number
of 3D features/landmarks and do not scale well to larger problems with hundreds to
thousands of features. Here, we focus our attention on the SFM-based approaches to
visual odometry, with relatively large numbers of features in each image.

Current SFM-based approaches to visual odometry use the following steps:

1. Initialize the model with a set of 3D points as well as a camera pose. Typically, the
camera pose is chosen to be the identity rotation and zero translation, although
any initial frame could be chosen

2. Match features across frames to build tracks of features suitable for refining the
motion and structure. The longer the track corresponding to a 3D point and the
larger the baseline between features, the more accurate the refinement is
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Camera trajectory
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Figure 1.1: Overview of Visual Odometry

3. Triangulate a set of 3D points over frames. The initial set of 3D points will be
soon invisible due to camera motion and it is necessary to triangulate additional
3D points to make sure that the algorithm does not run out of 3D points

4. Obtain an initial estimate of motion between pairs of consecutive images. Several
approaches could be used to recover the motion between two frames. This step is
generally combined with RANSAC [9] for robustness

5. Optionally, refine the estimated motion and structure iteratively using nonlinear
minimization methods. This step is very essential for reducing error propagation
caused by image noise and the iterative nature of the algorithm

6. Repeat from 2

1.2 Overview of Our Approach

Our algorithm initializes a set of 3D points from stereo using a STereo-On-Chip camera
(STOC). The camera triangulates 3D points using hardware in real-time. After that,
a set of CenSurE [10] features is extracted from the left frame form each stereo pair.

"From http://www.videredesign.com
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Those features are used to initialize a feature tracker. The feature tracker uses Zero-
Mean Cross Correlation (ZNCC) and a marriage assignment scheme to match features
and track them over time. The matched features between consecutive frames are used
to estimate the camera motion using relative orientation [11]. The process is combined
with RANSAC to filter outliers and obtain a consistent set of matches. The final step
in the algorithm is the use of Sparse Bundle Adjustment (SBA) to refine camera motion
and, if possible, the 3D world structure. Structure refinement might not be always
possible due to short tracks, or insufficient baseline. Hence, we employ a track selection
scheme to select the points suitable for refinement.

1.3  Contributions

The main contributions of this thesis include:

e Analysis of reasons that prevent visual odometry from scaling to large datasets

e Empirical experiments proving that the use of relative orientation to estimate the
motion of the camera, outperforms the use of absolute orientation [12]

e Introducing a track selection scheme to choose a specific subset of the 3D points
to be included in the refinement step, which increases the robustness and accuracy
of the algorithm

e Implementation of the visual odometry system?

e Evaluation of the algorithm on indoor and outdoor datasets collected by stereo
head mounted on a mobile robot

1.4  Thesis Outline

This thesis is organized as follows. Chapter 2 provides an overview of Visual Odome-
try. This includes a literature review of some current algorithms, related work, different
camera types, initialization methods and different results reported from different sys-
tems. In Chapter 3, we present the details of the visual odometry algorithm we chose
to implement and the motivations behind design decisions.Experiments conducted and
evaluations of the proposed approach on indoor and outdoor datasets are presented in
Chapter 4. A discussion and analysis of the work done is presented in Chapter 5. Fi-
nally, we conclude the paper and discuss possibilities of future work and enhancements
on the approach in Chapter 6.

iThe system is implemented using unoptimized MATLAB code that runs in near real-time
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Overview of Visual Odometry

Visual odometry is the process of determining a visual sensor orientation and position
in 3D space from a sequence of images, or simply put, motion estimation using visual
information only. To us, humans, as well as many other living beings, our perception
system provides the main sensory input for navigation purposes. For example, it has
been shown that honey bees [13] use optical flow [14] as an essential navigation aid. It is
not only that visual inputs are naturally suitable for navigation, but also visual inputs
allows a variety of useful tasks. For example, besides navigating the environment the
robot can generate a 3D reconstruction, detect objects of interest, classify the terrain,
etc. All of those tasks can performed with low-cost and low-power consumption, which
is ideal for robotics platforms.

In Robotics research, the use of visual input for navigation purposes started late in
the 1970’s (see [15]). Among the first uses of cameras for mobile robot navigation can
be traced back to Moravec’s [16], who used several cameras to navigate a robotic cart in
a room. However, the use of vision in mobile robotics has been hindered by the limited
computational power. Typical image processing and understanding tasks require much
computational power due to the amount of data in images, which was not available until
recent advances in hardware Computer Vision algorithms.

Nowadays, visual odometry is attracting much attention in the Robotics and Com-
puter Vision communities. Several real-time visual odometry implementations have been
reported and results are very promising. However, much work remains to be done in
this area. Several improvements and enhancements could be added to current systems
to allow them to scale for very large terrains. The main issue is the ability to deal with
unbounded accumulated error induced by the iterative nature of motion estimation and
exaggerated with the large amount of data in images and the associated noise.

This chapter is organized as follows: First, we introduce some of the camera types
that have been used successfully in visual odometry, leading to a review of related
work. After that, the assumed camera model and geometry is explained. We also
discuss background materials related to feature extraction and 3D structure from images.
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Finally, this leads to a discussion of estimating camera motion between frames and the
use of RANSAC for robustness.

2.1 Camera Types Used in Visual Odometry

A variety of camera types exist and a survey of all of the different types of imaging
devices and lenses is beyond the scope of this thesis. Nevertheless, we can identify three
main camera types that have been successfully used in various implementations of visual
odometry. Those are shown in Figure 2.1.

The first and the most recommended camera for a robust visual odometry is a stereo
camera. The reasons behind the choice of a stereo camera will become apparent when
we discuss the main steps in visual odometry, which is mainly the ease of triangulating
3D points. The fixed and known baseline of a stereo camera allows efficient and more
accurate triangulation process. However, one drawback of using stereo is the relatively
high cost compared to conventional cameras.

Another type of cameras, is the conventional monocular camera. The main moti-
vation for using a monocular camera is the relatively cheap cost and easy deployment.
Monocular cameras are being integrated seamlessly in our lives. For example, many cell
phones and laptops are now camera-enabled upon purchase.

Finally, there have been some work on visual odometry using an omnidirectional
camera, i.e. a camera that has more than 180° field of view (FOV). The very wide field
of view from an omnidirectional camera provides many advantages, especially for mobile
robots. The most important advantage is that 3D landmark features remain in the field
of view of the camera for a longer period of time, which contributes to generating a more
dense and better refined 3D model of the world structure.

a B ™

(c)

Figure 2.1: Different camera types used in visual odometry, (a) monocular camera
(http://ptgrey.com), (b) multi-camera omnidirectional system (http:
//ptgrey.com), (c) stereo camera (http://videredesign.com)

It is not only that different types of cameras have been used to obtain visual odom-
etry, but also the approach has been used in a variety of terrains and different robotics
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platforms. One of the most interesting applications of vision-based robot navigation is
currently running on the Mars Exploration Rovers, Spirit and Opportunity developed by
NASA. According to [17, 18], visual odometry was a “life saver” in NASA’s Mars explo-
ration program. The authors report that the left back wheel of the rover “Opportunity”
is drawing more current that it should be and it had to be dragged most of the time to
maintain its expected lifetime. Dragging the wheel is a major cause of inaccurate wheel
odometry and hence visual odometry was there to the rescue.

Back on earth, visual odometry has been used in several terrains and environments,
including rough terrains, urban areas, indoor environments, underwater and in air |3,
19, 20, 21]. An interesting example of using vision is the underwater vSLAM algorithm
developed in [22]. Another interesting application of vision based navigation system is
the one developed for helicopter navigation [23].

