Inductive Inference of Integer Sequences

Sam Tetruashvili
Advisor: Manuel Blum

April 12, 2010

Abstract

The goal of this senior thesis is design algorithms that can (inductively) infer integer sequences with
high confidence, under the assumption that all terms of the sequence are accessible. We aim to bound
the number sequence terms that an inference algorithm needs to see before it can make an inference it
is confident in. We also aim to show that for certain sequences, our algorithm can give strong evidence

that it cannot infer the sequence.

1 Introduction

The term ”inductive inference” denotes the pro-
cess of hypothesizing a general rule from exam-
ples. [AS83] In this work, we study the problem
of inductive inference in the context of integer se-
quences. To facilitate this endeavour we define
a natural, and hopefully very general, model for
studying this problem. With this model in place we
move on to try to characterize the set of sequences
that can be efficiently inferred. We then move on
to evaluate the performance of the model by try-
ing to infer the sequences catalogued in the Sloane
On-Line Encyclopedia of Integer Sequences [Slo].

It should be noted that much of this work is very
different from modern statistical machine learning.
One major difference is that we assume absolutely
no noise in our data. Given that our data is error
free, we take up the task of producing error-free
inferences. This means that the hypotheses our
model generates should be entirely consistent with
all of the training data that the model has seen.
Furthermore, a hypothesis that differs from the en-
tire infinite integer sequence in exactly one instance
is just as bad as a that hypothesis gets every term
of the integer sequence wrong.

2 The Evolutionary Inference Model

We now present a general model for inferring al-
gorithmically generated integer sequences. This
model has its roots in the scientific method. At a
very high level the model makes and tests hypothe-
ses. When it finds that its hypothesis disagrees with
the input sequence, it simply makes a new hypoth-
esis using all of the data it has seen so far. It is
important to note that these hypotheses must be

fully consistent with the sequence terms that have
been seen so far.

Definition 1. We say that an integer sequence,
{ai},~¢, is algorithmically generated if there is a
Turing Machine, M, that on input ¢ € N halts with
output a; for all ¢ > 0. For the remainder of this
paper we will use the terms sequence and algorith-
mically generated integer sequence interchangeably.

Definition 2. The FEwolutionary Inference Model
for inferring algorithmically generated integer se-
quences has three main components:

1. The algorithmically generated integer se-
quence, {a;},-, that is to be inferred. We re-
quire that this sequence be represented in a
way that allows our algorithm to efficiently re-
trieve a; at time t.

2. The inference algorithm, A, that we are us-
ing to infer {a;},~,. This inference algorithm
generated hypotheses, {h¢},~,, that come from
some well defined concept class. For example,
we present an inference algorithm that tries to
infer the input sequence as a linear recurrence.
It should be noted that any hypothesis output
by an inference algorithm should be fully con-
sistent with all the (finite amount of) data that
has been input.

3. The confidence function, C, that tells us how
confident we are in the current hypothesis,
{ht};>¢, given that we are currently at time
t of our algorithm. The range of these confi-
dence functions is the interval [0,1], where 0
indicates no confidence and 1 indicates total
confidence. It should be noted that C is al-
lowed to depend on the concept class that our
inference algorithm is based on.

EvolutionaryInference({a:},>, 4, C,¢)
{ht}tzo = {O}tzo

fort=0,1,2,... do
if h; # a; then
{ht}tzo = A([ag, ar, ..., a)
else if C({h¢},~q,t) > 1 — € then
break N

© 00 3 O Ui W N -

—
o

return {h:},.,

Figure 1: Pseudo-code for the Evolutionary Infer-
ence Model.

Given these components, the model will then pro-
ceed to try to use the inference algorithm to find
a hypothesis that it is 1 — € confident in, for some
input € > 0, as shown in Figure 1.

Given some € > 0, the goal of this model is to be
able to find a hypothesis that the model is 1—e¢ con-
fident in. In the remainder of this work we strive
to design inference algorithms and confidence func-
tions that allow us to make sure that the model
does not become too confident in an incorrect hy-
pothesis.

