
RICH ENTITY TYPE RECOGNITION IN TEXT
Extended Abstract

Rishav Bhowmick

rishavb@cmu.edu

 Advisors

Michael Heilman Kemal Oflazer Noah A. Smith

 mheilman@cs.cmu.edu ko@cs.cmu.edu nasmith@cs.cmu.edu

INTRODUCTION

Many applications in natural language processing (NLP) include summarization of text, classifying

documents or automatic answering of questions posed in natural language. Each of these applications

require entity type recognition in the text as a pre-processing step. Here, entity refers to concrete and

abstract objects identified by proper and common nouns. Entity recognition focuses on detecting

instances of types like “person”, “location”, “organization”, “time”, “communication”, “event”, “food”,

“plant”, “animal” and so on. For example, an Entity Recognizer would take the following sentence as

input:

George Washington was the first President of the United States of America.

and output:

<noun.person> George Washington </noun.person> was the first <noun.person> President

</noun.person> of <noun.location> the United States of America </noun.Location>.

Humans generally have no problems finding out what type a noun belongs to. For example, in the

example above, a human would look at “President” and know that it is of type Person. He/she would

also know a location or organization can have President. Additional knowledge about the country,

makes him/her think it’s a location. Finally, George Washington has to be a person as a president can

only be a human1. The way a human figures out the entity types could be summarized in the following

points:

 Recalling what entity type a word most likely belongs to

 Looking at the context the word appears in.

 Looking at features like word capitalization, any punctuation marks. For example, the use of

upper-case letter after punctuation marks like period or question mark does not ascertain the

fact that the first word of the sentence is a proper noun.

Our task is to use machine learning techniques to train a system that can do entity type recognition with

a performance comparable to a human. This problem is hard for a variety of reasons. In general, it is not

possible to list all possible instances of a single entity type and feed it to the machine. The lack of large

annotated data corpus for training is another major impediment. Due to these reasons, the entity

recognizers out there are not very accurate (F-scores (see section EVALUATION METRICS) in 70’s and 80’s

[1]. The obvious task then is to improve the performance of existing machine tagging systems. This

1
 unless it is a line out of a fantasy novel, where an animal (other than a human) presides.

would be achieved by looking for features (new and old) that affect the performance of the tagger the

most. Additionally, finding out how much of training data is needed can help solve the problem of lack

of large annotated training data corpus.

The goal of this Senior Thesis project is to improve the performance of an existing entity recognizer by

figuring out which syntactic and semantic features can boost the performance and whether large

training data sets are necessary or not. The outcome of this project will be a step forward in making an

enhanced entity recognizer which in turn will benefit other NLP problems stated earlier.

SUPERSENSES

The entity-type tag set we use in this research project contains types that we call supersense[1-3]. There

are 26 broad semantic classes, beyond the usual entity types of Person, Location and Organization in

earlier Named Entity Recognition (NER) 2 , used in this project. These are the labels used by

lexicographers who developed Wordnet [4], a broad-coverage machine readable database which has

proper and common nouns, verbs, adjectives and adverbs interlinked via synonym, antonym, hypernym,

hyponym and variety of other semantic relations. Table 1[1] shows the supersense labels for nouns and

verbs. Not only does the use of this tag set suggest an extended notion of named entity, but it also

provides additional training data3 while tagging words with supersenses. Hence this particular process of

recognition is called supersense tagging.

TABLE 1 NOUNS AND VERB SUPERSENSE LABELS, AND SHORT DESCRIPTION

2
 See next section RELATED WORK for earlier NER works. Also, Named Entity here refers to proper nouns only.

3
 Wordnet is used to lemmatize a word (find the root of the word, for e.g. “ran”->”run”) and find the most

frequent sense of the word.

RELATED WORK

The entity recognizer, whose performance we are trying to improve, is the Supersense Tagger (SST) [1].

The tagger performs sequence tagging with a perceptron trained Hidden Markov Model (HMM). The

performance of perceptron-trained HMMs is very competitive and comparable in performance to that

of Conditional Random Field models [1],[5]. Addition of new features such as word/phrase clusters in a

more restricted task of NER has shown considerable improvement in performance in the system [6]. The

use of word/phrase clusters alleviates the problem of lack of annotated data. So once word clusters with

unlabeled data are created, they can be used as features in a supervised training setting. Hence, even

when a word is not found in the training data, it may still benefit from the cluster-based features as long

as the word belongs to the same cluster with some word in the labeled data.

