
Temporal Continuity Learning for Convolutional Deep Belief
Networks

Carl Doersch cdoersch@andrew.cmu.edu
Tai Sing Lee tai@cnbc.cmu.edu

Carnegie Mellon University, Pittsburgh, PA 15289

Gary Huang gbhuang@cs.umass.edu
Erik Learned Miller elm@cs.umass.edu

University of Massachusetts Amherst, Amherst, MA 01003

Keywords: temporal continuity learning, unsupervised learning, computer vision

Abstract

The human visual system can robustly rec-
ognize objects, even though a single object
can project many different images onto the
retina. Furthermore, humans learn to per-
form this task from mostly unlabeled data.
The goal of this work is to develop a com-
puter algorithm which can replicate this sort
of learning. One approach to this problem
is called temporal continuity learning. This
theory assumes that images close together
in time are likely to contain the same ob-
ject, and therefore that the visual system
should learn representations that vary slowly
in time. A different approach uses Deep Be-
lief Networks. With DBNs, the goal of the
learning is to maximize the likelihood of the
training data in the marginal distribution of
the Deep Belief Network. Interestingly, these
approaches use entirely different heuristics
to measure how ’good’ a representation is.
In this work, I hope to create an algorithm
which uses both of these heuristics to form
a better representation of images than either
heuristic could produce on its own.

1. Introduction

Object recognition has proved a difficult task for com-
puters, even though object recognition in humans is
rapid and apparently effortless. The neural basis for

Final submission for Carnegie Mellon University Senior
Thesis.

this ability appears to reside in Inferotemporal cortex
(IT), where neurons are sensitive to particular objects
or patterns. Furthermore, each such IT neuron will
respond to its preferred pattern even when the pat-
tern is moved on the retina, or its pose is changed,
or it is illuminated differently. The response patterns
of these neurons are even more remarkable since they
are learned from essentially unlabeled data in infants.
How does the brain know which images correspond to
the same object?

A proposal initially proposed by Hinton (Hinton, 1989)
(p 208), and later called temporal continuity learn-
ing, solves the problem of deciding which images be-
long to the same object by assuming that images
close together in time correspond to the same object.
This leads to a straightforward intuition for a neural
learning rule: if a neuron was active recently, then
it should strengthen the connections to all neurons
that it is currently receiving activation from. Földiák
(1989) showed that this learning rule can be used to
learn complex-cell connectivity fields when the input
is simple-cell activations. Similar learning rules were
later shown to perform more complex tasks, such as
discriminating characters (Wallis & Rolls, 1997) and
simple three-dimensional objects (Stringer & Rolls,
2002). Furthermore, temporal continuity learning has
been demonstrated in human Inferotemporal Cortex
(Li & DiCarlo, 2008; Wallis & Bülthoff, 2001).

It is only natural to ask whether an entire visual sys-
tem can be learned with just a neural implementation
of temporal continuity learning. Unfortunately, mod-
ern simulations which strive for biological plausibility,
such as the Trace Learning framework (Földiák, 1989;
Wallis & Rolls, 1997) are usually applied to relatively

Temporal Continuity in Convolutional Deep Belief Networks

simple, synthetic problems. Of the implementations
of temporal continuity learning which have been cre-
ated for the sake of computer vision, perhaps the most
popular is Slow Feature Analysis (SFA) (Wiskott &
Sejnowski, 2002). However, even SFA has a number
of limitations: for example, in the classic implementa-
tion, computation time is O(N4) where N is the num-
ber of pixels in the input. Perhaps more a fundamen-
tal limitation, however, is inherited from the temporal
continuity framework itself: SFA cannot learn features
that are not slow. Therefore, it struggles to learn fea-
tures like edge-detectors, even though edge-detectors
are present in the human visual system. Thus, Wiskott
and Sejnowski (2002) hard-coded gabor filters into the
first layer of their simulation.

There are many ways to learn edge-detectors from nat-
ural image data. Perhaps the most famous algorithm
came from Olshausen and Field (1996), where it was
shown that the optimal representations of images, un-
der the constraint that the representation be sparse,
involves units which have response properties similar
to simple cells. In this case, “optimal” is in terms of
the performance of an autoassociator: the learned rep-
resentation was the one which minimized reconstruc-
tion error when the weights in the autoassociator were
trained with backpropagation.

More recently, neural networks have begun to make
use of techniques designed for graphical models. No-
tably, Deep Belief Networks (DBNs) (Hinton et al.,
2006) have demonstrated good performance when rec-
ognizing handwritten digits. Furthermore, when they
are constrained to be sparse, the units in a DBN will
learn receptive fields similar to simple cells (Lee et al.,
2008).

An important difference between DBN’s and autoas-
sociators is that each node in a DBN is probabilistic.
Thus, sampling the states on one layer given other
layers allows for some uncertainty. In particular, if we
treat the DBN as a generative model, and if we assume
that units in the deepest layers actually represent the
presence or absence of objects and features in an im-
age (which is the ideal representation of an image),
then a DBN better reflects our intuitions about how
images come about in the real world. That is, even af-
ter we know that an object is present in an image, it is
still uncertain the exact image that will be generated.
We can imagine generating the image hierarchically:
starting with the knowledge that the object is present,
we probabilistically generate its sub-features, and then
the sub-features of those sub-features, until we reach
edges and pixels. In an autoassociator, however, the
generative process is entirely deterministic. Thus, we

lose the fact that a single internal representation may
correspond to multiple images.

