
Using Machine Learning Techniques to Uncover What Makes Understanding Spoken
Chinese Difficult for Non-native Speakers

[EXTENDED ABSTRACT REVISION]

John Kowalski
Advisor: Geoff Gordon

Abstract
 The Pinyin Tutor has been used for the past few years in over thirty classrooms at
universities around the world. A large amount of data have been collected from this program on
the types of errors students make when trying to spell the pinyin of the Chinese phrase spoken to
them. I plan to use this data to help answer the question of what is hard about understanding
Chinese. Is it a particular set of consonants, vowels, or tones? Or perhaps do certain difficulties
arise in the context in which these sounds are spoken? Since each pinyin phrase can be broken
down into features (consonants, vowel sounds, and tones), we can apply machine learning
techniques to uncover the most confounding aspects for beginning students of Chinese. We can
extend the methods we developed here to create an ML engine that learns on the fly for each
student what they find difficult. The items to be presented to the learner can be chosen from a
pool based on the predicted probability of being correctly answered by the student. This will
allow the Chinese learner to focus on what he or she is having most difficulty and hopefully more
quickly understand spoken Chinese than without such focused "intelligent" instruction.

1. Introduction
 One of the hurdles for students in introductory Chinese courses is understanding what
Chinese word or phrase has been spoken to them. On top of learning new vocabulary, translation,
and grammar skills, simply answering, "What did you hear?" is often difficult for beginning
students. Improving this rudimentary skill for each student in the classroom can be tedious and in
general a poor use of class time. Luckily, computer tutors are perfectly suited for such
instruction. At the Pittsburgh Science of Learning Center (PSLC), the Pinyin Tutor was
developed for this purpose (figure 1). Pinyin is a system of writing Standard Mandarin using
Roman characters and is commonly taught to first-semester students of Chinese in the first year
of instruction. The Pinyin Tutor's instructional model is quite simple: a Chinese word or phrase is
"spoken" through the students' personal computer speaker and the task is to enter the pinyin of the
sound they heard. If correct, the tutor congratulates the student and presents the next item in the
lesson. If incorrect, the tutor gives feedback on what part of the phrase is incorrect and gives the
student an opportunity to try again. The items the student answered incorrectly on the first try are
put back into the pool to be presented again; items answered correctly on the first try are
eliminated from the pool. The student assignment is to continue until all items in the lesson have
been answered correctly on the first try (without feedback from the tutor).

2. Pinyin Basics
 Each syllable in Pinyin can be thought of as being comprised of three components: an
"initial" consonant sound (b, n, zh, …), a "final" vowel sound (ai, ing, uang, …), and a tone
marking (1,2,3,4,5) indicating the rising/falling pitch of the syllable. In total there are twenty-
three initials, thirty-six finals, and five tones (figure 2).

3. Identifying What Causes Students the Most Difficulty

 The current version of the Pinyin Tutor keeps track of what Chinese words or phrases are

answered incorrectly by students and re-drills the word or phrase until the student can identify it
without help from the tutor. Beyond knowing what items students having trouble with, the
obvious next question to ask is what component(s) of these items are causing the most difficulty.
Are there some initials, finals, or tones particularly problematic? And then beyond asking this
question for individual components, we must consider difficulties that may arise in the context in
which these sounds are spoken. For instance, is final “ao” easy to hear in “hao3”, but not in
“bao4”?
 To answer these questions, we can train a statistical model of student performance. If we
can obtain a reasonably low generalization error with this model, we can use the parameters
learned to discover what the easy and difficult components are.
 As a first try, we can model a Chinese syllable by constructing a linear prediction with 64
covariates (one for each 23 initials, 36 finals, 5 tones), and output whether this item was answered
correctly. So we have:
ŷ = β0 + β1*x1+ β2*x2 + ... + β64*x64
Where:
y=1 (correct), y=0 (incorrect).
xn=1 if feature n is present, 0 otherwise.
βn=coefficient for feature n to be learned.

 We can supplement this single-syllable model with interaction terms, adding a term for
each interaction of initial-final, initial-tone, and initial-tone. This will enable us to answer for
instance, whether some features are typically easy by themselves, but when combined are
difficult. We can also add terms to indicate the number of times a student was exposed to these
features and contexts, enabling us to potentially discover some feature to be initially difficult, but
fast to learn once presented.

Another way to train our models is by using L1-regularized logistic regression. Instead
of fitting our model directly to the training data, in logistic regression we fit our data to a logistic
curve.
ŷ = f(β0 + β1*x1+ β2*x2 + ... + β64*x64)
Where:
y=1 (correct), y=0 (incorrect).
xn=1 if feature n is present, 0 otherwise.
βn=coefficient for feature n to be learned.
f() = sigmoid function

Logistic analysis is a natural choice for fitting a model to our categorical data

(correct/incorrect). We use L1-regularized logistic regression for its feature selection properties
(Koh, 2007). This will give us the flexibility similar to the “s” parameter in lasso. We use the
method developed by Koh, et al. for its ability to scale well to large sparse problems (like for our
2374 covariate model for all interaction terms).

