Unfolding Biichi Automata

Jonathan Kilgallin, Klaus Sutner
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

In this paper, we describe an algorithm for complementing Biichi
automata. The algorithm is an optimization of Kupferman’s level-
ranking algorithm. The idea is to modify the definition of an au-
tomaton to allow it to read multiple characters at once. This can
substantially reduce the number of states, in exchange for increasing
the number of transitions. In particular, we look at using this algo-
rithm to complement elementary cellular automata modeled by a de
Bruijn graph, allowing faster model-checking for a class of first-order
formulas (e.g. one universal quantifier), and provides some speed-up
in the general case.

1 Introduction

Definitions: This paper assumes background working knowledge of basic
automata theory, namely, NFA’s and regular languages.

An w-automaton is an automatic structure recognizing languages over
one-way infinite words. w-automata are analogous to NFA’s, except that
we have to modify the acceptance condition to account for the fact that we
cannot say ”The automaton accepts a word if computation on that word
ends in a final state”, as the computation never "ends”. There are multiple
equivalent conditions. The most commonly used condition is that an au-
tomaton accepts a word if computation on that word enters the set of final
states infinitely often. An omega-automaton using this condition is called
a Biichi automaton. A language recognized by some Biichi automaton is
called an omega-regular language.

A zeta-automaton is the extension of an omega-automaton to bi-infinite
words. We say that a (-Biichi automaton accepts a word if computation in
the forward direction enters the set of final states infinitely often, and in the
reverse direction enters the set of initial states infinitely often. [?].



A cellular automaton is a structure that operates on a bi-infinite array,
at each time step updating the contents of each cell in the array using a
local rule(for example, if the contents are zeroes and ones, we might say ”at
time ¢ + 1, put in cell 7 the xor of cells i — 1, i, and i+ 1 from time ¢). If, in
a single time step, an array configuration x evolves to a configuration y, we
say that "z steps to y”. An elementary cellular automaton (ECA) is one in
which the local rule is always a function of the contents of the 3 local cells.

A de Beuijn graph of rank k is a directed graph with vertex set {0, 1}*,
and edge set {(z,y)| the last k—1 bits of = are the first k—1 bits of y}. This
produces a graph in which every vertex has both out-degree and in-degree
2. The de Bruijn graphs up to rank 5 are drawn below.

Goal: Elementary cellular automata, while quite simple, are capable of
universal computation Cite. We are interested in model-checking ECA’s,
considering the ”steps to” relation —. That is, given an ECA and a first-
order predicate such as ”JyVz(x — y)”, we wish to determine if the predicate
is true of the ECA. As is shown in [?], this first order theory is decidable.
The decision algorithm uses (-Biichi automata, with the automata for the
basic predicate x — y built on a de Bruijn graph. Deciding an existen-
tial quantifier is simple, but in order to decide a universal quantifier, we
must take the complement of an automaton (briefly, if we have an automa-
ton for a predicate P(x), to decide "VzP(x)”, we take the complement,
decide an existential quantifier, and complement again, using the equiva-
lence "VaxP(x) = 3Jx P(z)”). Unfortunately, the complement of a (-Biichi
automaton with n states has a worst-case lower bound of 20097 gtates
cite.

Current algorithms work by first transforming the (-Biichi automaton
into a one-way infinite Biichi automaton, and using an algorithm for com-
plementing it. The most common such algorithm is Safra’s algorithm, cite,
but we will focus on a different algorithm, due to Orna Kupferman cite, and
show that there is an optimization to this algorithm that greatly helps with
the blow-up involved in the decision procedure.

Kupferman’s Level-Ranking Algorithm: Given a Biichi automaton A,
Kupferman creates an infinite directed acyclic graph (DAG) exhibiting the
possible infinite paths in the automaton. This is directed graph D = (V, E)
using V' = @QN, with an edge from (¢1,n) to (¢2,n+1) iff there is a transition
from ¢l to ¢2. He then defines a C-ranking function f : V — [2n] satisfying
that V(q,1) € V, if f(q,l) is odd, then ¢ is not a final state, and that for
every transition gl — ¢2, f(¢2,n + 1) < f(ql,n). He defines an odd C-
ranking as a C-ranking in which every path eventually remains trapped in
an odd rank. He proves a lemma that every path of G has finitely many



final vertices iff there is an odd C-ranking for G. He then uses the ranking
functions to create another automaton to identify those paths in the graph
that, after a finite number of steps, can never again reach an accepting state
of the original. This algorithm produces a machine on the order of @n
states, where n is the number of states in the original. expand and clean