The non-determinism of DBNs is particularly useful
in this work because we hope to learn complex cell
responses. In an autoassociator, units that behave
like complex cells are difficult to learn because it is
not clear what should be generated on the input layer
when a complex cell unit is active. By definition, com-
plex cells respond to multiple disjoint input patterns,
but in an autoassociator they can generate only one of
them. DBNs have not yet been shown to learn complex
cell responses, but the probabilistic generative process
should mean that units behaving like complex cells are
at least possible; thus, complex cell repsonses are one
of the goals of this work.

One difficulty with DBNs, however, is that they are
slow and require many training images. In (Hinton
et al., 2006), the network was trained on 60,000 im-
ages, and the images were only 28 by 28 pixels. For
learning higher-order features, it is helpful to use more
detailed images. Thus, we extend the Convolutional
DBN (CDBN) framework (Lee et al., 2009). This
framework makes sampling faster because conditional
probabilities may be computed using a fast convolu-
tion operation. Furthermore, the network requires less
training data because what is learned at one location
in an image is propagated to all locations in the net-
work.

Therefore, I chose the CDBN framework as a starting
point for this work. The Temporal CDBN (TCDBN)
described in the Methods section is a modification of a
CDBN which allows information to propagate through
time, thereby allowing temporal continuity learning in
this framework.

2. Related work

The success of this work depends heavily on the hir-
erarchical nature of images. That is, we assume that
objects tend to be made up of parts, which are in turn
made up of simple features that are based on edges and
regions of color. This view of object recognition has
a long history, starting with Fukushima’s Neocogni-
tron (Fukushima, 1980), which was designed for char-
acter recognition. The Neocognitron was successful
because it acknowledged that the features of a char-
acter (for example, the T-junctions in the letter ‘A’)
tend to be present in all images of the character, al-
though the relative positions of the features may vary
greatly. Thus, the Neocognitron recognized the fea-
tures first, and then composed them into characters
while remaining insensitive to the exact positions of

Temporal Continuity in Convolutional Deep Belief Networks

the features.

One notable descendant of the Neocognitron is the
Convolutional Neural Network (CNN), which learns
the best features at each layer of the visual hierar-
chy via backpropagation. These networks have been
successful in many vision problems such as character
recognition (LeCun et al., 1998), categorization of rigid
objects (LeCun et al., 2004), and obstacle avoidance
for robots (LeCun et al., 2005), which again confirms
the utility of the hierarchical approach to object recog-
nition. It is also worth noting that unsupervised pre-
training may be applied to a CNN in a manner similar
to the unsupervised pre-training usually used to train
DBN’s; doing so achieves modest improvements in per-
formance (Ranzato et al., 2007).

A recent extension of the CNN which is of particu-
lar interest in this paper is proposed by Mobahi, Col-
lobert, and Weston (2009). Their model extended the
CNN framework to video data, making use of tempo-
ral continuity information by explicitly penalizing, in
their objective function, differences between the repre-
sentations of consecutive frames in a video. The goal
is to learn representations that are invariant to the
changes that happen over small time scales, making
their model perhaps the most similar in spirit to this
work out of all the papers that I have found in my
survey. Their empirical success on standard object
recognition databases provides further support for the
use of temporal continuity data in deep architectures.

However, one criticism of purely feedforward architec-
tures is that top-down hypotheses cannot be used to
tune the representations at lower levels of the hierarchy
during the inference process. Intuitively, a mechanism
which can constrain the interpretations allowed in the
lowest layers of the visual hierarchy would be useful
because small, local image patches are inherently am-
biguous (Oliva & Torralba, 2007). A Bayesian account
of hierarchical image processing is appealing in this
case, because such models easily allow top-down hy-
potheses to constrain low-level representations. Fur-
thermore, hierarchical Bayesian inference can also ex-
plain physiological data from visual cortex (Lee &
Mumford, 2003).

A number hierarchical Bayesian models of vision have
been proposed, including the Deep Belief Networks on
which the current model is based. Variants of Bayesian
graphical models have been successful at a number
of object recognition problems, in particular for de-
formable mbjects (Sudderth et al., 2005; Zhu et al.,
2008). Bayesian graphical models for vision may also
incorporate temporal continuity cues through the use
of Markov Chains (Stepleton et al., 2009), although

such work is still in its infancy. It is worth noting that
complex graphical models such as these tend to lead
to very difficult inference problems, especially as more
constraints (like temporal continuity) are added.

Deep belief networks also fall into the category of hi-
erarchical Bayesian models of vision, and there have
been a number of algorithms that have used Deep Be-
lief Networks with a temporal component. Notably,
only minor modifications to the CDBN make it suit-
able for processing audio data. In a recent work, these
CDBNs were shown to have state-of-the-art classifi-
cation performance on a number of audio databases
(Lee et al., 2009b). Conditional RBMs stacked into
Deep Belief Networks have been used model human
motion, and perform tasks like interpolating motion
data (Taylor et al., 2007). It is important to note,
however, that the goals of this paper differ from those
of (Lee et al., 2009b) and (Taylor et al., 2007). These
two papers model information that inherently contains
a temporal component. That is, it is not possible to
identify a speaker from a single audio sample, nor is
it possible to identify a human motion from a single
frame of motion-capture data. Thus, a DBN solution
to either of these problems requires extending DBNs
to use temporal data. However, in the present work we
are concerned only with object recognition: we use the
temporal continuity heuristic during training in order
to improve a DBN’s representations of, and classifica-
tion performance on, still images. While it is possible
that the Temporal CDBN proposed here would work
on audio data or motion capture data, it is not ex-
pected that it would perform better than the DBNs
specifically designed for this purpose. To my knowl-
edge, there have not yet been any attempts to use
temporal continuity information as a heuristic for con-
straining the learning in DBNs.

