
Temporal Continuity Learning for Convolutional Deep Belief
Networks

Carl Doersch cdoersch@andrew.cmu.edu

Carnegie Mellon University, Pittsburgh PA 15289

Keywords: temporal continuity learning, unsupervised learning, computer vision

Abstract

The human visual system can robustly rec-
ognize objects, even though a single object
can project many different images onto the
retina. Furthermore, humans learn to per-
form this task from mostly unlabeled data.
The goal of this work is to develop a com-
puter algorithm which can replicate this sort
of learning. One approach to this problem is
called Temporal Continuity Learning. This
theory assumes that images close together
in time are likely to contain the same ob-
ject, and therefore that the visual system
should learn representations that vary slowly
in time. A different approach uses Deep Be-
lief Networks. With DBNs, the goal of the
learning is to maximize the likelihood of the
training data in the marginal distribution of
the Deep Belief Network. Interestingly, these
approaches use entirely different heuristics
to measure how ’good’ a representation is.
In this work, I hope to create an algorithm
which uses both of these heuristics to form
a better representation of images than either
heuristic could produce on its own.

1. Introduction

Object recognition has proved a difficult task for com-
puters, even though object recognition in humans is
rapid and apparently effortless. The neural basis for
this ability appears to reside in Inferotemporal cortex
(IT), where neurons are sensitive to particular objects
or patterns. Furthermore, each such IT neuron will
respond to its preferred pattern even when the pat-
tern is moved on the retina, or its pose is changed,

Preliminary work. Extended abstract for Carnegie Mellon
University Senior Thesis.

or it is illuminated differently. The response patterns
of these neurons are even more remarkable since they
are learned from essentially unlabeled data in infants.
How does the brain know which images correspond to
the same object?

A proposal initially proposed by Hinton (Hinton, 1989)
(p 208), and later called Temporal Continuity Learn-
ing, solves the problem of deciding which images be-
long to the same object by assuming that images
close together in time correspond to the same object.
This leads to a straightforward intuition for a neural
learning rule: if a neuron was active recently, then
it should strengthen the connections to all neurons
that it is currently receiving activation from. Földiák
(1989) showed that this learning rule can be used to
learn complex-cell connectivity fields when the input
is simple-cell activations. Similar learning rules were
later shown to perform more complex tasks, such as
discriminating characters (Wallis & Rolls, 1997) and
simple three-dimensional objects (Stringer & Rolls,
2002). Furthermore, Temporal Continuity Learning
has been demonstrated in human Inferotemporal Cor-
tex (Li & DiCarlo, 2008; Wallis & Bülthoff, 2001).

It is only natural to ask whether an entire visual sys-
tem can be learned with just a neural implementa-
tion of Temporal Continuity Learning. Unfortunately,
modern simulations which strive for biological plausi-
bility, such as the Trace Learning framework (Földiák,
1989; Wallis & Rolls, 1997) are usually applied to rel-
atively simple, synthetic problems. Of the implemen-
tations of Temporal Continuity Learning which have
been created for the sake of computer vision, per-
haps the most popular is Slow Feature Analysis (SFA)
(Wiskott & Sejnowski, 2002). However, even SFA has
a number of limitations: for example, in the classic
implementation, computation time is O(N4) where N
is the number of pixels in the input. Perhaps more
a fundamental limitation, however, is inherited from
the Temporal Continuity framework itself: SFA cannot

Temporal Continuity in Convolutional Deep Belief Networks

learn features that are not slow. Therefore, it strug-
gles to learn features like edge-detectors, even though
edge-detectors are present in the human visual system.
Thus, Wiskott and Sejnowski (2002) hard-coded gabor
filters into the first layer of their simulation.

There are many ways to learn edge-detectors from nat-
ural image data. Perhaps the most famous algorithm
came from Olshausen and Field (1996), where it was
shown that the optimal representations of images, un-
der the constraint that the representation be sparse,
involves units which have response properties similar
to simple cells. In this case, “optimal” is in terms of
the performance of an autoassociator: the learned rep-
resentation was the one which minimized reconstruc-
tion error when the weights in the autoassociator were
trained with backpropagation.