The baseline tagger for this project is a reimplementation4 of the SST. It uses the same feature set as

that of the SST to tag words which include proper and common nouns and verbs.

EVALUATION METRICS

The following evaluations metrics are used to evaluate the performance of our tagger.

PRECISION:

Precision measures to how many of the entity types the tool recognized are actually correct.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑎𝑔𝑔𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 𝑜𝑟 𝑝𝑟𝑎𝑠𝑒𝑠𝑖

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑔𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 𝑜𝑟 𝑝𝑟𝑎𝑠𝑒𝑠 𝑏𝑦 𝑡𝑒 𝑡𝑎𝑔𝑔𝑒𝑟𝑖

EQUATION 1 PRECISION

In Equation 1Equation 1, the numerator and denominator sums over all entity types 𝑖. The final output is

the overall precision.

RECALL:

Recall measures to how many of the entity types the tool recognized correctly.

𝑟𝑒𝑐𝑎𝑙𝑙 =
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑎𝑔𝑔𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 𝑜𝑟 𝑝𝑟𝑎𝑠𝑒𝑠𝑖

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑤𝑜𝑟𝑑𝑠 𝑜𝑟 𝑝𝑟𝑎𝑠𝑒𝑠 𝑖𝑛 𝑡𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑖

EQUATION 2 RECALL

In Equation 2, the numerator and denominator sums over all entity types 𝑖. The final output is the

overall recall.

F-SCORE (F1):

F-score (F1) is simply the geometric mean of precision and recall, and combines the two scores. F-score

and F1 will be used interchangeably throughout this document.

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

EQUATION 3 F-SCORE (F1)

4
by Michael Heilman (LTI, CMU)

APPROACH

Our approach towards improving the performance of the SST involves two pre-processing steps. As we

mentioned earlier, we would like to know how different sizes of training data affects the performance of

the tagger. So our first task is to train the system using different size training data and evaluating the

trained model with development data.

The next step involves experimenting with existing features and gauging how they affect the

performance of the tagger the most. We devised a series of experiments which involves removing one

feature at a time and evaluating the tagger output. This task is termed as feature ablation. If some

features affect the f-score by +/-2 points, we mark them for future experimentation. As for the other

features, we group them and check if they collectively affect the f-score. Some of the basic features

from SST include most frequent sense (from Wordnet), Part-of-Speech (POS) tags, word shape (upper-

case or lower-case, upper-case after period and so on) and label of preceding words.

Context is an essential feature while tagging words. As shown in the example in the INTRODUCTION

section, while tagging George Washington, the knowledge about a President being of type person helps

with tagging George Washington as person. The baseline tagger only looks at +/- 2 words around the

current word being tagged. We performed additional experiments by reducing the context to not

looking at any words (removing the existing context features) and then increasing the context to +/- 4

words (adding new context features).

The results of feature ablation study suggested the addition of word cluster features. In order to

increase the overall F1 for the tagger, individual F1 scores need to be high. Supersenses like

noun.process (F1 = 48.62%), noun.shape (F1 = 50.00%), noun.relation(F1 = 58.21%) and few more

brought down the overall F1. Looking deeper, the recall for most of these supersenses were very low

(44.53% - 59.99%). In other words, the tagger failed to label these words/phrases. This could be due to

the fact that these words were not in the training data or even Wordnet, which in turn led to failure of

most-frequent sense retrieval. However, the use of word clusters can solve this problem.

The way this works is as follows. Whenever a word is being tagged, word cluster information (the

cluster(s) the word belongs to) is extracted from an already provided word cluster input. This cluster (or

maybe clusters) has (have) other words which were tagged already from the training data. Weights are

attached for each of these labels, making them possible candidates for tagging. This helps in tagging

words which are not seen before, even by Wordnet.

