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Abstract 

In this project I study the problem of population structure inference using 
multi-locus genotype data. Traditional methods for inferring population structure 
such as Structure program or mStruct does not present a good way to optimize the 
number of ancestral population groups by including the number in the model and 
inferring from the model itself. In this paper I present a model that will have the 
ability to infer the optimal number intrinsically. I tested the model against a 
number of simulated dataset and the number of ‘dominant’ ancestral population 
groups were identical to the optimal number, while keeping the admixture 
accuracy in a reasonable level. 

 

1 Introduction 
Identifying the population structure given the genetic information of individuals has been a very 
traditional problem in population genetics. Recently there have been several approaches trying to 
solve this problem by assigning individuals to populations. Structure, implemented by Pritchard et 
al., proposes a model called allele-frequency admixture model that is similar to Latent Dirichlet 
Allocation. Structure assumes that each allele at each locus in each genotype is an independent 
draw from the appropriate distribution. An improvement of Structure, which is called mStruct, has 
been proposed recently by incorporating the possibility of mutation into the probabilistic model. 
While mStruct provides a good result, the optimal choice of the number of ancestral groups 
remains uncertain because the model itself did not make the choice but an approximation not from 
the model did. With this ability missing, the inference result of population structure is a bit 
questionable although it should be fairly reasonable. In the next few sections, I first explain the 
background information such as models for the population structure and two major previous works 
project, I aim to develop a probabilistic model that has the ability to infer the optimal number of 
ancestral groups from the model itself to offer a better justification of the choice of the number of 
ancestral groups.  

 
2 Previous models  
The previous models are essentially applications of Latent Dirichlet Allocation (LDA). Briefly, 
the generative process is the following:  

1. Draw an admixing vector an individual n:   
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θ n ~ P( ⋅ |α)  

2. For each allele 

€ 

Xi,ne
, 
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  (for Structure) Draw the allele 
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  (for mStruct) Draw a founder allele indicator 
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As we can see in Figure 1, both of these models need the number of ancestral groups (K) specified. 
These models determine the optimal number by getting Bayesian Information Criterion or a 
similar kind of evaluation function.  

 

      
Figure 1: (Left) The model used by Structure. (Right) The model used by mStruct. 

 
3 Proposed Model  (HDP-Structure )  
The new model I suggest is basically a Hierarchical Dirichlet Process mixture model. Given that 
the previous models are applications of Latent Dirichlet Allocation (LDA), this extension is a 
natural way of extending the previous models to get the optimal number of ancestral groups. To 
avoid confusions, I follow the notations used in Teh et al [2]. In the context of population structure 
inference problem, xj,i represents the observed allele of individual j at locus i, and θj,i represents 
the multinomial prior for allele at locus i of individual j.  

One noticeable difference is that unlike the previous models, which had different sets of possible 
alleles for each locus, this model does not differentiate each locus. Instead, it has the entire set of 
observed alleles as the support of allele distribution.  from the whole set of observed alleles 

 

 
Figure 2: The proposed model 

 
 



4 Inference 
For the inference step, I used a Markov Chain Monte Carlo method derived by Teh et al [2]. 
Specifically, the method used is ‘posterior sampling by direct assignment’. This scheme directly 
maps allele i of an individual j to an ancestral group k by introducing a variable zji. The specific 
sampling steps are the followings: 

 

(1) Initialize zji’s randomly with uniform probability 1/Kinit for each k = 1 … Kinit. Initialize  

(2) Sample Z: 

€ 

p(z ji = k | z− ji,m,β) = (n j .k
− ji +α0βk ) fk

−x ji (x ji) (for previously used k)

      = α0βµ fk
−x ji (x ji) (for new k)  

 

  

€ 

fk
−x ji (x ji) =

B(h1 + I(x j ' i' = a1)j ' i',z j 'i ' =k
∑ ,,hP + I(x j ' i' = aP )j ' i',z j 'i ' =k

∑ )

B(h1 + I(x j ' i' = a1)j ' i'≠ ji,z j 'i ' =k
∑ ,,hP + I(x j ' i' = aP )j ' i'≠ ji,z j 'i ' =k

∑ )
 

where ai is each observed allele and nj.k is number of alleles of the individual j assigned to the 
ancestral group k. hi’s are priors set for each allele observed and each superscript represents a 
variable that should be skipped when calculating the function.  

(3) Sample M: 

€ 

p(m jk = m | z,m− jk,β) =
Γ(α0βk )

Γ(n j.k +α0βk )
s(n j .k,m)(α0βk )

m  

Here, s(n,m) is an unsigned stirling number of the first kind. 

(4) Update β: 

  

€ 

(β1,,βk,βµ ) |m   ~   Dir(m.1,,m.K ,γ )  

m.i represents sum of all mji’s. 

(5) Update α 

€ 

α0 |w,s  ~  Gamma(a0 +m..− s jj=1..J
∑ ,b0 − log(w j )j=1..J

∑ )

 w j |α0  ~  Beta(α0,n j..  −1)
  s j |α0  ~  Bernouli(n j .. /α0)

 

(6) Update γ 

€ 

γ |η,K  ~  πηGamma(a1 + k,b1 − log(η)) + (1−πη )Gamma(a1 + k −1,b1 − log(η))
η |γ,K  ~  Beta(γ +1,m..)