More recently, neural networks have begun to make
use of techniques designed for graphical models. No-
tably, Deep Belief Networks (DBNs) (Hinton et al.,
2006) have demonstrated good performance when rec-
ognizing handwritten digits. Furthermore, when they
are constrained to be sparse, the units in a DBN will
learn receptive fields similar to simple cells (Lee et al.,
2008).

An important difference between DBN’s and autoas-
sociators is that each node in a DBN is probabilistic.
Thus, sampling the states on one layer given other
layers allows for some uncertainty. In particular, if we
treat the DBN as a generative model, and if we assume
that units in the deepest layers actually represent the
presence or absence of objects and features in an im-
age (which is the ideal representation of an image),
then a DBN better reflects our intuitions about how
images come about in the real world. That is, even af-
ter we know that an object is present in an image, it is
still uncertain the exact image that will be generated.
We can imagine generating the image hierarchically:
starting with the knowledge that the object is present,
we probabilistically generate its sub-features, and then
the sub-features of those sub-features, until we reach
edges and pixels. In an autoassociator, however, the
generative process is entirely deterministic. Thus, we
lose the fact that a single internal representation may
correspond to multiple images.

The non-determinism of DBNs is particularly useful
in this work because we hope to learn complex cell
responses. In an autoassociator, units that behave
like complex cells are difficult to learn because it is
not clear what should be generated on the input layer
when a complex cell unit is active. By definition, com-
plex cells respond to multiple disjoint input patterns,
but in an autoassociator they can generate only one of

them. DBNs have not yet been shown to learn complex
cell responses, but the probabilistic generative process
should mean that units behaving like complex cells are
at least possible; thus, complex cell repsonses are one
of the goals of this work.

One difficulty with DBNs, however, is that they are
slow and require many training images. In (Hinton
et al., 2006), the network was trained on 60,000 im-
ages, and the images were only 28 by 28 pixels. For
learning higher-order features, it is helpful to use more
detailed images. Thus, we extend the Convolutional
DBN (CDBN) framework (Lee et al., 2009). This
framework makes sampling faster because conditional
probabilities may be computed using a fast convolu-
tion operation. Furthermore, the network requires less
training data because what is learned at one location
in an image is propagated to all locations in the net-
work.

2. Related Work

There have been a number of algorithms using Deep
Belief Networks with a temporal component. Notably,
only minor modifications to the CDBN make it suit-
able for processing audio data. In a recent work, these
CDBNs were shown to have state-of-the-art classifi-
cation performance on a number of audio databases
(Lee et al., 2009b). Conditional RBMs stacked into
Deep Belief Networks have been used model human
motion, and perform tasks like interpolating motion
data (Taylor et al., 2007). It is important to note,
however, that the goals of this paper differ from those
of (Lee et al., 2009b) and (Taylor et al., 2007). These
two papers model information that inherently contains
a temporal component. That is, it is not possible to
identify a speaker from a single audio sample, nor is
it possible to identify a human motion from a single
frame of motion-capture data. Thus, a DBN solution
to either of these problems requires extending DBNs
to use temporal data. However, in the present work we
are concerned only with object recognition: we use the
temporal continuity heuristic during training in order
to improve a DBN’s representations of, and classifica-
tion performance on, still images. While it is possible
that the temporal CDBN would work on audio data or
motion capture data, it is not expected that it would
perform better than the DBNs specifically designed for
this purpose.

There have also been attempts to extend SFA to al-
low it to better represent such features as edges, which
are less slow relative to the sorts of features SFA usu-
ally extracts. Hurri and Hyvärinen (2003)’s network
learned Gabor filters using a learning rule related to

Temporal Continuity in Convolutional Deep Belief Networks

Figure 1. A toy temporal DBN for making the notation explicit. If implemented, this CDBN would operate on a video of
3-pixel, one-dimensional images (the real network used 2-d images with hundreds of pixels on a side)

SFA, although their objective function for SFA gave
high scores to both features that were slow and fea-
tures that oscillated rapidly from positive to negative
activation values. Bergstra and Bengio’s (2009) net-
work learned units similar to Gabor filters only be-
cause they were learned at the same time as complex-
cell units, and only the complex cell activations were
used in the objective function. While these networks
are somewhat successful, I believe that DBN learning
provides a more principled way to add selectivity to
neural receptive fields, both due to its statistical inter-
pretation and its demonstrated successes with feature
learning.