2.2  Related Work

The idea of using vision as the main sensor for navigation purposes in not new. The
idea has been around since late seventies, early eighties. Some work on SFM started in
1979 by Bonde et al.[15]. In 1980, Moravec [16] demonstrated obstacle avoidance and
navigation on a robotic rover using computer vision. However, research on vision-based
navigation stalled for a while, due to several factors including the high computational
complexity and the existence of more accurate, but more expensive sensors, such as Laser
range finders LIDAR, that became the dominant navigation sensor. Recently, however,
advances in computer hardware and algorithms are allowing image processing tasks to
run in real-time. Such advances are renewing interest in the use of vision for localization
and mapping tasks.

Visual odometry has been used in a variety of terrains and environments. The most
relevant environments are outdoor and indoor environments accessible by mobile robots.
Visual odometry algorithms seem to be more successful in outdoor than indoor terrains
as it is easier to extract more unique features compared to features extracted in typical
indoor environments. For example, a robot navigating a meadow is more likely to find
distinctive features compared to navigating a building. Blank walls and uniform textured
floors in indoor environments makes difficult the extraction of distinctive features that
could be used for triangulation or tracking. However, a visual odometry system designed
to address navigation in indoors environments could benefit greatly from the known
Euclidean geometry in indoor environments, such as the straightness of walls.

One of the leading approaches to visual odometry is the work of Nister et al. [4]. The
authors demonstrate the use of visual odometry on rough terrains using a monocular as
well as a stereo camera. Nister’s monocular scheme as well as the stereo scheme operate
in real time, partially by tailoring modern CPU instructions to extract features very
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efficiently as well as the use of preemptive RANSAC [24]. Preemptive RANSAC plays
a key role in the system, adds robustness to the approach by rejecting outliers to the
motion model, and it achieves this very efficiently.

The monocular scheme of Nister’s approach depends on extracting Harris corners and
tracking them across frames. Once a feature track has a large enough baseline, the first
and last features are used to triangulate the 3D point, while the rest of features on the
track are used in an iterative minimization step later on. Motion between consecutive
keyframes of the camera sequence is estimated using the 5-point algorithm [25], followed
by an iterative refinement step. The last step is put the current motion estimate in the
coordinate system of the previous image to obtain a consistent trajectory of the camera.

The stereo scheme in Nister’s work is very similar. However, the fixed baseline of
the stereo head simplifies the problem of 3D point triangulation and resolves the scale
ambiguity. Dense correlation based stereo is performed to obtain 3D points at every
frame and motion is estimated using the 3-point algorithm [11] followed by an iterative
refinement step. In both cases, Nister et al. limit error propagation by introducing a
firewall into the system. The idea is that the motion estimation is stopped after a
certain number of frames, and visual odometry is reinitialized. This reduction in error
propagation in the system comes at the cost of reducing the number of 3D points used
for tracking and refinement and has to be balanced correctly to prevent the system from
running out of 3D points.

The use of Bundle Adjustment, or more specifically, Sparse Bundle Adjustment
(SBA) has been also used to determine camera motion and world structure without
an initial motion estimate. The work of Siiderhauf et. al. [26] investigated the use
of SBA to estimate camera motion and structure directly from stereo data. This is
achieved by using feeding SBA with features from both the left and right stereo pair
without a proper initialization of 3D structure or camera motion. The approach is also
combined with a simple outlier rejection method to reject points with an error larger
than a certain threshold. However, providing good initial estimates of camera motion
and structure is essential for seriously motivated applications. The relatively low error
rate reported in [26] does demonstrate the power of SBA and its effectiveness in visual
odometry applications.

Using SBA with proper initialization of camera motion from point matches using
absolute orientation has been implemented by Konolige et al. [6]. The authors show
that the use of Bundle Adjustment in visual odometry can reduce errors by 50%. They
also combine visual odometry output with an IMU and are able of estimating a trajectory
up to 10Km with only 10m of error.

Next, we describe the background materials as well as the basic components needed
in a visual odometry system.
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2.3  Camera Models

In this work, we assume an ideal pinhole camera model. The pinhole camera model is
arguably the simplest camera model. Camera projection is essentially a mapping from
a 3D world to 2D plane (the imaging surface). The camera matrix, P is a 3 x 4 matrix
that achieves this mapping. According to the pinhole camera model, x = PX, where
X is a 3D point in the world represented in homogeneous coordinates, and = denotes
equality up to scale. The homogeneous representation of a 3D world point and a 2D
image points are X = [X Y Z W]", and x = [z y w]” respectively. To obtain the final
2D pixel coordinates one divide the coordinates by w to get x. = [z/w y/w]’. The use
of homogeneous coordinates in Computer Vision is essential for the projection task and
very important to be able to seamlessly represent points at infinity.

The camera matrix is usually represented as P = K[R T, where K is a 3 x 3 intrinsic
parameters matrix, R, T are the rotation and translation that transform the world 3D
points to the camera frame, or camera extrinsic parameters.

The camera intrinsic parameters matrix provides the transformation from retinal
coordinates to image coordinates as depicted in Figure 2.3(b). A typical intrinsic pa-
rameters matrix is an upper triangulate matrix in the form

fz a ¢
K=|0 f ¢ (2.1)
0 0 1

Where:

e f., f, are the horizontal and vertical focal lengths respectively
® c,,c, are the z,y coordinates of the camera projection center

e « is the camera skew parameters to account for non-rectangular pixels. For the
majority of cameras, especially the CMOS camera used in this work, the imaging
plane has rectangular pixel, or a very insignificant skew that it is safe to assume
a=0.

Note that the camera matrix could also be written as:

P = KR[I| - C] (2.2)

where the pixel coordinates of the point X becomes x = KR[I| — C|. Here, C is the
coordinates of the camera center in the world frame. Comparing this notation with the
more convenient notation 2.2, we see that

C=-R'T (2.3)
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(a) (b)

Figure 2.2: (a) the geometry of the pinhole projection model, (b) transformation
between retinal coordinate to image coordinates by the intrinsic matrix K

Hence, knowledge of camera rotation,R, and translation, T allows the computation
of the camera center. A more comprehensive treatment of camera models and geometry
of camera can be found in [8]. Note, for this exposition, we are glossing over distortions
to the moel which we assume can be removed through a good calibration process.

2.4 Image Features

We now describe how image features are extracted and tracked across frames.

2.4.1 Feature detection

Features are points/regions in the image that have desirable properties to make them
distinctive and therefor easily detected. The ability to extract distinctive features from
images is essential to reducing the amount of information encoded in images. Given the
projection of a feature in at least two views, it is possible to reconstruct the 3D location
of the point. Further, given a large enough set of feature correspondences between views
it is possible to recover the underlying epipolar geometry and perform several tasks, such
as camera motion recovery and 3D triangulation.

A single pixel in a typical image is useless without its surrounding texture. Hence, an
image feature can be thought of as a vector describing the local image patch surrounding
a pixel (see Figure 2.3). This vector is typically called a ‘descriptor’. The aim from
computing a feature descriptor is to robustly describe the image patch so that comparing
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two image patches becomes a distance similarity operation on the two descriptors.

)

Feature vector

Image

Figure 2.3: Feature vector extract from a 3 x 3 region centered at pixel (z,y)

Desirable properties of a descriptor include: invariance to illumination, scale changes,
viewpoint and affine transformations. However, the more operations applied to increase
the robustness of a descriptor, the more computation power needed and the slower the
process becomes. Thus, the choice of features and feature descriptors depend highly on
the applications and whether real-time performance is needed.

Available feature point extraction and description algorithms include, Harris cor-
ners [27], CenSurE features [10], FAST [28], Hessian Affine [29], SURF [30], SIFT [31].
The last two feature detectors, SIFT and SURF belong to the category of affine invariant
feature descriptors that generate great feature matching accuracies. However, they re-
quire lots of computational power that might not available for high frame rate real-time
systems. Hence, simple corner features, that are very efficiently computed, are perfectly
valid as the main feature types.