Because we are interested in DBNs for the way that
they can select good features for representing input
images, it is also worth taking a moment to examine
other attempts to improve the representation power
in networks that rely primarily on temporal continu-
ity learning to derive their representations. In partic-
ular, we are interested in algorithms which were able
to extract edge-like features, because edges have clas-
sically been very difficult to learn with only temporal
continuity. There have been a small number of suc-
cessful attempts at this problem. Hurri and Hyvärinen
(2003)’s network learned Gabor filters using a learning
rule related to SFA, although their objective function
for SFA gave high scores to both features that were
slow and features that oscillated rapidly from positive
to negative activation values. Bergstra and Bengio’s
(2009) network learned units similar to Gabor filters

Temporal Continuity in Convolutional Deep Belief Networks

Figure 1. A toy temporal DBN for making the notation explicit. If implemented, this CDBN would operate on a video of
3-pixel, one-dimensional images (the real network used 2-d images with hundreds of pixels on a side)

only because they were learned at the same time as
complex-cell units, and only the complex cell activa-
tions were used in the objective function. While these
networks are somewhat successful, I believe that DBN
learning provides a more principled way to add selec-
tivity to neural receptive fields, both due to its sta-
tistical interpretation and its demonstrated successes
with feature learning.

3. Methods

3.1. Basic structure

The model I propose combines deep belief networks
with trace learning. The general idea of this model is
to create a deep belief network where each unit is aware
of its state during the previous time instant. Thus,
the deep belief network can learn, by itself, to allocate
units representing features which vary slowly through
time. This would happen because more invariant units
would be able to more accurately predict their previous
states, and would thus be able to form a better model
of video data.

To make the model more concrete, consider a stan-
dard CDBN that receives as input an n-by-n image.
We can extend this model to a video with k frames
by copying the network k times, and assigning each
network to a frame in the video. Next we make the
model’s units aware of continuity data. For any unit u
in the original single-image deep belief network, there
is a corresponding set of its copies {u1, ..., uk} in the
model for video, one for each time 1, ..., k. Each ut

is connected to ut−1. Thus, messages traveling along

these temporal connections will carry the same infor-
mation that the trace conveyed in the trace learning
model.

3.2. notation

I will describe the structure of the Temporal Con-
tinuity Convolutional Restricted Boltzmann Machine
(one layer of a Deep Belief Network) shown in Fig-
ure 1. This network in the diagram is simplified in
a few important ways relative to the network in the
experiments. First, each input image in the diagram
is one-dimensional; therefore, vi,j refers to the pixel in
position i in frame j (Note: I use the words ‘frame’
and ‘timestep’ interchangeably). However, the origi-
nal CDBN used 2-dimensional images that were on the
order of hundreds of pixels on a side. Second, this net-
work only has one ’group’, whereas the original CDBN
had 24 in the first hidden layer. Essentially, having
24 ’groups’ is like having 24 separate RBM’s that are
all attempting to explain the same image data. It is
straightforward to generalize this procedure to mul-
tiple groups. Thus, in this explanation, each hidden
unit will have two subscripts: hi,j , where i is the po-
sition within the hidden layer, and j is the timestep.
However, in the true network, each hidden group was
2-dimensional, sized such that there was one unit for
each element in the ‘valid’ convolution between the in-
put image and the group’s weight matrix. Note that
the convolution operation constrains the number of
hidden units we may have in a block. Since the kernel
size NW = 2, and the number of visible units NV = 3,
we must have NH = NV −NW + 1 = 2.

Temporal Continuity in Convolutional Deep Belief Networks

Thus, there are exactly three parameters in this toy
network: w1 which is the left weight (connecting h1,j

to v1,j and h2,j to v2,j), w2 which is the right weight
(connecting h1,j to v2,j and h2,j to v3,j), and the tem-
poral weight Wt, which connects hi,t to hi,t+1 for all
i, t. The temporal weights are shown in red. Let
NT = 3 be the number of timesteps.

3.3. Probability distribution

The probability distribution defined over this graph is
essentially identical to that of (Lee et al., 2009) paper,
except there is an extra term for the temporal weights.
Therefore, we have:

P (v, h) =
1
Z
exp(−E(v, h))

Where E is the energy function:

E(v, h) = −
∑NT

t=1

∑NH

i=1

∑NW

r=1 hi,tWrvi+r−1

−
∑NT−1

t=1

∑NH

i=1 hi,tthi,t+1

−
∑NT

t=1

∑NH

i=1 bhi,t

−
∑NT

t=1

∑NV

i=1 cvi,t

(1)

And Z is a normalization constant that depends on
the weights and biases:

Z =
∑
v,h

exp(−E(v, h))

3.4. Weight updates

We wish to compute the derivative of the log proba-
bility of the data with respect to a weight Wi,j . To do
this, we start by computing the derivative with respect
to one connection only. In the end, we will compute
the update for this parameter by summing up the up-
dates for all connections it participates in.