 [Perhaps flesh-out L1-regularized logistic regression info here a bit more…]

3.1.Training the Models

Having constructed representations of Chinese syllables with various levels of detail, we
now want to train these models and arrive at the coefficients to best predict student correctness.
The method we will first use is the Least-Angle Regression (LARS), modified to simulate the

Lasso (least absolute shrinkage and selection operator). Lars and Lasso are regression algorithms
especially suited for high-dimensional data (Efron, et al, 2004).

Using data we collected from the Pinyin Tutor in Fall 2008, we have approximately
250,000 training examples (tuples of Chinese syllable and binary indicator of whether student
correctly identified it). The Lasso takes this input and fits our linear model described above using
the criterion:

Minimize(Σ(y - ŷ)2), under constraint that:
Σj (absoluteValue(βj)) <= s

Where:
- y is the actual indicator of correctness from the training data (0=incorrect, 1=correct)
- ŷ is the running predicted output of our model computed by the lasso. We assume if ŷ >

.5, then predict correct, ŷ <= .5, then predict incorrect
- s is a bound that can be used as a tuning parameter.

What makes the lasso special is the “s” parameter. If it is sufficiently large, the lasso is basically
the ordinary multiple linear least squares regression of y on the xn covariates. But for smaller
positive values, lasso computes a “shrunken” version of the usual least squares estimate. This
shrunken version will often lead to some of the coefficients (β’s) being zero, so choosing a value
for s is like choosing the number of predictors in the model (Tibshirani, 1996). For a graph of
LARS-Lasso coefficient learning progress for our 64-covariate pinyin model see (figure 3). To
see how well the model learned by lasso predicts, see the graph of the K-fold cross-validated
mean squared prediction error as the model is learned by LARS-Lasso (figure 4).

4. Making the Pinyin Tutor More Intelligent
 While the practice the Pinyin Tutor gives students is valuable (Zhang, 2008), it may not
be the most efficient way for students to learn since remediation is based on the whole item, not
on the parts of the item they have shown to have difficulty. For example, if the tutor presents the
two-syllable item "ni3hao3", but the student incorrectly types "ni3ho4", the tutor will put this
item back into the pool for a future re-drilling. But the student did not demonstrate difficulty with
initials "n" or "h", final "i", or the tone in the first syllable. The student did, however,
demonstrate difficulty with the final "ao". Specifically, the student demonstrated difficulty with
the final "ao", when in the second syllable, preceded by initial "h", with tone 3. What if we could
give students more practice on the parts they have demonstrated difficulty? For our example,
what if we could give more practice on items most similar to having a final "ao" in the second
syllable, preceded by initial "h", with tone 3? We can in fact augment the Pinyin Tutor so that we
can have such "intelligent" behavior by training a hidden Markov model for each possible feature
and calculating the probability for each item in the lesson of being in the "Unlearned" state. This
technique of estimating the probability a student knows a skill after observing their attempts is
known as “knowledge tracing” in the intelligent tutor community (Corbett & Anderson, 1995).

4.1. Hidden Markov Model Basics
 A hidden Markov model (HMM) is a statistical model that represents a Markov process
with "hidden" state. A Markov process model can be thought of as a finite state machine where
transitions between states are assigned probabilities and the probability of transition to state B at
time t+1 depends only on the state the machine is in at time t. The "hidden" part is that we are
not able to directly observe what state the machine is in currently, just the output dependent on
the current state. The output symbols per state are assigned a probability distribution.

4.2. Hidden Markov Model Application
 We can create an HMM for each skill necessary to master correctly spelling the pinyin of
a spoken Chinese phrase. The skill set can be the 64 basic features. We can also supplement the
basic 64 skill models with models for interactions between each, so a skill model for each
interaction between initial-final, initial-tone, and final-tone (totaling 64 + 23*36 + 23*5 + 36*5 =
1187 HMMs (skill models)).
 The HMM for each skill has two states: "Learned" (L) and "Unlearned" (U). In each of
these hidden states, we are able to observe whether a skill was answered correctly (C) or
incorrectly (I). The transition probabilities between each state are:
- P(learn), the prior probability of transitioning (U)->(L) at each step given that we start at (U)
- P(forget), the prior probability of transitioning (L)->(U) at each step given that we start at (L)

And conditional observational probabilities within each “hidden” state are:
- P(slip), the probability making an error even if the student is in the (L) state
- P(guess), the probability of guessing correctly even if the student is in the (U) state
See (figure 5).