2.4.2 Feature Matching & Tracking

In the context of visual odometry, image features are useful only when they are matched
with features from other views. In Structure From Motion the aim is to recover the
structure of the world as well as the camera motion from point correspondences in
different views. More formally, let x = PX and x’ = P’X be the projections of the same
3D world point X, then the problem becomes recovering P’ and X. For a calibrated
camera, where K is know, this resolves to finding, R, T, X such that P’ = K[R T

Several methods exist to match features between frames. The variation of methods
depends mainly on the feature types used as well as application demands. For high
dimensional features, such as the 128-d SIFT descriptor, nearest neighbor search using
the L2-norm distance is the method of choice using, or a KD-tree for performance. Cross
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Figure 2.4: Examples of image features

(a) Original image (b) CenSurE

(¢) Multiscale Harris (d) SIFT
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correlation can also be used to match features. Normalized Cross Correlation (NCC) is
a method of matching feature descriptors, which incorporates more robustness into the
descriptor in the normalization step.

Once feature matching is done, visual odometry can benefit from maintaining tracks
of features, especially in the refinement step. A sufficiently large baseline, or the distance
between two projections of a feature will generally guarantee a stable refinement of the
reconstruction. However, at high frame rates, two features matched in two consecutive
views may not guarantee a large enough baseline. Hence, tracking feature across many
frames increases the accuracy of visual odometry considerably. Tracking a feature point
across frames could be done with mathematical models, such as the well-known Lucas-
Kanade tracker [32], or repeated usage of the previously feature matching methods.

2.5  Obtaining 3D Points/Triangulation

An essential part of the algorithm is obtaining 3D feature points (landmarks) from the
camera. Those points are not only for map generation and visualization, but also they
serve as a way of obtaining and estimating the camera position. This step is commonly
referred to as the initialization step of the algorithm. The way points are triangulated
varies with the type of camera. We now present ways of initializing the visual odometry
algorithm using a monocular camera as well as a stereo camera.

2.5.1 Triangulation using monocular camera

In the monocular case, 3D points are triangulated using the Epipolar geometry between
multiple views. The basic idea is computing the Fundamental Matrix (or the Essential
Matrix if calibration is present), to reconstruct the camera matrix relative to another
camera assumed to be at the origin with a canonical camera matrix P = KJI 0].

Many uncertainties in the use of the Epipolar constraint arise especially when images
are taken from a mobile robot. In general, a monocular camera for navigation is mounted
on the robot facing the direction of movement such that it can have front view. In
this case, the Epipole between consecutive view is at the center of the image, along
the direction of motion, which increases the triangulation uncertainty considerably as
illustrated in Figure 2.5. Moreover, the reconstruction can only be recovered up to scale.

2.5.2 Triangulation using stereo

The fixed baseline in the stereo case is a great advantage in the process of triangulation.
Knowledge of the base line permits an accurate computation of the disparity image and
allows for fast and dense 3D triangulation. Moreover, it resolves the scale ambiguity
found in the monocular scenario.
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Figure 2.5: The shaded area represents the area of uncertainty in triangulating 3D
points from different views. The smaller the baseline (distance between
the image planes optical centers) the more uncertain the triangulation. In
particular, notice the case in the last image when the two camera are in
front of each other. The Epipole in this case is at the center of image and
causes the largest uncertainty in estimating the 3D points in the FOV.
Figure from [§]

(a) Stereo setup (b) Stereo geometry

Figure 2.6: Stereo vision geometry
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Figure 2.7(a) shows a canonical depiction of a fronto-parallel stereo rig. Given the
projection ray of point X on each camera image plane and knowledge of the baseline
between the two image planes, we can intersect the two rays in space and estimate the
3D location of the point X in the camera coordinate system. The process of computing
3D information from the stereo camera starts by computing a disparity image. Since
the two image planes in the majority of stereo systems are fronto-parallel, the vertical,
y, coordinate of image corresponding image pixels is the same. Hence, it is enough
to compute the horizontal disparity, which the difference between the x coordinate of
corresponding pixels in each image plane*. Once the correspondence problem between
the two view is solved, computing the 3D coordinates of a point X = (X YV Z)T can be
obtained from trigonometry. From similarity of triangles in Figure 2.7(b), observe that:

Z Z—f
Z__Z J 2.4
B B-—ax+zx, (24)
By rearranging the equation above to isolate Z in on side, we get:
B

where § = x; — x,, the disparity value.

Now, we can obtain the X and Y coordinates of the point using the basic pinhole
projection model:

2.6 Recovery of Camera Motion between Frames

To recover camera motion between frames, there are two common approaches: Absolute
orientation and relative orientation.

2.6.1 Absolute Orientation

The problem of absolute orientation is the following: Given, at least 3, 3D points in
coordinate system A and a corresponding set of points in a different 3D coordinate system
B. Find the rotation R, translation t and a scale factor s such that X, = s (RXp + t)T.
The algorithm has been studied extensively and a variety of solution were discovered.
In 1983, Faugeras and Hebert [33] published the first solution using unit quaternions to
represent rotation. In 1987, Horn published a closed form solution to the problem also
using unit quaternions to represent rotation [12]. A solution using rotation matrices was

*Note, we again ignore distortions and skew in the approach as they can be recovered by careful
calibration
"Note the use of scaling factor s. For stereo, s is forced to be 1
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presented by Arun et al. [34] using singular value decomposition (SVD). Following to
that, in 1991, Umeyama discovered and corrected some degenerate cases [35].

Yy R.t,s

E=3pislsBXp +t) — Xall?

Figure 2.7: Absolute orientation

The basic intuition in most of the absolute orientation algorithms is that solving for
R, t and s can be done separately. Solving for rotation is the most difficult part in the
problem. Once rotation is found, estimation of translation and scale become an easy
task. Translation can be estimated between the centroid of X4 and the rotated and
scaled centroid of Xpg, while scale is handled similarly. Finally, because of the noisy
nature of measurements, solutions to the problem are casted as finding R, t, and s, such
that an error criteria is minimization.

Typically the quantity to be minimized is:

E=> ||s(RXp+t) - X’ (2.7)
R,t,s

This least squares fitting method is very sensitive to outlier measurements. Therefor,
the approach should be used as part of hypothesis-and-test RANSAC [9] framework to
reject such outliers.

2.6.2 Relative Orientation

Relative orientation is camera motion estimation obtained from a set of 2D-3D point
correspondences. The set of 3D points are in the world frame and the 2D points are
their projections as seen by a camera. The task is to recover the relative camera position
based on the given information. T'wo key steps are performed to obtain a motion estimate
form 2D-3D correspondences. First, the depth, or the distances of each of the 3D points
from the camera center is estimated. Second, the Euclidean transformation from the
estimated points in camera frame to the world frame is recovered. This transformation
describes the camera motion we are interested in. The two steps are explained below.
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Figure 2.8: Relative orientation

First, estimating depth of a set of 3D points in the camera frame, based on their pro-
jection and their coordinates in a reference frame is called the Perspective-N-Point prob-
lem (PnP). The PnP problem is well studied problem in photogrammetry and Computer
Vision. Solutions to this problem can be traced back to Grunert’s work in 1841 [36]. A
formal definition of the problem has been given Fischler and Bolles in 1981 [9] as: given
the relative spatial locations of n control points and the angle to every pair of control
points from the center of perspective (CP), find the lengths of the line segments joining
the CP to each of the control points. This is different from the camera resectioning
problem [8] where the camera intrinsic parameters are allowed to change. Depending on
the number of points used, there exists the P3P, P4P and P5P variants of the problem.
Cases with n < 3 are not applicable as 1 or 2 points are not enough to constrain the
problem and result in an infinity of solutions.