The log likelihood may be written as:

L(v0) = log(
∑

h exp(−E(h, v0)))
−log(

∑
h,v exp(−E(h, v)))

Taking the derivative of this, we have:

∂
∂W L(v0) =

d
dW

∑
h

exp(−E(h,v0))∑
h

exp(−E(h,v0))

−
d

dW

∑
h,v

exp(−E(h,v))∑
h,v

exp(−E(h,v))

=
∑

h
− ∂E(h,v0)

∂W exp(−E(h,v0))∑
h

exp(−E(h,v0))

−
∑

h,v
− ∂E(h,v0)

∂W exp(−E(h,v))∑
h,v

exp(−E(h,v))

If we distribute the denominator of each term into the
the sum in the numerator, we see that both terms
become expected values under two different distribu-
tions:

= −
∑

h

∂E(h, v0)
∂W

p(h|v0) +
∑
h,v

∂E(h, v)
∂W

p(v, h)

=
〈
−∂E(h, v0)

∂W

〉
0

+
〈
−∂E(h, v)

∂W

〉
∞

The derivative of the energy function with respect to a
weight for a particular configuration is just -1 if both
units that the weight connects are on in that configura-
tion, and zero otherwise. Thus, if the weight connects
units a and b, we have:

= 〈ab〉0 + 〈ab〉∞

The contrastive divergence approximation approxi-
mates the right term with the distribution after one
step of Gibbs sampling:

≈ 〈ab〉0 + 〈ab〉1 (2)

Note that I did not use the conditional independence
properties of the RBM anywhere in this derivation.
The conditional independence is only useful because
it means we can use sampling (or variational tech-
niques) to compute these expected values in (2) effi-
ciently. However, in the case of the Temporal CDBN,
it is still possible to compute these expected values
efficiently via sampling, as I describe here.

3.5. Sampling

In an ordinary RBM, it is easy to get samples from
the posterior over the hidden units because the hid-
den units are all independent conditioned on an input
vector. Thus, we get the following formula for the
probability of hi:

p(hi = 1|v0) =∑
h,hi=1

exp(−E(h,v0))
Z∑

h,hi=1

exp(−E(h,v0))
Z +

∑
h,hi=0

exp(−E(h,v0))
Z

Temporal Continuity in Convolutional Deep Belief Networks

Note that the Z’s cancel. Furthermore, we can substi-
tute in the energy function; some factoring leaves us
with

=
exp(−Ehi(hi = 1, v0))

exp(−Ehi
(hi = 1, v0)) + exp(−Ehi

(hi = 0, v0))
(3)

Where Ehi
is hi’s contribution to the energy: all the

terms from the energy function that depend on hi.
Note that the contribution Ehi

(hi = 0, v0) = 0, since
every term in the sum is zero. Therefore, the final
term in the denominator becomes 1. We can divide
through by the numerator and get the standard sig-
moid function:

=
1

1 + exp(Ehi
(hi = 1, v0))

(4)

However, when we’re using temporal continuity, the
factoring in (3) doesn’t work, because the units aren’t
independent. We must take a different approach.

I use the word ’chain’ to refer to a set of hidden units
that are all connected in time. Thus, the chain Ci is
the set of all hidden units of the form hi,t for arbitrary
t. As the units in any chain are not independent, they
must be sampled together. We can compute the fol-
lowing formula for the probability of a chain being in
a particular configuration:

p(Ci = ci|v) =

∑
h,Ci=ci

exp(−E(h,v))
Z∑

h
exp(−E(h,v))

Z

Again the Z’s cancel, and we can factor out only those
terms that depend on the state of ci. What we are left
with is in the standard form of an exponential family:

p(ci|v) =
1
ZCi

exp(−ECi
(ci, v))

Where

ECi
(ci, vi) = −

∑NT

t=1

∑NW

r=1 hi,tWrvi+r−1

−
∑NT−1

t=1 hi,tthi,t+1

−
∑NT

t=1 bhi,t

This can be seen as a markov random field, where there
is a factor for each of the t nodes in ci, and a factor
for each pair hi,t, hi,t+1. Therefore, the graph is tree-
structured, and so the sum-product algorithm (also
known as belief propagation) can get us the marginals
over every node in Ci. It is convenient to introduce the

concept of direction when describing the sum-product
algorithm. Say that hi,0 is at the left end, and hi,NT

)
is at the right end. In my implementation of the
sum-product algorithm, we begin at the left end. We
compute the marginals based only on evidence coming
from the visible units and from units to the left; for
the leftmost unit this is nothing. Therefore, comput-
ing these pseudo-marginals reduces to computing the
marginals of a unit that is independent of all other
hidden units. The formula given in (4) may be used.