EXPERIMENTS AND RESULTS

SETUP

We tested our tagger on the Semcor corpora[7] , containing text from the Brown Corpus that is

syntactically and semantically tagged. The Semcor data was split into 3 parts: Training, Development and

Testing. The three parts were created by randomly selecting the articles (which came with its

sentences). The size of the three parts were as follows:

Number of sentences in training data: 11,973

Number of tokens in training data: 248,581

Number of sentences in development data: 4113

Number of tokens in development data: 92,924

Number of sentences in testing data: 4052

Number of tokens in testing data: 93,269

EXPERIMENT 1

Figure 1 shows the results for the varying f1 score with respect to the amount of training data used. The

training data was split into 5%, 10%,...,95%.

FIGURE 1 F1 VS % TRAINING DATA

After about 1/3rd of the training data is used, the overall f-score does not increase drastically.

Figure 2Figure 2 shows the f-score for some of the supersenses when 90% of the training data was used.

FIGURE 2 F1 VS SUPERSENSES WHEN 90% OF TRAINING DATA WAS USED

40

45

50

55

60

65

70

75

80

85

90

5 15 25 35 45 55 65 75 85 95

f1
 s

co
re

% of training data

f1 score vs. % training data

Person

Location

Group

Process

Overall

40
50
60
70
80
90

100

F1
 s

co
re

Supersenses

f1 score vs. Supersense

EXPERIMENT 2

Feature ablation results. Table 2Table 2 shows for each feature removed, the resulting F-score. The

baseline F-score is 73.542%

Feature F-score

First-sense (Most frequent sense) 57.105%
Part-of-Speech 73.110%

Word Shape 73.524%
Label of previous word 73.360%

TABLE 2 FEATURE REMOVED AND RESULTING F-SCORE

EXPERIMENT 3

Experiments on context size are tabulated in table :

Context F-score

No words 70.187%
Current word 70.943%

Current word +/- 1 word 73.338%
Current word +/- 2 words 73.542% (baseline score)
Current word +/- 3 words 73.501%
Current word +/- 4 words 73.269%

TABLE 3 CONTEXT SIZE AND F-SCORE

Lesser context or more context has reduced the F-score. This is most probably because the further away

the word is (for larger context) the less likely there will be any semantic relation.

EXPERIMENT 4

Initial experiments with inclusion of word clusters led to the following results in Table 4:

Word Cluster Feature F-score

Word cluster 73.733%
Word cluster + First Sense 73.823%

TABLE 4 WORD CLUSTER FEATURE AND F-SCORE

CONCLUSION

In this work, we highlighted the importance of syntactic, contextual and word cluster features affect the

performance of a system for tagging words with high level sense information. Additionally, we have

demonstrated that lack of large annotated data is not a major issue. Nevertheless, the size of training

data would be important if the features were more specific5. Feature ablation methods like the ones

described in the experiments help find out which features are important and hereby suggest areas to

work on (e.g.: new features to extend or add). In this project, addition of word cluster features and

usage of large context were the outcomes of feature ablation.

5
 Word Sense Disambiguation using un-supervised or semi-supervised learning.[9]

REFERENCE

[1] M. Ciaramita and Y. Altun, “Broad-coverage sense disambiguation and information extraction with a
supersense sequence tagger,” Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing(EMNLP), 2006, pp. 594–602.

[2] M. Ciaramita and M. Johnson, “Supersense tagging of unknown nouns in wordnet,” Proceedings of
EMNLP, 2003.

[3] J.R. Curran, “Supersense tagging of unknown nouns using semantic similarity,” Proceedings of the
43rd Annual Meeting of Association for Computational Linguistics(ACL), 2005, p. 33.

[4] C. Fellbaum and others, WordNet: An electronic lexical database, MIT press Cambridge, MA, 1998.
[5] M. Collins, “Discriminative training methods for hidden markov models: Theory and experiments

with perceptron algorithms,” Proceedings of EMNLP, 2002.
[6] D. Lin and X. Wu, “Phrase clustering for discriminative learning,” Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume 2, 2009, pp. 1030–1038.

[7] G.A. Miller, C. Leacock, R. Tengi, and R.T. Bunker, “A semantic concordance,” Proceedings of the 3rd
DARPA workshop on Human Language Technology, 1993, pp. 303–308.

[8] W.N. Francis and H. Kucera, Computational analysis of present-day American English, Brown
University Press Providence, 1967.

[9] D. Yarowsky, “Unsupervised word sense disambiguation rivaling supervised methods,” Proceedings
of the 33rd annual meeting on ACL, 1995, pp. 189–196.