The fundamental problem, and the one we are interested in, is the P3P problem.
By looking at Figure 2.8 we observe that there is a tetrahedron consisting of the rays
projected from each of the 3D points onto the camera center C'. Each of the 3D points

are on the form
X,
P=| v (2.8)
Z;

The known lengths of the sides of the triangle connecting the three 3D points is:

a=||P— Pl (2.9)
b=||P — P (2.10)
c=||P — Py (2.11)

The projection of each of the 3D points, from the camera frame, is a 2D point ¢; =
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u.
( ’ ), where each coordinate is obtained using the perspective equations:
Vi

X; Y;
) 2.12
w=tg w=lzg (2:12)
The unit vectors from C' to each of the P;’s is given by

Uy

1

Ji = 5 5 5 (% )
\/ui—i_vi—i_fi f

Since the camera calibration is known, we can determine the angles between each of the

i=1,2,3 (2.13)

rays (tetrahedron legs) and the camera center C. Let «, 3, be the angles corresponding
to a, b, ¢, line segments connecting the three 3D points P;’s, respectively, then the angles
can be given by the following equations:

a=cos ' (j2 - J3) (2.14)
B =cos ' (41 j3) (2.15)
7 =cos™ (jr+ ja) (2.16)

Where, j;’s are the unit vectors given by 2.13. Let S; be the unknown distance from
each P; to the camera center C, then S; = ||B||, ¢ = 1,2,3. Since P, = S;j;, it is
sufficient to find each of the S;’s to determine the position of each of the points in the
camera frame.

The main idea to find a solution to the problem is the use of the known information to
form a high degree polynomial. The real roots of the polynomial correspond to possible
solutions, which are then verified for correctness.

The general approach starts by using the Law of Cosines to get the following:

a® = S3 + 53 — 25,55 cos a (2.17)
b = S} + 83 — 25,53 cos 3 (2.18)
=857+ 87 — 285,55 cosy (2.19)
Let

SQ = USl Sg = USl (220)

then:
a® = S?(u* + v* — 2uv cos ) (2.21)
b = S?(1 4 v* — 2vcos 3) (2.22)

¢ = S}(1 +u* — 2ucosv) (2.23)
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Therefore
2
) a
= 2.24
Vw2 + 02 — 2uucosa ( )
b2
— 2.25
14+ v2—2vcosf (2.25)
2
(2.26)

R — 2ucos~y

After this point, several solutions exist [11]. The solution we use in this work is the one
given by Fischler and Bolles [9], in which they manipulate the equations above to obtain
a fourth order polynomial

D4u4 -+ D3U3 + D2U2 + D1U + DQ =0 (227)

The polynomial in 2.27 could have up to 4 solutions. For each solution a value for
u; and v; are recovered. By plugging the u value in 2.26, we can obtain S, while Sy
and S3 can be obtained by Equation 2.20. The correct solution, of of the possible four
solutions, must satisfy the Law of Cosines, Equation 2.19. Once the position of each of
the P;’s is determined in the camera frame, P;, then the relative orientation of the camera
with respect to the world reference frame can be obtained using absolute orientation as
explained in Section 2.6.1.

A complete survey of the major relative orientation/P3P algorithms can be found
in the work of Haralick et al. [11]. An efficient O(n) solution to the PnP was recently
developed in 2007 by Moreno-Noguer et al. [37].

2.7 RANSAC

Obtaining an estimate of camera motion using either relative or absolute orientation is
not the end of the story. The aforementioned algorithms rely on the minimum number
of samples to obtain an estimate of motion. However, in the presence of noise, some
measurements are gross outliers and hurt the estimation significantly.

RANSAC (RANdom SAmple Consensus) is an algorithm developed by Fischler and
Bolles in 1981 [9]. The algorithm’s core idea is very simple, but it is probably the
most cited algorithm in the Computer Vision literature. RANSAC repeats a set of of
steps L times, where at each step a minimal set of points (3 in this case) is sampled at
random and the pose is estimated. The number of points that agree with this solution
as determined by a threshold are counted, and are called inliers. The pose with the most
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outliers is kept. The algorithm runs at most L steps, where

I log (pfait)

108 (1 — (Pgoot)®) (2.28)

Where pgooq is the probability of a randomly selected data point being in a good model
and prair = (1= (Pgooa)™)* is the probability of the algorithm failing. While it is possible
to use overdetermined solutions, we can see that the running time of the algorithm is
proportional to sample size used to generate the hypothesis. Hence, it is important to
use the smallest possible sample size for a more efficient solution. Pseudo code for the
RANSAC routine is show in Algorithm 1.

Algorithm 1 The RANSAC algorithm

RANSAC(DATA, N, k, pgood, €, T)

1 Select a random minimum number of samples k to compute a model

2 Fit the model to the data set and record the number of inliers that are within a threshold
3 ifL>r7

4 then

5 Accept the model
6 else

7 Repeat from 1 L times

8 Cannot find a model, data is too noisy or threshold is too low

2.8 Nonlinear Motion & Structure Refinement

Unbounded accumulated error, image noise and the many nonlinearities involved in
estimating camera motion require the use of a nonlinear minimization step to reduce
error. Bundle Adjustment [38] algorithm to refine motion and structure estimates as a
large nonlinear minimization problem. The name stems from the analogy of adjusting the
‘bundle’ of rays projected of 3D points and converging onto each of the camera centers.
The goal of the process to adjust the world structure and camera parameters in one
bundle. Examples of using the bundle adjustment technique include [5, 3, 19]. Assuming
Gaussian noise and the absence of outliers, the bundle adjustment algorithm provides
an optimal solution to the problem of refining motion and structure based on image
measurements. Further, the sparse nature of the problem makes it possible to use Sparse
Bundle Adjustment (SBA) in real-time applications in many times. Bundle adjustment
could be run in real-time using local bundle adjustment, mask/feature selection and
rejecting outliers to simplify the minimization equations.

The SBA algorithm tries to minimize the reprojection error. The reprojection error
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is the Euclidean distance between the predicted projection of all the 3D points using the
model and measured projections in the image given by:

n m
min > ) " d(Q(a;,bi) — xi;)° (2.29)

b 55 o
where, n is the number of points, m number of cameras, Q(a;, b;) is the predicted
projection of point ¢ on image j, X;; is the measured image coordinates and d(-) denotes
the Fuclidean distance. The minimization problem can solved using iterative nonlinear
minimization least squares, such as the Levenberg-Marquardt (LM) algorithm [39, 40].
LM provides a way to iteratively minimize the cost by robustly solving a modified form

of normal equations:

JTJ5 = 3% (2.30)
where J is the Jacobian for the projection function Q(+). Input to the projection function
is a vector of camera parameters (alT, aZT, ce ,a%), and a vector of points parameters
(T, 6%, ... bL), where a; = (QF T')* and b; = (X; Y; Z;). The output of the projection
function is (f{ﬂ, x5 ... ,X%n) , which is a set of projection for each of the 3D points in

each camera where the point is visible.

The Jacobian of the projection function J is constructed from %Z and %"Tij. The
oxi;
o —
because the projection of a point in a camera ¢ depends only on the parameters of camera

7 and nothing else.

spareness of the Jacobian comes from the fact that 88% =0 and 0, unless j = k

In this chapter, we present the details of our approach to visual odometry.

tQ; is the imaginary part of unit quaternion corresponding to rotation
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Our Approach

Our approach is inspired by several algorithms in the field [5, 3, 6, 4]. The approach
does not place any constraints on the camera (such as forcing the estimated motion to be
above the ground plane) and does not incorporate any predictive models on the camera
motion. The motion of each frame is computed using an efficient relative orientation
computation in a hypothesize-and-test RANSAC [9] framework. The iterative nature
of this motion estimation scheme requires careful attention to error propagation. We
make use of the Bundle Adjustment technique to refine motion and possibly the world
structure (see Hartley and Zissermen [8]). Bundle Adjustment is considered the method
of choice for optimal refinement of motion and structure if the error is modeled as a
zero-mean Gaussian. In this chapter, we explain the details of our visual odometry
algorithm. Figure 3.1 outlines the main steps in our approach and Figure 2 is our
algorithm in pseudo code. The core algorithm is currently implemented in MATLAB
while feature detection and tracking is implemented in C/C++.