πη
1−πη

=
a1 + k −1

m..(b1 − log(η))

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

In this step, m.. represents sum of all m.i’s and K represents the number of different values 
of zji. 

 
5 Experimental  Results   
To see the correctness of the result, I tested HDP-Structure against a number of simulated data sets 
generated by the program used in Shringarpure et al [5]. First, I tested on 4 different simulated 
datasets and then I tested on a single dataset with different initializations to show that this model 
achieves the main objective – getting the optimal number without human intervention. For space 
issue, the tables and figures for this section are attached at the end of the report. In the figures, 
each vertical line represents an individual, each color represents an ancestral group, and the length 
of each color means the amount of the contribution of the ancestral group.  



5 . 1  V a l i d a t i o n  o n  C o a l e s c e n t  S i m u l a t i o n  

To verify the correctness of the estimation of HDP-Structure, I first simulated a number of data 
sets, using coalescent techniques used in Shringarpure et al [5]. Due to the heavy calculations and 
slow convergence of the inference steps, the test sets were generated in a small scale with two 
optimal ancestral populations. To estimate the error of the admixture vector, I calculated the 
average of the differences of population 1’s contributions. Table 1 presents the specification and 
the summary of each dataset, and Figure 3 shows the estimations from HDP-Structure compared 
against the estimations of mStruct. 

The estimation results show that the estimation of HDP-Structure makes a reasonably good 
estimation of admixture, around 10~12% error in terms of the contribution of the first population 
group. Also, the number of ‘dominant’ or ‘significant’ ancestral groups match the optimal number 
of the ancestral groups. The actual number of ancestral groups varied around 3 to 10, but all of 
them do not have enough significance as shown in the graphs. 

 
5 . 2  C o n v e r g e n c e  t o  t h e  o p t i m a l  n u m b e r  o f  a n c e s t r a l  g r o u p s  

Although the correctness of the number of ancestral groups was shown in the previous experiment, 
I tested HDP-Structure and mStruct on one dataset with different settings of number of 
populations. This test was necessary because if extra ancestral groups inferred by mStruct are not 
significantly affecting the modern population so that it is almost negligible, it greatly reduces the 
meaning of this project. The dataset had 50 people with alleles observed at 10 loci from each of 
two sets of chromosome and the number of populations was set to 2, 3, 5 and 7 respectively. The 
estimation results are shown in figure 4.  

As we can see in the figure, HDP-Structure is not highly affected by the initial number of ancestral 
groups. It still keeps the number of dominant ancestral population groups to two and the 
compositions stay consistent. However, mStruct gives a noticeable change in the composition as 
the number increases. At the beginning it seems like the optimal ancestral groups split into 
multiple subgroups but this trend does not last long and gives a completely different estimate soon.  

 
6  Conclusion and Future Works  

From the tests on the simulated datasets, I confirmed that the model picked up the optimal number 
of population correctly. Initial settings with higher number of populations introduced more noises. 
However, this result is expected given that the number of iterations was the same for each initial 
setting. There might be multiple ways of removing or minimizing the noise: one could be taking 
empirical posterior mean. Currently HDP-Structure takes only one posterior sample due to the 
nature of HDP adding and removing mixture components. However we could still take the 
posterior mean by ‘deactivating’ mixture components instead of just removing ones. This will 
minimize the contribution of each noise component, although it would not reduce the number of 
ancestral groups. But we can easily handle this once we set a threshold of contribution. 

Another big issue that should be improved is its speed. Compared to mStruct, the inference step 
presented in this project took much more iterations to converge. For instance, the variational 
inference method used in mStruct converged within 10~30 iterations, but the MCMC method I 
used here took at least around 3000 iterations to get stable. Furthermore, each iteration was much 
slower as well. Considering the slow convergence of MCMC methods, other inference methods 
using techniques such as variational inference or mean field approximation should be developed. 
Speed improvement is very necessary because testing on human datasets or larger sets are missing 
because of the slow speed. 

Since this model is an extension of Structure, which does not take the mutation process into 
consideration, another possible extension is considering the mutation process as mStruct does.  

In summary, recent population stratification methods such as Structure and mStruct require human 
belief and a post inference process to get the optimal number of ancestral groups. By extending the 
LDA based models to a HDP mixture model, the HDP-Structure approach presented in this project 
attempts to achieve a better justification of the optimal number while keeping almost the same 
level of accuracy of admixture vectors each individual.   
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Dataset # Individuals # Loci Ploidy Errorpop(1) 

1 75 20 2 0.128 
2 60 15 2 0.115 
3 50 12 2 0.124 
4 50 10 2 0.101 

Table 1: Summary of datasets 

 

   

   

   

   
Figure 3: Inference results of HDP-Structure (left) and mStruct (right)  

against four datasets (each row) 



 

   

   

   

   
Figure 4: Inference results of HDP-Structure (left) and mStruct (right)  

with (initial) number of populations set to 2, 3, 5, 7 respectively in each row 
 

 