We proceed toward the right, each time computing the
marginals on each unit given the bottom-up evidence
and the evidence to its left. In practice, the evidence
from below and evidence from the unit to the left are
combined in a Bayesian way:

pm(hi,t = 1|pm(hi,t−1), v) =
pv(hi,t=1)[(1−pm(hi,t−1))+pm(hi,t−1)exp(Wt)]

pv(hi,t=1)[(1−pm(hi,t−1))+pm(hi,t−1)exp(Wt)]+pv(hi,t=0)

(5)

Where pv is the probability based only on the visible
units, given in (4), and pm are the marginal proba-
bilites previously computed for the unit to the left (the
‘messages’ of the sum-product algorithm) . Note that
the numerator is marginalizing over the probabilities
of the unit to the left; the edge weight Wt only con-
tributes to the probability when both hi,t and hi,t−1

are set to 1.

According to the theory of the sum-product algorithm,
the marginals at the right end of the chain are exact.
Intutively, this is because there is no longer any evi-
dence to the right that is being ignored. Thus, we can
sample from hi,NT

using these marginals. From here,
sampling proceeds from right to left; each time a sam-
ple is taken from a hidden unit, the unit to its left must
update its own marginals using a bayesian formula
very similar to equation (5), except that pm(hi,t−1)
is replaced with the sample from the unit to the right,
and pv(hi,t = 1) is replaced with the marginal proba-
bility computed on the right pass.

Of course, the sum-product algorithm can only be used
to compute marginals; its use as a sampling mecha-
nism was something I came up with. It is justified
because this algorithm is equivalent to running the
sum-product algorithm NT times, each time to get a
sample from the rightmost unit in the chain that has
not yet been sampled. Each time we do this, the new
sample on unit hi,t becomes a fixed input to the unit to
its left, hi,t−1. Thus, the next run of the sum-product
algorithm can compute the exact posterior over hi,t−1,
since it will treat the sample on hi,t in much the same
way it treats the values of the visible units.

Temporal Continuity in Convolutional Deep Belief Networks

3.6. Why is this an improvement over the
CDBN?

Unfortunately, the reason here is an intuitive one,
rather than a mathematical one. However, the rea-
soning is similar to the reason why the trace learn-
ing rule was an improvement over pure hebbian learn-
ing. The goal is to bias the network to favor bottom-
up representations that vary slowly through time. I
say ’bottom-up’ because the goal is not that time-
connections should greatly improve the descriminative
performance through their effect during the descrimi-
native process. The goal is that they should alter the
inter-layer weights that the DBN learns.

Consider the problem of learning complex cell re-
sponses (this is the simlest case; one might similarly
imagine units in higher layers learning rotation in-
variance). If we train on videos, the network will
most likely learn edge-detectors (for the same reason
the CDBN learns edge detectors). Then the time-
connections will become positive, because an edge at
orientation θ and position p at time t is a good predic-
tor of an identical edge at time t+ 1.

Say that one chain of hidden units is sensitive to ori-
entation θ at position p. If this chain has a positive
time-weight, then it will predict that any occurrence
of an edge (θ, p) is likely to be preceeded and followed,
temporally, by more edges (θ, p). However, this isn’t
the best model it could have of the world; in the true
distribution of images, edges like (θ, p) are good pre-
dictors of edges like (θ, q) where q is a position close to
p. The contrastive divergence learning rule will pick
up on this: it will see that units in this chain are more
likely to be active whenever lines like (θ, q) are shown
in the chain’s receptive field. Therefore, the learning
rule will tend to modify the weights so that lines like
(θ, q) will activate this chain. Over time, it is expected
that this invariance will build up until the units behave
like complex cells.

4. Graphics card implementation

The original implementation of this network, when
training on images from the Kyoto dataset (Doi et al.,
2003), required approximately one week of training
time when running on an Intel Core 2 Duo proces-
sor clocked at 2GHz. This made the sort of itera-
tive experimentation required for optimizing the net-
work’s hyperparameters prohibitively time-consuming.
Therefore, I re-implemented the entire learning proce-
dure to run on a graphics card, using the free Mat-
lab library GPUmat (GPyou group, 2010). This re-
implementation required approximately 40 hours and

resulted in a speedup of approximately 5.5x, all with
only minor reductions in code legibility.

5. Results

The goal of this work was twofold. The first was to
improve the performance of the CDBN architecture
on standard vision problems. The second goal was
to show that the temporal modification of the CDBN
increased the invariance the invariance of its represen-
tations. Unfortunately, however, it was not possible to
fully explore the performance of the TCDBN relative
to the CDBN, because I was never able to make the
CDBN function as it was supposed to.

The results of training are shown in figure 3. Dif-
ferences are clearly visible between the second-layer
features that two networks learned. Most of the fea-
tures that the original CDBN learned on each of its
second layer groups are interpretable as remarkably
clean combinations of the features from two first-layer
groups, most often forming corner-detectors or bound-
ary detectors. Our features, however, are either simple
gabor filters, or much more complicated features that
are difficult to interpret. In general, I found that in-
creasing the weight decay, increasing the learning rate,
and increasing the λ controlling sparsity tended to lead
to simpler, cleaner features on the second layer; chang-
ing the parameters in the opposite diretion tended to
result in features that are messier and in the worst
cases degenerate. However, the values of the parame-
ters also interacted heavily, making the results of simu-
lations quite difficult to predict even for small changes
in parameter values. Furthermore, I found that the
results were quite sensitive to the initialization of the
network. In general, it was very difficult to reproduce
groups that appear to detect corners, although a small
number of the groups shown in figure 3 do appear ca-
pable of detecting them.