3. Methods

3.1. Basic Structure

The model I propose combines deep belief networks
with trace learning. The general idea of this model is
to create a deep belief network where each unit is aware
of its state during the previous time instant. Thus,
the deep belief network can learn, by itself, to allocate
units representing features which vary slowly through
time. This would happen because more invariant units
would be able to more accurately predict their previous
states, and would thus be able to form a better model
of video data.

To make the model more concrete, consider a stan-
dard CDBN that receives as input an n-by-n image.
We can extend this model to a video with k frames
by copying the network k times, and assigning each
network to a frame in the video. Next we make the

model’s units aware of continuity data. For any unit u
in the original single-image deep belief network, there
is a corresponding set of its copies {u1, ..., uk} in the
model for video, one for each time 1, ..., k. Each ut

is connected to ut−1. Thus, messages traveling along
these temporal connections will carry the same infor-
mation that the trace conveyed in the trace learning
model.

3.2. Notation

I will describe the structure of the Temporal Con-
tinuity Convolutional Restricted Boltzmann Machine
(one layer of a Deep Belief Network) shown in Fig-
ure 1. This network in the diagram is simplified in
a few important ways relative to the network in the
experiments. First, each input image in the diagram
is one-dimensional; therefore, vi,j refers to the pixel in
position i in frame j (Note: I use the words ‘frame’
and ‘timestep’ interchangeably). However, the origi-
nal CDBN used 2-dimensional images that were on the
order of hundreds of pixels on a side. Second, this net-
work only has one ’group’, whereas the original CDBN
had 24 in the first hidden layer. Essentially, having
24 ’groups’ is like having 24 separate RBM’s that are
all attempting to explain the same image data. It is
straightforward to generalize this procedure to mul-
tiple groups. Thus, in this explanation, each hidden
unit will have two subscripts: hi,j , where i is the po-
sition within the hidden layer, and j is the timestep.
However, in the true network, each hidden group was
2-dimensional, sized such that there was one unit for
each element in the ‘valid’ convolution between the in-
put image and the group’s weight matrix. Note that

Temporal Continuity in Convolutional Deep Belief Networks

the convolution operation constrains the number of
hidden units we may have in a block. Since the kernel
size NW = 2, and the number of visible units NV = 3,
we must have NH = NV −NW + 1 = 2.

Thus, there are exactly three parameters in this toy
network: w1 which is the left weight (connecting h1,j

to v1,j and h2,j to v2,j), w2 which is the right weight
(connecting h1,j to v2,j and h2,j to v3,j), and the tem-
poral weight Wt, which connects hi,t to hi,t+1 for all
i, t. The temporal weights are shown in red. Let
NT = 3 be the number of timesteps.

3.3. Probability Distribution

The probability distribution defined over this graph is
essentially identical to that of (Lee et al., 2009) paper,
except there is an extra term for the temporal weights.
Therefore, we have:

P (v, h) =
1
Z
exp(−E(v, h))

Where E is the energy function:

E(v, h) = −
∑NT

t=1

∑NH

i=1

∑NW

r=1 hi,tWrvi+r−1

−
∑NT−1

t=1

∑NH

i=1 hi,tthi,t+1

−
∑NT

t=1

∑NH

i=1 bhi,t

−
∑NT

t=1

∑NV

i=1 cvi,t

(1)

And Z is a normalization constant that depends on
the weights and biases:

Z =
∑
v,h

exp(−E(v, h))

3.4. Weight Updates

We wish to compute the derivative of the log proba-
bility of the data with respect to a weight Wi,j . To do
this, we start by computing the derivative with respect
to one connection only. In the end, we will compute
the update for this parameter by summing up the up-
dates for all connections it participates in.