Initialization

Robust Pose
Estimation

Corres. &
Feature Tracking

Triangulation

Figure 3.1: Overview of the main steps in Visual Odometry. The dotted line denotes
a less frequent use of nonlinear refinement depending on the need and
available image projections

The algorithm starts with initializing the world model with an initial set of 3D points
from stereo and aligns the world coordinate system with the first camera, ie. )y =

23
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Algorithm 2 Overview of the visual odometry algorithm, details in the text

VIsuAL-ODOMETRY (K)

1 [X,x] = INITIALIZE-FROM-STEREO

2 while there are images to process

3 do

4 > Obtain data from the stereo head

5 X, Y, ¥m] = FINDCORRESPONDENCE(X,Y)

6 [Qi, T, inliers] = RANSAC-RELATIVE-ORIENTATION(X ., Y, Yin, K)
7 (Qq, T}, X, (inliers)] = SBA-MOTION-REFINEMENT

8 if there are tracks longer than 3 frames staring from frame k
9 then

0 > Refine motion & structure using SBA

11 [Qii, Theri, Xs] = SBA-MOTION-AND-STRUCTURE

Figure 3.2: The STOC camera used in the system

(1000)"* Ty = (000)", where Q; is camera rotation represented as a quaternion.
After that, a three-step processes is then repeated: (1) finding a set correspondence
between 3D points and their 2D features in the left image of the stereo, (2) obtaining a
robust estimate of motion using RANSAC and relative orientation, (3) refining motion
parameters only using SBA. To increase the accuracy of the approach, we sub-select
features that are tracked for more than three frames to refine motion and structure
concurrently using SBA.

3.1 Initialization / 3D Points Triangulation

In this work, we delegate the task of triangulation and obtaining a set of 3D points
at every frame to hardware using a Stereo On Chip Camera (STOC)', which performs
dense correlation-based stereo. The camera has 9cm baseline and is connected to the
computer using Firewire, see Figure 3.2.

The small baseline as well as the relatively wide FOV of the camera do not allow the

*Equiveantly Ry = I3
"From Videre design http://www.videredesign.com
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camera to accurately triangulate 3D points that are far away from the camera. During
empirical experiments with the camera, we observed that points that are farther than
5m from the camera have unreliable depth and are not used in the algorithm. This has
been in a problem in testing the approach for outdoors datasets.

3.2 Finding Correspondence and Feature Tracking

The STOC camera tries to find a dense set of 3D points by matching as many points
as possible between the left and right image. Knowledge of epipolar lines allow a fast
and dense set of features to be matched resulting in a dense 3D point cloud. However,
the high density of features used for triangulation introduces more challenges to feature
matching across frames. For the approach to be successful, it needs more distinctive
features that could be matched between frames with higher confidence. Thus, we extract
different types of features from the left image of each stereo frame to use them for motion
and structure refinement.

Once features are extracted, a 3D-2D correspondence needs to be established between
the extracted features and the 2D coordinates of the 3D points generated by the stereo
head. The correspondence approach used is very simple by matching the coordinates of
the extracted features to the 2D coordinates of stereo head. In this work, we extract
CenSurE features [10] from the left image of each stereo pair, see Figure 2.4 for an
example of CenSurE features. CenSurk features were extracted in scale-space to add
invariance to feature scale [41]. The use of CenSurE features has two advantages: one,
computing CenSurE features in an image is a relatively efficient task, thus providing
means for a real-time implementation. Two, CenSurE features seem to perform well in
outdoor as well as in indoor environments.

Each extracted feature is assigned a unique I D to be able to build tracks of features
over time. For each image I; a number of CenSurE feature vectors v;’s are extracted.
Similarly, for image ;.1 we extract a number of feature vectors v;y;’s. Two feature
vectors are matched if the Zero Normalized Cross Correlation (ZNCC Equation 3.3)
exceeds a certain threshold. Further, the spatial information is also incorporated by
limiting the search window around the feature vector to a certain number of pixels.
Moreover, features are matching in a marriage assignment scheme, to obtain a more
reliable matching. Each of the feature vectors in v; is assigned a matching feature vector
in v;1 based on the ZNCC score and spatial information. At the same time, each of the
feature vectors in v;1; is assigned a matching vector in v;, again using the ZNCC score
and spatial information. Finally, two feature vectors v;, v;11 are declared as matches if
both features have been assigned to each other by the marriage assignment scheme.

As a note, the choice of the many different thresholds involved in the process (e.g.
search window size, ZNCC threshold, scale factor between every octave, etc.) is rather
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1 3 Loy — pur) (W — i) (3.1)

N -1 oo
T,y 10w

Figure 3.3: Zero-mean Normalized Cross Correlation (ZNCC), where I, denotes the
subimage, w is the feature vector, IV is the number of entries in the feature
vector, p the mean and o is the covariance

cumbersome. Choices are highly dependent on the image sequence on hand and are a
matter of art and experimentation to get the best combination of magical numbers. In
this work, we decide the best combination of thresholds for each datasets separately by
experimentation and visual verification.

3.3 Camera Motion Estimation using Relative Orientation

To obtain an initial estimate of the camera motion we use a 3-pt relative orientation
algorithm [11]. We combine the relative orientation algorithm with RANSAC [9] to reject
outliers and obtain a robust pose estimates. The input to the 3-pt relative orientation
algorithm is a set of 3D points in the world coordinate frame X;, a corresponding set
of 3D points in the camera coordinate frame Y;, a set of 2D image projections y;
corresponding to each of the Y;’s and the camera intrinsic parameters matrix K. Since
we have the calibration matrix, we can work directly in normalized image coordinates
to reestimate the depth of each of the points Y; and obtain a more accurate set of 3D
points Y; in the camera coordinate system. After that, we apply an absolute orientation
step to recover R and T, such that X; = R(Y; —T) (see Section 2.6.2).

The use of relative orientation instead of directly recovering the camera motion using
absolute orientation step is motivated by the uncertainties in computing the depth of a
point from stereo. Although both relative and absolute orientation are sensitive to noise,
the latter is empirically more stable. Thus, reestimating the points as a preprocessing
step before the absolute orientation step yields better results (see Chapter 4).

3.4 Motion & Structure Refinement

The step of refining motion and structure is crucially important. The unbounded nature
of the accumulated error is the main reason preventing visual odometry algorithms to
scale. As can be seen, there is much room for errors involved in every step of the
algorithm influenced by the noisy nature of images. Sources for error in the system
include:

e Triangulating 3D points from stereo: the process of triangulation is not error-free
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and error could be introduced during feature matching steps. Further, more gross
errors could easily be introduced to the system by the nonlinear proportionality of
disparity uncertainty with respect to depth.

e Feature tracking: the feature tracker is also not error-free. In fact, one of the most

devastating errors are wrong image matches. However, a good percentage of those
errors are handled by RANSAC

e Errors in initial motion estimates: again, initial motion estimates are prune to
errors. The major cause of error in this case are wrong feature tracks as well as
inaccurate 3D triangulations. We try to handle as much as possible of those errors
by using RANSAC as well as reestimating the 3D points using relative orientation
prior to apply an absolute orientation step.