At a first glance, the weights learned in the original
CDBN work seem quite sensible, and appear to mirror
V1 and V2 quite well. However, there are a number
of features of the weights learned by Lee et al. (2009)
that are somewhat surprising, and may point to dif-
ferences between their implementation and ours. First
of all, on the first layer, two of Lee et al. (2009)’s fil-
ters detect center-surround features rather than edges.
In general, I had a difficult time replicating this; even
in the final implementation, I could only learn center-
surround units with a small probability, and was never
able to produce a first layer that contained two of
them. It is not entirely clear why the network should
learn to detect such a feature; it is unlikely that such a
feature would be sparse in natural images, nor does it

Temporal Continuity in Convolutional Deep Belief Networks

Figure 2. Visualizations of the weight vectors learned in a CDBN model, following the visualizations from (Lee et al.,
2009). Left shows the weights learned in (Lee et al., 2009), right shows ours. Top shows the weights for the first layer
of hidden units (if we think of the first hidden layer as 24 groups of feature detectors, then we may think of each group
as detecting the feature depicted in one of the squares). The bottom shows a visualization of the features detected on
the second hidden layer. The visualizations are constructed as a weighted linear combination of the first layer bases. The
differences between the two sets of weights are discussed in the main text.

correspond particularly well with features encountered
in the natural world. Moving to the second layer, we
notice that again there are exactly two groups that
detect large patches of uniform color. I was unable
to replicate such feature detectors on my second layer,
nor is it clear why they should appear on the second
layer: the whitening step of the preprocessing under-
gone by each image should have removed almost all
regions of uniform color from the image, Finally, there
are a number of second-layer groups which appear to
detect corners, but yet the two edges-detectors that
make up the corner are not connected (see, for ex-
ample, the fourth and eighth from the left in the top
row). If such a seond-layer group g is actually corner-
detector, and it detects corners by using edge features
f and h that do not overlap spatially, then its activity
should correlate well with those first-layer features in
between f and h that have similar orientations to f
and h, thus completing an image of the corner. Thus,
we would expect g to fill in the gap between f and h
by becoming sensitive to those features, as such a sen-
sitivity would increase the probability of generating a
correct image of a corner. Indeed, in my own sim-

ulations, each of the second layer units that learned
non-degenerate weights became sensitive to a set of
spatially overlapping first-layer features.

Much of my time this semester was spent attempt-
ing to replicate the results of (Lee et al., 2009), thus
leaving relatively little time for actual testing. Unfor-
tunately, I was never able to replicate these results, so
I can only assume that this network is not equivalent
to the one tested in the original CDBN paper, and so
the applicability of the following results are limited.

5.1. Testing invariance with KL-divergence on
artificial videos

I first attempted to show that temporal connections
in a TCDBN actually encouraged invariance. In this
experiment, I trained a TCDBN on artificial videos,
and then tested whether the KL-divergences between
the representations of nearby frames in the same video
are reduced relative to the KL-divergences between
frames in different videos. Specifically, I constructed
two 12-frame videos out of 4 images from the Kyoto
dataset. Letting the images be labeled A,B,C, and D,

Temporal Continuity in Convolutional Deep Belief Networks

Table 1. Matrix of pairwise KL-divergences between the
posterior distributions over the hidden units given the
different images. The entry with row labeled image i
and column labeled image j shows the KL-divergence
KL(d(i)||d(j)), where d(x) is the posterior distribution
over the second hidden layer of an ordinary CDBN given
that the image x is input. This CDBN was trained us-
ing only the four testing images. These distributions were
approximated using Mean Field. All values are ∗106.

9 19 45 46

9 0 0.6342 0.6305 1.0613
19 1.2157 0 0.7008 1.2790
45 0.2293 0.3074 0 0.8203
46 3.5073 3.2780 3.4508 0

then the two videos are {AABBAABBAABB} and
{CCDDCCDDCCDD}. Separately, I trained a reg-
ular CDBN on the original four images. In the end, I
compared the KL-divergences between all representa-
tions, to show whether the divergences between A and
B and between C and D are lower in the TCDBN case
than in the regular CDBN case. Showing this would
lead to the conclusion that the temporal connections
do indeed encourage invariant representations.

Tables 1 and 2 show the results of this invariance test.
Table 1 shows the divergences between the representa-
tions of the different images in a regular CDBN; Table
2 shows the divergences in a TCDBN. To ease com-
parison between these two tables, Table 3 shows the
ratio of each entry in 1 over the corresponding entry
in 2.

Due to the nature of the KL-divergence measure, the
rows in these tables are less variable in the columns;
therefore, it is easier to see which distributions are
closest to a given distribution by looking at the row
for that distribution. In Table 3, we see that the rep-
resentation of image 19 became more similar to the
representations of all other images, but it gained by
far the most similarity toward image 9, the image with
which it shared a video. We see a similar story for im-
age 45: its representation became less similar to the
representations of all the other images, but the de-
crease in similarity was seen by far the least for image
46. For images 46 and 9, the results are less clear; the
changes in the learned representations do not seem to
be strongly affected by the image that 9 or 46 shared
their videos with.