The log likelihood may be written as:

L(v0) = log(
∑

h exp(−E(h, v0)))
−log(

∑
h,v exp(−E(h, v)))

Taking the derivative of this, we have:

∂
∂W L(v0) =

d
dW

∑
h

exp(−E(h,v0))∑
h

exp(−E(h,v0))

−
d

dW

∑
h,v

exp(−E(h,v))∑
h,v

exp(−E(h,v))

=
∑

h
− ∂E(h,v0)

∂W exp(−E(h,v0))∑
h

exp(−E(h,v0))

−
∑

h,v
− ∂E(h,v0)

∂W exp(−E(h,v))∑
h,v

exp(−E(h,v))

If we distribute the denominator of each term into the
the sum in the numerator, we see that both terms
become expected values under two different distribu-
tions:

= −
∑

h

∂E(h, v0)
∂W

p(h|v0) +
∑
h,v

∂E(h, v)
∂W

p(v, h)

=
〈
−∂E(h, v0)

∂W

〉
0

+
〈
−∂E(h, v)

∂W

〉
∞

The derivative of the energy function with respect to a
weight for a particular configuration is just -1 if both
units that the weight connects are on in that configura-
tion, and zero otherwise. Thus, if the weight connects
units a and b, we have:

= 〈ab〉0 + 〈ab〉∞

The contrastive divergence approximation approxi-
mates the right term with the distribution after one
step of Gibbs sampling:

≈ 〈ab〉0 + 〈ab〉1 (2)

Note that I did not use the conditional independence
properties of the RBM anywhere in this derivation.
The conditional independence is only useful because
it means we can use sampling (or variational tech-
niques) to compute these expected values in (2) effi-
ciently. However, in the case of the Temporal CDBN,
it is still possible to compute these expected values
efficiently via sampling, as I describe here.

3.5. Sampling

In an ordinary RBM, it is easy to get samples from
the posterior over the hidden units because the hid-
den units are all independent conditioned on an input
vector. Thus, we get the following formula for the
probability of hi:

Temporal Continuity in Convolutional Deep Belief Networks

p(hi = 1|v0) =∑
h,hi=1

exp(−E(h,v0))
Z∑

h,hi=1

exp(−E(h,v0))
Z +

∑
h,hi=0

exp(−E(h,v0))
Z

Note that the Z’s cancel. Furthermore, we can substi-
tute in the energy function; some factoring leaves us
with

=
exp(−Ehi

(hi = 1, v0))
exp(−Ehi

(hi = 1, v0)) + exp(−Ehi
(hi = 0, v0))

(3)

Where Ehi is hi’s contribution to the energy: all the
terms from the energy function that depend on hi.
Note that the contribution Ehi

(hi = 0, v0) = 0, since
every term in the sum is zero. Therefore, the final
term in the denominator becomes 1. We can divide
through by the numerator and get the standard sig-
moid function:

=
1

1 + exp(Ehi
(hi = 1, v0))

(4)

However, when we’re using temporal continuity, the
factoring in (3) doesn’t work, because the units aren’t
independent. We must take a different approach.

I use the word ’chain’ to refer to a set of hidden units
that are all connected in time. Thus, the chain Ci is
the set of all hidden units of the form hi,t for arbitrary
t. As the units in any chain are not independent, they
must be sampled together. We can compute the fol-
lowing formula for the probability of a chain being in
a particular configuration:

p(Ci = ci|v) =

∑
h,Ci=ci

exp(−E(h,v))
Z∑

h
exp(−E(h,v))

Z

Again the Z’s cancel, and we can factor out only those
terms that depend on the state of ci. What we are left
with is in the standard form of an exponential family:

p(ci|v) =
1
ZCi

exp(−ECi
(ci, v))

Where

ECi
(ci, vi) = −

∑NT

t=1

∑NW

r=1 hi,tWrvi+r−1

−
∑NT−1

t=1 hi,tthi,t+1

−
∑NT

t=1 bhi,t

This can be seen as a markov random field, where there
is a factor for each of the t nodes in ci, and a factor
for each pair hi,t, hi,t+1. Therefore, the graph is tree-
structured, and so the sum-product algorithm (also
known as belief propagation) can get us the marginals
over every node in Ci. It is convenient to introduce the
concept of direction when describing the sum-product
algorithm. Say that hi,0 is at the left end, and hi,NT

)
is at the right end. In my implementation of the
sum-product algorithm, we begin at the left end. We
compute the marginals based only on evidence coming
from the visible units and from units to the left; for
the leftmost unit this is nothing. Therefore, comput-
ing these pseudo-marginals reduces to computing the
marginals of a unit that is independent of all other
hidden units. The formula given in (4) may be used.