The problem of motion and structure estimation is essentially non-linear. Although
the use of an outlier rejection scheme as RANSAC is extremely important, a nonlinear
minimization/refinement step should be applied. In this work, the Bundle Adjustment
[38] algorithm to refine the motion as well as the structure whenever possible. In this
work, we use the Sparse Bundle Adjustment implementation provided by Lourakis et
al. [42]. We have observed that it is almost always possible to refine estimate motion
using bundle adjustment, however care should be taken when using the bundle adjust-
ment method to refine structure. The choice of the 3D feature points to be included in
the bundle adjustment computation should be made carefully. An important factor in
determining whether a 3D point is included in the refinement is the number of corre-
sponding image projections. More precisely, the baseline between those projections is
the quantity we would like to have as large as possible to obtain an accurate reconstruc-
tion. However, consecutive images passed to the algorithm are of actual image motions.
Thus, we assume that the number of frames we track a feature for is a good indication
for sufficient camera movement to allow accurate reconstruction. In our experiments,
we include a 3D point into the refinement step iff we can see the point for more than 3
frames. In other words, the point is projected into at least 3 cameras.

In the next chapter, we describe experiments done and report on results obtained
from this algorithm in outdoor and indoor datasets.
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Experiments & Results

In order to test and evaluate the performance of our approach, we have collected stereo
imagery taken by a camera mounted on a mobile robot in indoor and outdoor environ-
ments. The camera used is STOC camera shown in Figure 2.2(c) with 9cm baseline and
a wide Field of View (FOV). The short baseline of the camera as well as the wide FOV
favored the use of the camera in indoor environments with limited scene depth. We have
also tested the approach in outdoor environments, but with the camera titled towards
the ground to get more useful 3D points.

We experimentally tested major components of the visual odometry system. In
particular we experiment with:

e Relative orientation vs. Absolute orientation

Global vs. Local SBA

Visual odometry without nonlinear refinement

Feature selection mechanism

Complete system results on indoor and outdoor datasets

Next, we explain experiments conducted and report results of testing the algorithm
on outdoor and indoor datasets.

4.1 Relative orientation vs. Absolute orientation

Since 3D points can be triangulated from stereo in camera frame and can be matched to
a set of points in the world frame, why not use absolute orientation directly? In absolute
orientation, a transformation between corresponding 3D points in different coordinate

29
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systems can be computed efficiently and in closed form [12]. Nonetheless, relative ori-
entation proves superior in this problem. In our experiments, we have tested pose esti-
mation using relative orientation and absolute orientation and we have experimentally
found that relative orientation provides more stable results.

Both relative and absolute orientation are very sensitive to erroneous measurements.
Although the use of RANSAC adds robustness to the algorithm, it does not solve the
problem of inaccurate measurements. The situation is more exaggerated in the case of
triangulating 3D points from stereo imagery, especially when 3D points triangulation
uncertainties increase significantly in the direction of depth.

In Figure 4.2(a) the trajectory of the camera was estimated using relative orientation
(red) versus absolute orientation. Both methods seem to perform well until the 73
frame of the sequence in which trajectory estimation using absolute orientation becomes
useless. Figure 4.2(b) is a plot of the cardinality of the set of inlier 3D points at every
frame of the sequence. From the plot, we can see that absolute orientation is able to
maintain a slightly higher number of inliers at every frame. More interestingly, at frame
73, when motion estimation using absolute orientation breaks, we can see a significant
increase in the number of inliers. This high number is due to a low error when the
absolute orientation model is fitted to data that is should not be consistent with motion.

(a) Relative (red) vs. Absolute orientation (b) Number of RANSAC inliers over time
trajectory. See text for details

Figure 4.1: Relative vs. Absolute orientation results

Since the trajectory estimation is iterative and depends on previous estimates, it is
not possible to recover the correct trajectory once it fails. It is possible to establish
another segment of odometry, however, there is no easy way to connect those segments
without using other sensors or more complex algorithms. Accepting inaccurate points
as inliers hurts the algorithm significantly and our algorithm does not provide a solution
to this problem. Instead, we use relative orientation to compute a robust estimate of
motion between frames that correctly rejects 3D points that are outliers to the motion
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model based on the geometric reprojection error.

4.2  Global vs. Local SBA

Bundle Adjustment is an established algorithm in the field of photogrammetery and
provides an optimal refinement of motion and structure assuming that error is zero-
mean normally distrusted. However, naive implementation of the algorithm is very
computationally expensive as it requires inversion of very large matrices. Even with
the introduction of fast matrix inversion methods, the size of the matrices are typically
large preventing the use of Bundle Adjustment in real time. The structure of the prob-
lem, however, is naturally sparse. Exploiting this sparsity leads to significant gains in
performance and allows careful use of the algorithm to run in real-time.

Nonetheless, the matrix inversion step is still a burden when the problem grows and
we are dealing with large matrices. In solution to this problem, local Sparse Bundle
Adjustment (SBA) could be used instead of running the SBA globally on all frames. In
fact, the iterative nature of the problem does not allow SBA to run globally as images
are not known beforehand.

In our experiments, we have used SBA to refine all frames whenever a new frame is
added, which we call global SBA, and we have used SBA to refine only a fixed number
of frames locally. Results obtained from local SBA are of comparable quality to using
global SBA. In fact, this minor loss of quality is compensated by the ability refine motion
and structure much faster than refinement using global SBA.

4.3 Visual Odometry without nonlinear refinement

We have analyzed the performance of visual odometry using relative orientation com-
bined with RANSAC without any use of nonlinear refinement and we have found that
results depend on the dataset. In particular, relative orientation provides acceptable
results when camera rotations are small, other than rotations along the direction of
depth. If camera motion consists of translation only, then the use of relative orientation
generates a trajectory and map that are adequate for mobile robot navigation purposes.
However, as soon as rotations are introduced, the nonlinear refinement step is essential.
Results for this experiment are in Figure 4.3 and 4.2.

Figure 4.2 shows the trajectory of the robot driving in a line up a gentle slope. Red
is the trajectory estimated using SBA, while the other is the trajectory estimate by
relative orientation only. In both algorithms, the X and Y coordinates of the trajectory
report that the robot did not move neither left or right. However, as the robot was going
up, relative orientation overestimated the robot’s rotation.
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Figure 4.2: Relative orientation is prone to errors. Nonlinear refinement (red) is
essential for obtaining accurate results. See text for details.

Nonlinear refinement is also required in the case of rotations. Figure 4.3 shows SBA
trajectory (in red) versus relative orientation only on a dataset collected by moving the
camera in circular trajectory by hand.

More analysis is shown in Figure 4.4 where the mean re projection error is plotted
before applying SBA and after applying SBA. In this plot, SBA is ran on all frames in the
sequence in a global fashion. The spike in the error plot was due to large rotation that
caused blurry image affecting the quality of features. However, after motion refinement
using SBA the error goes back to an acceptable values.

4.4  Feature Selection Mechanism

Information about 3D points and their projection is stored in a matrix, where rows of
the matrix correspond to 3D points identified by a unique feature identifier and columns
correspond to frame number in the image sequence, as shown in Figure 4.5. The matrix
is binary, such that M;; = 1 if the 3D point with the feature 7 is visible at camera
frame j. Following the convention of [42] we refer to this matrix as the visibility mask,
or mask for short. The mask contains a lot of information about the features and the
performance of feature tracking. The example mask shown in Figure 4.5 is a diagonal
matrix as one would expect. As the camera moves in space, 3D features are expected
to disappear from the field of view. Hence, features observed on the first frame might
not be visible at the 20" frame depending on how fast the robot moves, camera frame
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Figure 4.3: Large camera rotation requires the use of nonlinear refinement
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Figure 4.4: Mean reprojection error at every frame before and after applying a global
SBA motion refinement. Motion refinement only was used and no structure
refinement used to generate the figure
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Figure 4.5: Example of a visibility mask, the red rectangles in inside the close up are
some of the included points for nonlinear refinement
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rate, and feature tracking performance.

One merit of the visual odometry approach is that it does not require a feature to be
visible at every frame. However, features that appear in very few frames, e.g. features
visible in 2 frames only, should be treated with care in the nonlinear refinement step as
they often do not constrain the refinement significantly.