Unfortunately, it is also apparent that KL-divergence
is a rather poor measure of the similarity between the

Table 2. Matrix of pairwise KL-divergences between the
posterior distributions over the hidden units given the dif-
ferent images, as above. In this case, posterior distribu-
tions were computed in a Temporal CDBN. The network
was trained on two videos as described in the Evaluation
secion. One video contaned images 9 and 19, and the other
contained images 45 and 46. To allow a contribution from
the temporal weights when computing the posterior distri-
bution given an image, the input image was replicated 5
times to create a 5-frame video. The posterior distribution
over the entire 5-frame CDBN was computed, but only the
probabilities over the third frame were used to compute
the KL-divergences. All values are ∗106.

9 19 45 46

9 0 .8227 .8341 1,2427
19 .6474 0 .4586 .9007
45 .7529 .5999 0 1.0872
46 1.6245 1.3109 1.4977 0

Table 3. To ease qualitative comparison between the above
two tables, the element-wise quotients of the tables
are shown below. We hope to see large numbers in
(9, 19), (19, 9), (45, 46) and (46, 45), and small numbers
elsewhere.

9 19 45 46

9 NaN .7709 .7559 .8540
19 1.8778 NaN 1.5281 1.420
45 .3045 .5124 NaN .7545
46 2.1590 2.5006 2.3040 NaN

representations of two different images. For example,
the last row of table 1 makes it appear that the repre-
sentation of image 46 is quite different from the other
representations, but looking at the other rows this is
much less clear. Overall, the KL-divergences are diffi-
cult to interpret. Therefore, the results of this exper-
iment provide only weak evidence that the temporal
weights can improve the representations.

5.2. Testing invariances with a standard
invariance measure

Recently, a standard procedure has been proposed for
measuring invariances in deep architectures (Goodfel-
low et al., 2009). In this procedure, we present video
frames sequentially to the network and record the in-
ternal representations. We compute the measure by
comparing the fraction of the time that a unit is active

Temporal Continuity in Convolutional Deep Belief Networks

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

Training Epoch

T
em

po
ra

l W
ei

gh
t M

ag
ni

tu
de

Figure 3. A plot of each of the 100 temporal weights as they learned over the course of 225 epochs. Note that all of the
weights eventually learned positive values, indicating that the TCDBN learned features that were invariant over time,
and that the network learned to predict the persistence of these features via its temporal weights.

given that it was active on a temporally close frame
of the video (e.g. at any time within 5 frames of the
current frame), versus the baseline fraction of the time
that a unit is active. Note that this measure is only a
relative measure: the measure is given with respect to
a particular set of videos, and the procedure does not
specify which set of videos to use. Furthermore, the
procedure does not specify how to train the networks.
Therefore, our results cannot be directly compared to
those of Goodfellow et al. (2009). Instead, I performed
the invariance measure procedure on both a CDBN
and a TCDBN in order to compare their invariances.

The training and testing data was taken from the same
library of videos used in (Goodfellow et al., 2009). Be-
cause I was most interested in the performance on nat-
ural image data and complicated transformations, I
specifically used the 26 videos in which objects were
rotated in 3D, in which the camera was translated,
and in which other complex 3D motions were present,
In this way, I ensured that the full complexity of the
visual world was represented.

I used the first 10 frames of each video as training
data. In the CDBN case, each frame was presented
separately, whereas in the TCDBN case, each presen-
tation consisted of 10 frames forming a coherent video
sequence. The remainder of each video was used as
testing data for the invariance measure.

To check whether the learning was proceeding as ex-
pected, I plotted the temporal weights as a function of
the training epoch. Most importantly, we see that the
temporal weights all learned positive values, which is
consistent with the idea that the network had learned
features that were somewhat invariant, and that it had
begun using its temporal weights to predict a unit’s ac-
tivity on a given frame from the unit’s activity on its
temporally neighboring frames. Note that I fixed the
timeweights at 0 until epoch 50; I found that if the
timeweights were free before this point, they tended
to behave as a surrogate for the hidden unit bias, and
therefore became strongly negative early on in the sim-
ulation. This effect may still be seen even at epoch 50.

After testing, I found that the baseline invariance mea-
sure for the CDBN was 57.6548, while the invari-
ance score for the TCDBN was 70.8295. Therefore,
it is likely that the network has indeed learned a rep-
resentation that is considerably more invariant than
the original network when representing complex 3d
transtormations.

6. Future work

It is clear that much remains to be done on this frame-
work. The foremost concern is how to build CDBNs
that can reliably learn V2-like detectors. Without such
a baseline, it will be difficult to evaluate the effects

Temporal Continuity in Convolutional Deep Belief Networks

of alterations and extensions of the framework. In
general, the DBN learning procedure is poorly under-
stood, making it quite difficult to debug. Therefore,
perhaps a stepping stone toward replicating the CDBN
results would be to further investigate the learning
procedure, either from a theoretical prospective or
through simpler examples.

Once the CDBN is performing well, however, there are
many questions that may be asked about the effect of
temporal continuity information. It is natural to ask
whether temporal continuity can improve performance
on standard datasets, such as the Caltech101 database
that the original CDBN was tested on. In theory, such
work could have been attempted even without a prop-
erly functioning CDBN; however, time constraints pre-
vented me from doing so.

We may also ask about links to vision in neural sys-
tems. At present, little is known about the mecha-
nisms which allow neurons in V1 to learn simple and
complex cell responses, and even less is known about
the learning mechanisms in higher visual areas. How-
ever, if it can be shown that TCDBN response patterns
correspond well with physiological data, then the prin-
ciples behind DBN learning, such as Bayesian infer-
ence and maximum likelihood, may become a unifying
framework for neural learning in the visual cortex.