We proceed toward the right, each time computing the
marginals on each unit given the bottom-up evidence
and the evidence to its left. In practice, the evidence
from below and evidence from the unit to the left are
combined in a Bayesian way:

pm(hi,t = 1|pm(hi,t−1), v) =
pv(hi,t=1)[(1−pm(hi,t−1))+pm(hi,t−1)exp(Wt)]

pv(hi,t=1)[(1−pm(hi,t−1))+pm(hi,t−1)exp(Wt)]+pv(hi,t=0)

(5)

Where pv is the probability based only on the visible
units, given in (4), and pm are the marginal proba-
bilites previously computed for the unit to the left (the
‘messages’ of the sum-product algorithm) . Note that
the numerator is marginalizing over the probabilities
of the unit to the left; the edge weight Wt only con-
tributes to the probability when both hi,t and hi,t−1

are set to 1.

According to the theory of the sum-product algorithm,
the marginals at the right end of the chain are exact.
Intutively, this is because there is no longer any evi-
dence to the right that is being ignored. Thus, we can
sample from hi,NT

using these marginals. From here,
sampling proceeds from right to left; each time a sam-
ple is taken from a hidden unit, the unit to its left must
update its own marginals using a bayesian formula
very similar to equation (5), except that pm(hi,t−1)
is replaced with the sample from the unit to the right,
and pv(hi,t = 1) is replaced with the marginal proba-
bility computed on the right pass.

Of course, the sum-product algorithm can only be used
to compute marginals; its use as a sampling mecha-
nism was something I came up with. It is justified
because this algorithm is equivalent to running the
sum-product algorithm NT times, each time to get a
sample from the rightmost unit in the chain that has

Temporal Continuity in Convolutional Deep Belief Networks

not yet been sampled. Each time we do this, the new
sample on unit hi,t becomes a fixed input to the unit to
its left, hi,t−1. Thus, the next run of the sum-product
algorithm can compute the exact posterior over hi,t−1,
since it will treat the sample on hi,t in much the same
way it treats the values of the visible units.

3.6. Why is this an improvement over the
CDBN?

Unfortunately, the reason here is an intuitive one,
rather than a mathematical one. However, the rea-
soning is similar to the reason why the trace learn-
ing rule was an improvement over pure hebbian learn-
ing. The goal is to bias the network to favor bottom-
up representations that vary slowly through time. I
say ’bottom-up’ because the goal is not that time-
connections should greatly improve the descriminative
performance through their effect during the descrimi-
native process. The goal is that they should alter the
inter-layer weights that the DBN learns.

Consider the problem of learning complex cell re-
sponses (this is the simlest case; one might similarly
imagine units in higher layers learning rotation in-
variance). If we train on videos, the network will
most likely learn edge-detectors (for the same reason
the CDBN learns edge detectors). Then the time-
connections will become positive, because an edge at
orientation θ and position p at time t is a good predic-
tor of an identical edge at time t+ 1.

Say that one chain of hidden units is sensitive to ori-
entation θ at position p. If this chain has a positive
time-weight, then it will predict that any occurrence
of an edge (θ, p) is likely to be preceeded and followed,
temporally, by more edges (θ, p). However, this isn’t
the best model it could have of the world; in the true
distribution of images, edges like (θ, p) are good pre-
dictors of edges like (θ, q) where q is a position close to
p. The contrastive divergence learning rule will pick
up on this: it will see that units in this chain are more
likely to be active whenever lines like (θ, q) are shown
in the chain’s receptive field. Therefore, the learning
rule will tend to modify the weights so that lines like
(θ, q) will activate this chain. Over time, it is expected
that this invariance will build up until the units behave
like complex cells.