 Now that we have the structure (states and transition paths) of the HMMs necessary to
represent the skills to tutor, we need to calculate the transition probabilities between the two
states. While there is no known way to optimally "train" an HMM (it's an NP-complete problem),
fortunately there is a way to approximate transition probabilities via the Baum-Welch algorithm,
which makes use of the forward-backward algorithm used frequently in HMM computations
(Rabiner, 1989).

 Using the data collected from the Pinyin Tutor in the Fall 2008 semester and considering
only the student first attempts at each item (and thus not influenced by tutor feedback), we have
approximately 250,000 student-tutor interactions we can train our pinyin skill HMMs utilizing the
Baum-Welch algorithm.

[Perhaps include condensed details here of how the Baum-Welch algo works. It is explained well
in (Rabiner, 1989).]

4.3. Using Trained HMMs to Estimate Student Learning State
 Now that we have HMMs for each skill, we can calculate the probability a skill is in the
"Learned" or "Unlearned" state after observing correct/incorrect observations for that skill as the
student works through the tutor lesson. Rabiner refers to this as "Problem 2" of HMM
applications. Namely, given an observation sequence, O, (of correct/incorrect responses) and an
HMM, ⎣, for the skill, what is the probability we are in a state Si ((U) or (L)) at time t?
γt(i) = P(qt=Si | O1,O2,...,Ot, , λ)

[Perhaps I include condensed details here of how the computation is done. It is explained well in
(Rabiner, 1989).]

Using the probabilities of being in the "Unlearned" state for each skill, we can now average the
probabilities of each feature present in an item being in the "Unlearned" state and base our
selection of the next item to present on this calculation. Our aim is that by choosing items with
highest average probability of being in the "Unlearned" state, the tutor will tailor its instruction
for the student precisely on skills he or she is having the most difficulty. Our ultimate goal is to

get the students to a certain level of mastery much faster than the previous tutor model.

5. Conclusions and Future Work

With the tutor giving focused and tailored instruction, we expect students will learn more
quickly than with the previous non-intelligent model. Preliminary plans are being made for an in-
lab study at the Hong Kong International School to test this theory. We expect the full version of
the tutor as described in this paper to be online by summer 2010, and used in schools for the Fall
2010 semester. It is currently being advertised on the Pinyin Tutor website and a beta version is
currently being tested by at least two sites.
 Running analyses on the entire data set has been a recurring challenge, as has been
running analyses with large numbers of covariates due to memory constraints and analysis
programs crashing. We believe completing these extra-large analyses is achievable (perhaps
before May).
 Another potential area for future work is to explore if there are any results interesting to
the machine learning community. (Perhaps there are methods or insights comparing results of
our HMM training with the Lars-lasso or L1-regularized logistic results, other ideas...)

Figure 1.

Figure 2.
Ordering of Covariates for "Basic" Model (without interaction terms)
Initials:
1 b
2 p
3 m
4 f
5 d
6 t
7 n
8 l
9 g
10 k
11 h
12 j
13 q
14 x
15 z
16 c
17 s
18 r

Finals:
19 zh
20 ch
21 sh
22 w
23 y
24 a
25 e
26 i
27 o
28 u
29 v
30 ai
31 ao
32 an
33 ei
34 en
35 ia
36 ie
37 iu
38 in
39 ou
40 ua
41 uo
42 ui
43 un
44 ve
45 vn
46 ue
47 ang
48 eng
49 ian
50 ing
51 iao
52 ong
53 uai
54 uan
55 van
56 iang
57 iong
58 uang
59 ueng

Tones:
60 Tone 1
61 Tone 2
62 Tone 3
63 Tone 4
64 Tone 5

Figure 3.
Coefficient learning progress of LARS-Lasso on 64 covariate model.

Figure 4.
K-fold cross-validated mean squared prediction error as modeled by LARS-lasso

Figure 5.
Hidden Markov Model representation (one for each pinyin skill).

References

[1] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004), Least Angle Regression, Annals of

Statistics, Volume 32, Number 2, 407-499.

[2] L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257-286, 1989.

[3] Tibshirani, R., (1996), Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society, Series B (Methodological), Volume 58, Issue 1, 267-288.

[4] Zhang, Y. (2008), Cue Focusing for Robust Phonological Perception in Chinese.

[5] Corbett, A. and J. Anderson, Knowledge tracing: Modeling the acquisition of procedural
knowledge., 1995.

[6] Casella, George, and Berger, Roger L. (2002). Statistical Inference, Second Edition. Duxbury
Press, Pacific Grove, California.

[7] Hastie, Tibshirani, and J. H. Friedman. Elements of Statistical Learning New York: Springer,
2009

[8] Koh, K., Kim, S., Boyd S. (2007) An Interior-Point Method for Large-Scale L1-Regularized
Logistic Regression, Journal of Machine Learning Research Number 8, 1519-1555.)

[9] Cen, H., Generalized Learning Factors Analysis: Improving Cognitive Models with Machine
Learning.

	