3 Inference Algorithms

3.1 Polynomials

The simplest concept class of sequences that we
study are those generated by a polynomial with ra-
tional coefficients.

Definition 3. We say that a sequence, {a;},~, s
generated by a polynomial of degree k if there are
rational numbers cg, ¢y, ..., ¢t such that

k
a; = E c;t’
i=0

for all t > 0.

The inference task here is to find the degree and
coefficients (¢;’s) of the polynomial that generated
our sequence.

Theorem 1. Let {a;},-, be generated by a poly-
nomial of degree k. We can infer {a;},-, given at
least its first £ + 1 terms. Furthermore this bound
is tight.

Proof. Given in thesis along with an algorithm that
achieves the bound.

3.2 Linear Recurrences

The next simplest class of sequences we study are
those generated by a linear recurrence with rational
coefficients.

Definition 4. We say that a sequence, {a;},~,
is generated by a linear recurrence of degree k if
there there are integers by, b1, ...,bx—1 and ratio-
nals cg, cq,...,cr_1 such that for all ¢t < k a; = by
and for all ¢ >0

k—1

Qi+ = E CiQt4q

=0

Much like with polynomials, the inference task
here is to find the degree, base cases (b;’s), and
coefficients (¢;’s) of the linear recurrence that gen-
erated our sequence.

Theorem 2. Let {a;},-, be generated by a linear
recurrence of degree k. We can infer {a;},, given
at least its first 2k terms. -

Proof. Given in thesis along with the algorithm
that achieves the bound.

3.3 Decimal Expansions

The class of decimal expansions is very large. I've
broken this class up into three slightly simpler
classes. The first class is the set of all decimal
expansions of rational numbers. [BBS82] gives an
algorithm for efficiently inferring sequences in this
class. The second class is the set of algebraic
numbers (numbers that can be represented as the
root of a polynomial with integer coefficients). Fi-
nally the third class is the set of numbers that can
be expressed as some linear combination of some
real numbers with known decimal expansions. For
example, say we know the decimal expansion of
7, ¢,e,7, and V2. We can then infer the decimal
expansion of numbers like

a=2m+10e — 34¢ + V2

The inference algorithm for the last two classes use
the LLL lattice reduction algorithm [LLL82] to find
the necessary coefficients.

For the sake of brevity we will defer a deeper
treatment of these 3 classes of sequences to the fi-
nal thesis document as the analysis gets fairly in-
volved. It suffices to say we have inference algo-
rithms for each of these three classes along with an
upper bound on the number of terms our inference
algorithms need to see before they can make a cor-
rect inference.

3.4 Automatic Sequences

We now consider inferring automatic sequences.
This class is fairly general. At a high level you can
think of these sequences as those that can be gener-
ated by a Deterministic Finite Automaton (DFA).
Say you give the DFA the binary representation of
a non-negative integer ¢ and the DFA output 0 or
1 for a;.

Definition 5. A Partitioned Deterministic Finite
Automaton (PDFA) is an automaton of the form

M= (Qa 2767 QOaF)

where (Q,%,d) is a deterministic and complete
transition system, g € @ is an initial state, and
F = (F, | a € A) is a partition of (). We take A
to be some output alphabet.

Example. This notion generalizes DFAs. We can
represent every DFA

M = (Qa2767q07F)
as the PDFA

M/:(Q7Z,6,q0,(Q_FaF))

With A = {0,1}. The partition (Q — F, F) simply
says that if the final state is in the set Q — F' the
PDFA output a 0, otherwise if the final state is in
F' the PDFA output a 1.

Definition 6. We say that a sequence, {a¢},~,
is generated by a PDFA of degree (k,m) if there
is a PDFA with m states and input alphabet
{0,1,...,k — 1} such that for all ¢ > 0 the PDFA
output a; when run on the k-ary representation of
t.