4. Evaluation and Expected
Conclusions

The first goal of this research is design a state-of-the-
art computer vision algorithm. I plan to test this net-
work using the same benchmark as the original CDBN

Table 1. Matrix of pairwise KL-divergences between the
posterior distributions over the hidden units given the
different images. The entry with row labeled image i
and column labeled image j shows the KL-divergence
KL(d(i)||d(j)), where d(x) is the posterior distribution
over the second hidden layer of an ordinary CDBN given
that the image x is input. This CDBN was trained us-
ing only the four testing images. These distributions were
approximated using Mean Field. All values are ∗106.

9 19 45 46

9 0 0.6342 0.6305 1.0613
19 1.2157 0 0.7008 1.2790
45 0.2293 0.3074 0 0.8203
46 3.5073 3.2780 3.4508 0

algorithm: the Caltech 101 database. If the Tempo-
ral CDBN is indeed learning a better representation
of the input, then the performance on this database
should improve. Similar to (Lee et al., 2009), I will
train the Temporal CDBN on natural videos that were
unrelated to the Caltech 101 task.

As a stepping stone to this task, I will first show
that the network is learning invariant representa-
tions. Perhaps the simplest test is to train a
Temporal CDBN on videos, and then test whether
the KL-divergences between the representations of
nearby frames in the same video are reduced rel-
ative to the KL-divergences between frames in dif-
ferent videos. Specifically, I have constructed two
12-frame videos out of 4 images from the Kyoto
dataset. Letting the images be labeled A,B,C, and D,
then the two videos are {AABBAABBAABB} and
{CCDDCCDDCCDD}. Separately, I trained a reg-
ular CDBN on the original four images. In the end, I
compared the KL-divergences between all representa-
tions, to show whether the divergences between A and
B and between C and D are lower in the temporal
CDBN case than in the regular CDBN case. Showing
this would lead to the conclusion that the temporal
connections do indeed encourage invariant representa-
tions.

There are other tests of invariance as well; notably,
(Goodfellow et al.,) proposed an invariance measure
which involves showing video sequences to to DBNs
and measuring the differences between the represen-
tations of different frames in the videos. Thus, that
work provides a standard way to measure directly the
quantity we are trying to measure.

The second goal of this research is to present the Tem-

Temporal Continuity in Convolutional Deep Belief Networks

Table 2. Matrix of pairwise KL-divergences between the
posterior distributions over the hidden units given the dif-
ferent images, as above. In this case, posterior distribu-
tions were computed in a Temporal CDBN. The network
was trained on two videos as described in the Evaluation
secion. One video contaned images 9 and 19, and the other
contained images 45 and 46. To allow a contribution from
the temporal weights when computing the posterior distri-
bution given an image, the input image was replicated 5
times to create a 5-frame video. The posterior distribution
over the entire 5-frame CDBN was computed, but only the
probabilities over the third frame were used to compute
the KL-divergences. All values are ∗106.

9 19 45 46

9 0 .8227 .8341 1,2427
19 .6474 0 .4586 .9007
45 .7529 .5999 0 1.0872
46 1.6245 1.3109 1.4977 0

Table 3. To ease qualitative comparison between the above
two tables, the element-wise quotients of the tables
are shown below. We hope to see large numbers in
(9, 19), (19, 9), (45, 46) and (46, 45), and small numbers
elsewhere.

9 19 45 46

9 NaN .7709 .7559 .8540
19 1.8778 NaN 1.5281 1.420
45 .3045 .5124 NaN .7545
46 2.1590 2.5006 2.3040 NaN

poral CDBN as a model of vision in humans. Show-
ing that the representations in deep layers are invari-
ant is a good first step. (Lee et al., 2009) showed
that DBNs can learn simple-cell-like receptive fields;
however, their use of pooling to create complex cells
was not realistic and did not involve learning. I hope
to show that the network can learn units which be-
have like complex cells. Inspection of the weights,
along with simulations following the Hubel and Wiesel
(1962) experiments, should be enough to establish
whether such fields are present.

5. Results

Tables 1 and 2 show the results of the first invariance
test proposed in the previous section. Table 1 shows
the divergences between the representations of the dif-
ferent images in a regular CDBN; Table 2 shows the

divergences in a temporal CDBN. To ease comparison
between these two tables, Table 3 shows the ratio of
each entry in 1 over the corresponding entry in 2.