References

Bergstra, J., & Bengio, Y. (2009). Slow, decorrelated
features for pretraining complex cell-like networks.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams and A. Culotta (Eds.), Advances in neural
information processing systems 22, 99–107.

Doi, E., Inui, T., Lee, T.-W., Wachtler, T., & Se-
jnowski, T. J. (2003). Spatiochromatic receptive
field properties derived from information-theoretic
analyses of cone mosaic responses to natural scenes.
Neural Computation, 15, 397–417.

Földiák, P. (1989). Learning invariance from trans-
formation sequences. Neural Computation, 40, 185–
234.

Fukushima, K. (1980). Neocognitron: A self-
organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position.
Biological Cybernetic, 36, 193–202.

Goodfellow, I., Le, Q., Saxe, A., & Ng, A. (2009). Mea-
suring invariances in deep networks. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams and
A. Culotta (Eds.), Advances in neural information
processing systems 22, 646–654.

GPyou group, T. (2010). Gpumat: Gpu toolbox for
matlab. http://gp-you.org/.

Hinton, G. E. (1989). Connectionist learning proce-
dures. Artificial Intelligence, 14, 715–770.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Hurri, J., & Hyvärinen, A. (2003). Simple-cell-like re-
ceptive fields maximize temporal coherence in nat-
ural video. Neural Computation, 15, 663–691.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86,
2278–2324.

LeCun, Y., Huang, F.-J., & Bottou, L. (2004). Learn-
ing methods for generic object recognition with
invariance to pose and lighting. Proceedings of
CVPR’04. IEEE Press.

LeCun, Y., Muller, U., Ben, J., Cosatto, E., & Flepp,
B. (2005). Off-road obstacle avoidance through end-
to-end learning. Advances in Neural Information
Processing Systems (NIPS 2005). MIT Press.

Lee, H., Ekanadham, C., & Ng, A. (2008). Sparse
deep belief net model for visual area v2. In J. Platt,
D. Koller, Y. Singer and S. Roweis (Eds.), Advances
in neural information processing systems 20, 873–
880. Cambridge, MA: MIT Press.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. (2009).
Convolutional deep belief networks for scalable un-
supervised learning of hierarchical representations.
Proceedings of the 26th International Conference on
Machine Learning (pp. 609–616). Montreal: Omni-
press.

Lee, H., Pham, P., Largman, Y., & Ng, A. (2009b).
Unsupervised feature learning for audio classifica-
tion using convolutional deep belief networks. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams and A. Culotta (Eds.), Advances in neural
information processing systems 22, 1096–1104.

Lee, T. S., & Mumford, D. (2003). Hierarchical
bayesian inference in the visual cortex. Journal of
the Optical Society of America, 20, 1434–1448.

Li, N., & DiCarlo, J. J. (2008). Unsupervised natural
experience rapidly alters invariant object represen-
tation in visual cortex. Science, 12, 1502–1507.

Temporal Continuity in Convolutional Deep Belief Networks

Mobahi, H., Collobert, R., & Weston, J. (2009). Deep
learning from temporal coherence in video. Proceed-
ings of the 26th International Conference on Ma-
chine Learning (pp. 737–744). Montreal: Omni-
press.

Oliva, A., & Torralba, A. (2007). The role of context
in object recognition. Trends in Cognitive Scheince,
11, 520–527.

Olshausen, B. A., & Field, D. J. (1996). Emergence
of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381, 607–
609.

Ranzato, M., Huang, F., Boureau, Y., & LeCun,
Y. (2007). Unsupervised learning of invariant fea-
ture hierarchies with applications to object recogni-
tion. Proc. Computer Vision and Pattern Recogni-
tion Conference (CVPR’07). IEEE Press.

Stepleton, T., Ghahramani, Z., Gordon, G., & Lee,
T. S. (2009). The block diagonal infinite hidden
markov model. JMLR (pp. 552–559).

Stringer, S. M., & Rolls, E. T. (2002). Invariant object
recognition in the visual system with novel views of
3d objects. Neural Computation, 14, 2585–2596.

Sudderth, E. B., Torralba, A. B., Freeman, W. T., &
Willsky, A. S. (2005). Learning hierarchical models
of scenes, objects, and parts. ICCV (pp. 1331–1338).

Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2007).
Modeling human motion using binary latent vari-
ables. In B. Schölkopf, J. Platt and T. Hoffman
(Eds.), Advances in neural information processing
systems 19, 1345–1352. Cambridge, MA: MIT Press.

Wallis, G., & Bülthoff, H. H. (2001). Effects of tempo-
ral association on recognition memory. Proceedings
of the National Academy of Sciences, 98, 4800–4804.

Wallis, G., & Rolls, E. T. (1997). Invariant face and
object recognition in the visual system. Progress in
Neurobiology, 51, 167–194.

Wiskott, L., & Sejnowski, T. J. (2002). Slow feature
analysis:unsupervised learning of invariances. Neu-
ral Computation, 14, 715–770.

Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. L.
(2008). Unsupervised structure learning: Hierar-
chical recursive composition, suspicious coincidence
and competitive exclusion. ECCV (2) (pp. 759–773).