The inference task here is to find the smallest
PDFA that generates our sequence.

Theorem 3. Let {a;},-, be generated by a PDFA
of degree (k, m). We can infer {a; },~, given at least
the first k™2 terms of the sequence. Furthermore
this bound is tight.

Proof. Given in thesis along with an algorithm that
achieves the bound.

3.5 Turing Machines

We now consider the most general class of se-
quences: those that can be generated by a program
in any modern programming language.

Definition 7. We say that a sequence, {a;},~, s
generated by a Turing Machine of degree k, if there
is a k state Turing Machine that on input t outputs
Q.

We now give an impossibility result that suggests
that this class of sequences cannot be inferred in
general.

Definition 8. The Busy-Beaver function, g : N —
N, is defined such that for every positive integer n
B(n) is equal to maximum number of 1’s a Turing
Machine on n states can print given that it halts.

Fact 4. For any computable function f: N — N,
there is « € N such that f(z) < B(z).

Definition 9. Let f: N — N be the function that
for each positive integer k tells us the minimum
number of sequence terms we need to see before we
can infer a sequence generated by a Turing Machine
of degree k.

Theorem 5. Vk € N f(k) > B(k).

Proof. Given in thesis.

Corollary 6. f is not computable.
Proof. By Fact 4.

This result suggests that any inference algorithm
for Turing Machine sequences needs to be given a
lot of sequence terms before it can make an infer-
ence.

4 Confidence Functions

The role of confidence functions in our model is to
let us know when we are confident enough in a hy-
pothesis that we can stop the inference procedure
and assert that the hypothesis generates the input
sequence. This is arguably the most theoretically
interesting, and difficult, part of this work. What
we’ve strived to do is try to define confidence func-
tions by a certain set of properties that we would
like them to have. In this process we’ve come up
with the following two properties.

Property 1 (Monotonicity). Say we make some
hypothesis, {h},~, at some time ¢ and we’ve kept
this hypothesis until some time ¢’ > t. Then any
confidence function, C', should have

C({ht}tzo ,t') > C({ht}tzo ,t)

In other words, our confidence in a hypothesis can-
not decrease until we’ve found a counterexample to
the hypothesis.

Property 2 (Convergence). Say we make some hy-
pothesis, {h¢},~, at some time ¢y and this hypothe-
sis actually does generate the input sequence. Then
our confidence in this hypothesis should tend to 1
as t tends to infinity. More formally

Hm C{ht};p.to+t) =1

A simple confidence function with these proper-
ties is the fraction of terms that we’ve used to check
our current hypothesis. For example, Theorem 1
says that we only need k + 1 sequence terms to in-
fer a sequence generated by a polynomial of degree
k. Thus if we are at time ¢ and our current hy-
pothesis is a polynomial of degree k then we know
that we have checked this hypothesis on exactly
t+1—(k+1) =t— k sequence terms. Then we
can use the following confidence function

t—k

C({hu}isg 1) = 1

Where {h;},~ is a polynomial hypothesis of degree
k. This confidence function clearly has both of the
desired properties.

We can make similar confidence functions for our
other concept classes, but so far as we can tell the
two properties we have are too weak. The direc-
tion we’ve decided to go is to look for properties
of each of our concept classes that we can exploit
to design good confidence functions. For example,
one can study the probability that a random se-
quence of 2k integers is describable by a linear re-
currence of degree less than k. It turns out that this
probability tends to 0 as k tends towards infinity.
This gives us the intuition that the marginal confi-
dence gained by checking a hypothesis on one more
sequence term must be a concave function (I call
this property diminishing returns). Given concept
classes with this property we can design our con-
fidence functions for these concept classes to have
an additional concavity property.

Unfortunately none of the confidence functions
we’ve come up with so far seem to give any observ-
able improvement over simply observing the num-
ber of terms we’ve used to check our current hy-
pothesis. We do believe there is much more work
that can be done in this area to achieve far better
results than the simple confidence functions we use.