Due to the nature of the KL-divergence measure, the
rows in these tables are less variable in the columns;
therefore, it is easier to see which distributions are
closest to a given distribution by looking at the row
for that distribution. In Table 3, we see that the rep-
resentation of image 19 became more similar to the
representations of all other images, but it gained by
far the most similarity toward image 9, the image with
which it shared a video. We see a similar story for im-
age 45: its representation became less similar to the
representations of all the other images, but the de-
crease in similarity was seen by far the least for image
46. For images 46 and 9, the results are less clear; the
changes in the learned representations do not seem to
be strongly affected by the image that 9 or 46 shared
their videos with.

Unfortunately, it is also apparent that KL-divergence
is a rather poor measure of the similarity between the
representations of two different images. For example,
the last row of table 1 makes it appear that the repre-
sentation of image 46 is quite different from the other
representations, but looking at the other rows this is
much less clear. Overall, the KL-divergences are diffi-
cult to interpret.

Therefore, the results of this experiment provide only
weak evidence that the temporal weights can improve
the representations. It is hoped that repetitions of
these experiments, or the use of the techniques in
(Goodfellow et al.,), will provide more interpretable
results.

References

Bergstra, J., & Bengio, Y. (2009). Slow, decorrelated
features for pretraining complex cell-like networks.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams and A. Culotta (Eds.), Advances in neural
information processing systems 22, 99–107.

Földiák, P. (1989). Learning invariance from trans-
formation sequences. Neural Computation, 40, 185–
234.

Goodfellow, I., Le, Q., Saxe, A., & Ng, A. Measuring
invariances in deep networks. In Advances in neural
information processing systems 22.

Hinton, G. E. (1989). Connectionist learning proce-
dures. Artificial Intelligence, 14, 715–770.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A

Temporal Continuity in Convolutional Deep Belief Networks

fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields,
binocular interaction and functional architecture in
the cat’s visual cortex. J Physiol, 160, 106–154.

Hurri, J., & Hyvärinen, A. (2003). Simple-cell-like re-
ceptive fields maximize temporal coherence in nat-
ural video. Neural Computation, 15, 663–691.

Lee, H., Ekanadham, C., & Ng, A. (2008). Sparse
deep belief net model for visual area v2. In J. Platt,
D. Koller, Y. Singer and S. Roweis (Eds.), Advances
in neural information processing systems 20, 873–
880. Cambridge, MA: MIT Press.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. (2009).
Convolutional deep belief networks for scalable un-
supervised learning of hierarchical representations.
Proceedings of the 26th International Conference on
Machine Learning (pp. 609–616). Montreal: Omni-
press.

Lee, H., Pham, P., Largman, Y., & Ng, A. (2009b).
Unsupervised feature learning for audio classifica-
tion using convolutional deep belief networks. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams and A. Culotta (Eds.), Advances in neural
information processing systems 22, 1096–1104.

Li, N., & DiCarlo, J. J. (2008). Unsupervised natural
experience rapidly alters invariant object represen-
tation in visual cortex. Science, 12, 1502–1507.

Olshausen, B. A., & Field, D. J. (1996). Emergence
of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381, 607–
609.

Stringer, S. M., & Rolls, E. T. (2002). Invariant object
recognition in the visual system with novel views of
3d objects. Neural Computation, 14, 2585–2596.

Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2007).
Modeling human motion using binary latent vari-
ables. In B. Schölkopf, J. Platt and T. Hoffman
(Eds.), Advances in neural information processing
systems 19, 1345–1352. Cambridge, MA: MIT Press.

Wallis, G., & Bülthoff, H. H. (2001). Effects of tempo-
ral association on recognition memory. Proceedings
of the National Academy of Sciences, 98, 4800–4804.

Wallis, G., & Rolls, E. T. (1997). Invariant face and
object recognition in the visual system. Progress in
Neurobiology, 51, 167–194.

Wiskott, L., & Sejnowski, T. J. (2002). Slow feature
analysis:unsupervised learning of invariances. Neu-
ral Computation, 14, 715–770.