To accurately refine a 3D point location in space it is necessary to have a sufficient
baseline. Most of the features that appear in two frames only are very close to each
other and not suitable for refinement. Refining those points will most likely result in
hurting the performance of the algorithm significantly. In our experiments, we noticed
two devastating behaviors if points with only two projections are used. The refinement
could either scale the 3D points coordinates down very close to zero, or it could scale
the coordinates up to values very close to infinity, in order to minimize error.

In this work, we select 3D points that are seen in more than 3 views for inclusion in
a joint motion and structure refinement step. Otherwise, we refine motion only, leaving
the structure intact, as shown in Figure 4.5.

4.5 Complete system results on indoor and outdoor datasets

We have tested the approach in indoors and outdoors environments. In this section we
present results on an outdoor dataset taken by a mobile robot. The robot, shown in
Figure 4.6, is a modified ER1 robot from Evolution Robotics*. A sample from one of
the outdoor datasets used to test the algorithm is shown in Figure 4.9. This dataset is
particularly challenging because of the abrupt robot motion caused by the bricks on the
ground and the small-sized robot wheels. The visual odometry results from that dataset
are shown in Figure 4.10.

Figure 4.6: The ER1 robot, one of the robots used to collect data

*www.evolution.com


www.evolution.com

36

Chapter 4. Experiments & Results

Figure 4.7: Sample frames from an indoor dataset
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Figure 4.9: An outdoor dataset used to evaluate the algorithm
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Figure 4.10: Visual odometry results shown on one of the outdoors datasets







Discussion

Visual odometry for localization and mapping is a certainly promising approach. The
ability to use the algorithm indoors as well as outdoors is a great advantage. Other
advantages include the ability to generate 3D maps of the environment using a camera,
rather than a 2D map using other sensors. Cameras in particular have several advantages
including the low-cost and high-information content. However, some issues need to
be addressed in order to obtain a scalable and robust visual odometry system. In
this chapter we discuss some of the major issues needed to obtain scalable and robust
performance. These issues include:

e Feature detector & tracker performance
e Motion estimation from point correspondences

e Nonlinear minimization

e RANSAC model-acceptance threshold

5.1 Feature Detector & Tracker Performance

Performance of feature detector and especially the tracker is crucial to robust visual
odometry. Three main issues to be considered:

1. Number of features extracted
2. Baseline length between tracked features

3. Accuracy of tracking across frames

41
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5.1.1 Number of features

An integral part of the approach is the use of RANSAC to obtain an initial robust
motion estimates. The more the number of samples used to estimate motion, the better
RANSAC performance is. For example, if 30% of the extracted features are correct
on average, then extracting 1000 features will yield 300 correct matches on average.
However, if only 100 are extracted, then we would only expect 30 matching pairs to
be correct. Although it is possible to determine camera pose uniquely from three 3D
points, the least-square fitting approach will be hurt in the presence of non-Gaussian
noise. Thus, it is better to always solve the overdetermined system and choose the best
fit with the help of RANSAC.

Image noise is an important factor that affects features extraction and matching sig-
nificantly, especially in visual odometry. The real-time requirements of visual odometry
prevents the use of sophisticated feature extraction methods. Feature extracted in real-
time have a much higher percentage of noise. Further, feature extraction and matching
across frames is not an error-free processes. Noisy points propagate to feature match-
ing across frames reducing the accuracy of matching, let alone the challenges of feature
matching in different views. Correlation-based matching between feature vectors in dif-
ferent views does not explicitly make use of the recovered camera motion parameters as
the scale of features change. In our approach, we use CenSurE features extracted in scale
space to avoid this problem. However, scale-space feature extraction does not eliminate
the problem entirely. Accepting inaccurate matches hurts the algorithm significantly.
Feature extraction and tracking are the main challenges in our approach. We extract
approximately 500 features per frame, 200 of those are distinctive enough to be tracked.
However, the 3D-2D correspondence step with the stereo data reduces the number to
less than 100 features per image. The number is further reduced to an average of 50
features after the RANSAC outlier rejection step. The problem is exaggerated with the
small baseline of the stereo, which requires tilting the camera towards the ground to
keep the 3D triangulation step as accurate as possible.

With that mentioned, visual odometry could benefit greatly if the camera is able to
triangulate far away points, especially in outdoor environments. Farther points remain
the field of view of the camera for a longer period of time, which allows tracking those
feature for a longer temporal window. Another advantage is that the motion of far away
points seem minimal with respect to the camera, which make their use ideal for rotation
estimation. This idea of separating rotation from translation has been implemented by
Tardif et al. [43]. Their approach of decoupling rotation from translation is key that
allows their system to achieve a trajectory of 2.5Km in urban areas.

Problems caused by an insufficient number of inliers, or matches, is shown in Fig-
ure 5.1. In this situation, the robot turned quickly and introduced a significant blur
to the image. Feature extraction and definitely matching was hurt significantly by the
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Figure 5.1: Lost pose caused by a low number of matched points, exactly three points,
used to find an initial estimate of motion. The very low number of matched
features is due to image blur caused by a fast turn by the robot

blurry image and caused the algorithm to break.

5.1.2 Accuracy of tracking across frames

Several solutions to the problem of feature tracking and matching have been proposed.
An obvious solution is the use of more robust feature extraction methods, such as the use
of SIFT feature descriptor [31], or MSER regions [44]. However, real-time requirement
of visual odometry especially for mobile robots prevents the use of computationally
expensive feature extraction/description methods. A simpler solution is to extract as
many points as possible and hope that a large enough subset of those points could
be correctly matched. The problem with this approach is that the density of features
will hurt matching accuracy and might cause a large number of correct features to be
incorrectly rejected.

Other solutions include the use of guided feature matching based on the epipolar
constraint between multiple views [8]. However, rotations around the center of projection
without translation require special treatment. Other guided matching methods include
the use of the estimated motion to predict the location of matches and reject inconsistent
matches early on. Guided matching based on motion models requires the assumption
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that camera motion can be expectedly modeled. In other words, the camera cannot
suddenly move significantly. For example, a camera cannot rotate 180° between two
frames in normal circumstances. In the case of mobile robots, we can predict the robot
motion based on previous measurements, especially at high frame rates and incorporating
the estimated motion to guide feature matching could potentially help the performance
of the algorithm.

Matching across several frames before motion estimation is a more robust solution.
As mentioned earlier, features tracked for two frames only are most probably wrong or
inconsistent matches. Feature extraction and tracking could be modified such that it
only tracks points that are visible for more than two frames. Triplets of features could be
used to estimate the initial motion, which is a more robust approach to feature tracking
and motion estimation for a visual odometry system for mobile robots.

5.1.3 Baseline length between tracked features

Another important issue to keep into consideration is the baseline between the features
being tracked. If the baseline is too small, then structure refinement becomes unstable.
The situation arises when a mobile robot is driving slowly in environments with similar
textures and cannot match feature accurately. This causes many tracks to contain two
features only that are very close to each other. Given that a feature could only be tracked
for 2 frames and the robot is driving slowly, then it is very likely that this feature is
only noise and its use in a refinement step is not recommended. In the case of visual
odometry for mobile robots, the length of a track is a good indication to the quality of
features and accuracy of the approach. Longer tracks imply the detection of distinctive
features and constraints the refinement of the world structure. However, track length as
an indication of an accurate SFM is not necessarily true in other applications.

Finally, small robot motions tend to cause drift in the estimated trajectory. This
is even more visible when the robot is stationary and is mainly attributed to incorrect
feature matching due to image noise. In solution to this problem, wheel odometry could
be used to detect visible motion before visual odometry. In cases where wheel odometry
is not present, the use of the initial motion estimation from RANSAC could serve as a
good indication of whether motion estimate for the current frame should be integrated
into the visual odometry estimate. Another approach to solve this problem is measuring
the baseline between feature tracks. More precisely, measuring the baseline between
points that are close to the robot, which can be done without an explicit computation
of the ground plane.
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5.2 Motion Estimation from Point Correspondences

In this work, two motion estimation algorithms have been compared. One is absolute
orientation that recovers camera motion from 3D-3D point correspondences in different
frames. The other is relative orientation, which estimates camera motion from 2D-3D
correspondences. Empirical experiments have shown that relative orientation produces
more stable estimates than absolute orientation, without significantly affecting the run-
ning time of the algorithm.