5 The On-Line Encyclopedia of Inte-
ger Sequences

We evaluate the quality of our model by using
the data in Sloane’s On-Line Encyclopedia of In-
teger Sequences. This is a truly wonderful resource
that contains sequences that have come up in the
course of academic research. You can think of this
database as containing the set of “interesting se-
quences,” meaning sequences which people have
been interested in. For example, there is an en-
try for the Busy-Beaver sequence, the sequence of
stops the A train makes in New York City, the Col-
latz sequence, etc.

As you may have already guessed most of the se-
quences in this database should be fairly difficult,
if not impossible, to infer using the techniques we
have outlined in this work. In fact the task of in-
ferring these sequences is sometimes isomorphic to
some of the most difficult open problem in mod-
ern mathematics: for example consider sequence
A001359 which is the sequence whose t** term is the
smaller prime in the #*" twin prime pair. Success-
fully inferring this sequence would solve the Twin
Prime Conjecture.

Thankfully this database also contains more
tractable integer sequences that our methods are
applicable to. It is our goal to be able to infer
about 25% of the sequences in this database using
the techniques in this work. So far we’ve been able
to use our techniques to infer about 18.7% of the
sequences in this database. A brief summary of our
results is given in Figure 2.

We hope to modify some of our inference algo-
rithms for decimal expansions to be able to infer
a larger percentage of the database. This looks to
be possible given that decimal expansions make up
about 8% of the database. We can also improve
this result by designing better confidence functions
for each of our concept classes.

You can currently use our integer sequence infer-
ence system by going to http://theory.res.cmu.
edu/~samt/sequences.html. At this website you
can input the initial portion of a sequence and see
if any of my inference algorithm can infer it. As a
disclaimer this website is currently running off of
my laptop so it may be off-line sometimes: namely
when my laptop is not plugged via ethernet.

http://theory.res.cmu.edu/~samt/sequences.html
http://theory.res.cmu.edu/~samt/sequences.html

Concept Class Number Inferred | Percent Inferred
Polynomial 4901 2.818 %
Linear Recurrence 29197 16.829 %
Decimal Expansions 2220 1.280 %
Automatic Sequences 1828 1.051 %
y Total \ 32582 \ 18.734 % \

Figure 2: Inference statistics as of April 1, 2010 when the database had 173922 integer sequences.

References

[Ang74] Dana Angluin. Easily Inferred Sequences.
Technical report, University of California
at Berkeley, Department of EECS, 1974.

[AS83] Dana Angluin and Carl H. Smith. In-
ductive Inference: Theory and Methods.
ACM Computing Surveys, 1983.

[AS03] Jean-Paul Allouche and Jeffrey Shallit.
Automatic Sequences: Theory, Applica-
tions, Generalizations. Cambridge Uni-
versity Press, first edition, 2003.

[BBS82] Lenore Blum, Manuel Blum, and Michael
Shub. Comparison of Two Pseudo-
Random Number Generators. Advances
in Cryptology-Proceedings of Crypto 82,
1982.

[Knu97] Donald E. Knuth. Art of Computer Pro-
gramming, Volume 2: Seminumerical Al-
gorithms. Addison-Wesley Professional,
third edition, 1997.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lo-
vasz. Factoring Polynomials with Ratio-
nal Coefficients. Mathematische Annalen,
1982.

[Slo] N. J. A. Sloane. The On-Line En-
cyclopedia of Integer Sequences.
http://www.research.att.com/njas/sequences/ .

[Wil94] Herbert S. Wilf. generatingfunctionology.
Academic Press, second edition, 1994.

	1 Introduction
	2 The Evolutionary Inference Model
	3 Inference Algorithms
	3.1 Polynomials
	3.2 Linear Recurrences
	3.3 Decimal Expansions
	3.4 Automatic Sequences
	3.5 Turing Machines

	4 Confidence Functions
	5 The On-Line Encyclopedia of Integer Sequences