Whether relative orientation is always better than absolute orientation is an open
questions. For many cases, 3D triangulation from stereo will have several inaccuracies
that grow nonlinearly with the distance of the triangulated points. However, Konologie
et al. [3] report a successful visual odometry system from stereo data using absolute
orientation as the initial motion estimation step. On the other hand, Nister et al. [4]
reports similar problems of the use of absolute orientation in camera motion estimation
in their work, although no detailed results were reported. The most likely explanation
of these different results is the stereo triangulation algorithm in use. If 3D points trian-
gulation is accurate enough, then absolute orientation would show a good performance
comparable to the use of relative orientation. Defining good enough triangulation is not
an easy tasks as well as obtaining good enough 3D points. Graph based stereo algo-
rithms show the best performance in computing disparity from stereo [45]. However, the
computational complexity of graph based stereo algorithm makes their use inapplicable
for real-time performance. In summary, the use of 2D-3D point correspondence would
be a better approach in the general case.

5.3 Nonlinear Minimization

Visual odometry is a nonlinear problem at its heart. The camera projection model,
3D triangulation from stereo and the 3-pt algorithm are all nonlinear. Similarly, the
3D triangulation step is nonlinear. The situation is more complex with the 3-pt algo-
rithm that requires finding a solution for a 4" degree polynomial, or even a 10*® degree
polynomial[11]. Thus, there is a need for a nonlinear minimization step.

Further, the approach is also iterative. Camera motion estimation depends not only
on the last frame, but only on several frames in the sequence. Accumulation of error is
a serious problem that has to be addressed for a robust visual odometry.

Bundle Adjustment (BA) is the recommended algorithm to refine motion and struc-
ture. Exploiting the sparseness of the problem and the use of local BA allows for real-
time performance and optimal refinement. Also, the use of BA gives a good indication
of the accuracy of the initial motion estimation step using either relative orientation or
absolute orientation.
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Estimation obtained using relative orientation or absolute orientation is used as a
starting point for nonlinear minimization to minimize the reprojection error. If this
estimate is good enough, then BA will need less than 15 iterations to converge, which
can be done very efficiently. However, poor initial solutions will result in a much more
computationally expensive BA step. Using the number of iteration as an indication of the
accuracy of the initial estimates could be used to assess the validity of a certain motion
estimation. If BA is run for 20 iterations and no good solution is found, dropping the
frame reduces the error risks that will hurt future frames. Although somewhat expensive,
the idea of using the number of BA iterations could be used to select keyframes that are
reliable for visual odometry.

Different ransac thresholds and effect on inliers
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Figure 5.2: Number of RANSAC inliers with respect to threshold

5.4 RANSAC Model-acceptance Threshold

The aim of using RANSAC is to obtain an accurate subset of measurements from an
initial set of noisy measurements. This is accomplished by using a randomly selected
subset of data with the minimum cardinality to compute a model. After that, the
model is fitted to all measurements in the set and each measurement residual error
is computed. An accurate subset of measurements is obtained from the model that
generates the highest number of inliers. Inliers are those measurements that have an
error less than a specified threshold.
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In many case, the threshold is just a magic number that is very hard to compute
before hand. In the context of visual odometry, RANSAC contributions are two fold.
One, it makes motion estimates robust by rejecting noisy measurements form being
included in the estimation. The other, it filters inaccurate 3D points from initial set of
3D points, which will be used in the next step of the algorithm.

The next step of the algorithm is refinement using nonlinear least-squares that does
not take into account error/noise models. Although it is possible to include such models,
computation time of the refinement is expected to increase significantly. Hence, rejecting
any outliers before the nonlinear refinement step is very important.

The number of motion estimation inliers is determined by one threshold, which is the
maximum allowed reprojection error. On the one hand, a very strict threshold provides
more accurate results, by accepting points that generate very low errors in the generated
motion model. However, more accurate results come at the price of lowering the number
of 3D points that survive to the next step of the algorithm. On the other hand, a very
relaxed threshold allows many points to pass through the RANSAC robustness filter,
which is good for having a more dense model of the world. However, the majority of
those points are inconsistent with the motion model and hurt the algorithm significantly.

Figure 5.2 shows the relation between number of RANSAC inliers and acceptance
threshold. As expected, the relationship between inliers and threshold is counter pro-
portional. In this work, we use the value 0.005 as RANSAC threshold. This value is the
maximum accepted reprojection error in normalized image coordinates.
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Conclusions & Future Work

In this thesis, we have presented a visual odometry system based on camera input only.
The system estimates a mobile robot position overtime as well as generate a 3D map of
the surrounding environment. The main contributions of the thesis include

e Analysis of reasons preventing visual odometry to scale

e Empirical experiments favoring the use of relative over absolute orientation to
obtain an initial estimate of motion

e Introduction of a novel track selection mechanism to select points to be included
in the refinement step and the implementation of the system.

e Implementation of the system and evaluation on indoor and outdoor datasets.

One of the most important considerations in developing a visual odometry system is
the performance of feature matching and tracking. Accurate matching between frames
and a large enough set of features is a very important factor in a robust visual odometry
system. A small number of matched feature between views will generally result in an
inconsistent motion estimates that eventually break the estimation process.

Further, in this thesis, we have empirically shown that relative orientation outper-
forms absolute orientation. Relative orientation relies on image measurements, which
are much more accurate than 3D points triangulated from imagery. Even if the triangu-
lation process is made more accurate, relative orientation is at least as good as absolute
orientation with a very little overhead in terms of computational complexity.

The many nonlinearities in the various steps of visual odometry require the use of
nonlinear minimization methods. In this thesis, we use the Sparse Bundle Adjustment
(SBA) for this task. SBA is probably the most accurate refinement approach, but is a
computationally expensive algorithm if used on a large problem. The use of local SBA
instead of global SBA simples the process and allows for faster refinement.
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Selecting 3D features to be included in the refinement is also an important considera-
tion. Short feature tracks are better excluded from the refinement as those are associated
with small baseline in most of the time. Eliminating those points from the refinement
step not only increases accuracy, but also reduces the running time of the algorithm as
the number of 3D points in the refinement step becomes smaller.

Several possibilities for future work could be considered. To increase the robustness
and scalability of visual odometry, we propose the use of robust image matching tech-
niques to ‘stitch’ segments of visual odometry. The number of features extracted, or
number of matches between consecutive views is a good indication for the success of the
algorithm. If the number of extracted features or matches between conductive frames
drops suddenly to a very low value, then it is very likely the image is blurry. Image
blur is most of the time caused by fast robot rotation. Once the rotation is over, image
come back to a good quality that allows extracting of a large number of features and
matches. Blurry images causes by rotations are typically introduced for two or three
frames. Thus, once a low number of features is detected we can stop visual odmetry and
wait for a good image. Once a good image is obtained, there is a very high probability
that the image will have some overlap with the last image in the previous visual odom-
etry. Given that the overlap region might not be large enough, robust image matching
techniques could be used to connect the previous segment of visual odometry with the
current one using direct absolute orientation with scale estimation. The merit of the
proposed approach is that it retains the benefit of fast feature extraction methods and
performs the more expensive robust image matching only when needed.

Other immediate possibilities of future work include the assessment of other feature
types. In this work, CenSurE features were extracted in scale-space and used for motion
estimation and refinement. It will be interesting to experiment with simpler features,
such as Harris corners and compare results. Further, we would like to compare the algo-
rithm against data from (D)GPS to get a better grasp of the algorithm’s performance.
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