2 Harmonic Automata

Motivation: Our improvement to Kupferman’s algorithm works by modify-
ing the definition of a Biichi automaton, allowing us to reduce the number
of states. The original idea was to allow the time-dependent graph to tran-
sition more than one time-step at a time. This corresponds to allowing the
original automaton to read more than one character at a time. This, in turn,
suggested the idea that we select the points at which we read more than one
character so that we always bypass some set of states (i.e. we pick a state
q, and, whenever reading a character would put us into state ¢, we instead
read another character in the same time step, so that we do not ever enter
state q), which we can then delete. This leads to the definition of a structure
we call a Harmonic Bichi Automaton - as reading multiple characters at a
time is analogous to reading multiple notes at once in a musical score (in
"harmony” ), rather than a single note at a time (the "melody”).
Definition: Formally, a Harmonic Automaton is a 5-tuple XXXX. The
interpretation is identical to that of a Biichi automaton, with the exception
that the transition function can be labeled by an arbitrarily long string,
rather than a single character. Given an input word w, a state ¢, and an in-
dex n, the automaton may non-deterministically transition to any state from
q labeled by a sequence w(n)w(n+1). This can in principle be combined with
any acceptance condition, but for the remainder of the paper, we will use the
following adaptation of Biichi’s acceptance condition: a harmonic automata
H accepts a word w if Vn3n' > n,q € F(H can be in state ¢ at time n').
Recognized Languages: Theorem 1: The Biichi Harmonic Automata
recognize the class of omega-regular languages. Proof: The correspondence
between regular Biichi automata and harmonic Biichi automata is very sim-
ple. A Biichi automaton is already a special case of a Harmonic automaton,
and the transition function can be formally modified by defining A(q,n,q)
iff (¢, w(n),q’), where § is the transition function for the Biichi automaton.
A harmonic automaton can be made into a Biichi automaton by subdividing
the transitions with “phantom” nodes, so that the transitions only read one
character at a time, and visit intermediate states along the path. The inser-



tion of these phantom nodes will henceforth be referred to as “naturalizing”
the harmonic automaton. The simplicity and conciseness of this correspon-
dence allows several of the properties of Biichi automata to be transferred
directly to harmonic automata.

Unfolding: Given a Biichi automaton B, we can create a smaller, but
equivalent harmonic automaton H, as long as there exists a state which
satisfies the following two properties:

e It does not have a self-loop

e It is not a final node with non-final children.

Given a node that satisfies these two conditions, it can be removed,
and the incoming transitions can be crossed with the outgoing transitions,
to patch the transition relation. This creates a quadratic blow-up in the
number of transitions, but reduces the number of states by one, but is clearly
still equivalent. Iteratively removing nodes, then, can create substantially
smaller machines, [examples].

Let A be a Biichi automaton. The unfolding unf(A) of A is the digraph
on vertex set @ x N with edges (p,t) — (¢, t+1) whenever there is a transition
p = g in A for some symbol s.

Likewise we can define the unfolding of a (-Biichi automaton on the
vertex set ) X Z.

Minimizing: Theorem 2: Finding the minimal Harmonic Biichi automa-
ton equivalent to a given Biichi automaton is NP-complete Proof: Reduction
(like, it’s the same problem) from feedback vertex-set, which is NP-complete
[?] Upper and lower bounds for the size of a minimum harmonic automaton
can be obtained from disjoint cycles and feedback vertex sets. Any set of
k disjoint cycles requires at least k states in the reduced automaton, while
any feedback vertex set of size k’ is an upper bound on the required number
of states.

Complementing: Theorem 3: The algorithm Kupferman describes still
suffices for the reduced Harmonic Automata. Proof: let M be a Biichi
automaton, H be its reduction, and M’ be the naturalization of H. Then
there is an odd level-ranking for M’ iff there is one for M. Furthermore, there
is an odd level-ranking for M’, then there is one in which all of the phantom
nodes have at every level the rank of the first non-phantom node succeeding
it. Then, assigning to each node in H the rank of the corresponding node in
M’ gives an odd level-ranking for H. Finally, by condition 2 in the algorithm
above, every path in M is a-free iff every path in H is a-free. Then, the
same argument in Kupferman’s paper works to give a complement for H.



The idea of a harmonic automaton is equivalent to allowing transitions
of more than one level in the time-dependent graph Kupferman describes.
Case analysis shows that this does not change the correctness. Given a
sequence in the graph with A — B — C, any time that B is removed in
the algorithm above, it does not affect the ranking for C. If A and C have
opposite parity, that is, C' is a-free but A is not, then there is an odd ranking
function in which C’s rank is A’s rank minus 1. Then, depending on whether
B was a-free or not, it will share either the rank of A or the rank of C. If
A is a-free, then B and C must be also, so they may all be assigned the
same rank. Similarly, if none of them are a-free, then they may also all be
assigned the same rank.

Limitations: rewrite Unfortunately, the union and intersection construc-
tions for harmonic automata are not immediately obvious; the standard
product machine construction does not work. This means that harmonic
automata lend themselves more toward complementation problems. For
union and intersection, the simple solution is to transform back to a Biichi
automaton, build the intersection construction, and transform it back to a
harmonic automaton.

3 Application to Cellular Automata

In the special case where the Biichi automaton is a de Bruijn graph model-
ing a cellular automaton, this algorithm results in much smaller automata
than the originals. Table 1 shows the sizes of the reduced binary de Bruijn
automata up to rank 5. These values were computed by hand, and the cor-
responding harmonic automata for the first two entries are given below. The
vertices in the final versions of the automata below form a minimum feed-
back vertex set in their respective original graphs. This gives a proof that
these are the smallest equivalent harmonic automata. Since any reduction
in the number of states is an improvement, though, and minimal automata
are not necessary, one can greedily remove states for larger de Bruijn au-
tomata. We have written a program which removes nodes in numeric order.
This finds the minimal automata for rank 2, 3, and 4; reduces the rank-5
automata to 9 states,and reduces the number of states by at least a factor
of four for every rank between 6 and 14. Values for the size of the minimum
feedback vertexset in de Bruijn graphs can be found in [?]. discuss removal
order

In model-checking or other times when an ECA is going to be used in a
product construction, then, this reduces the size of the product automaton.



size reduced

4 3
8 4
16 6
32 8

Table 1: Sizes of reduced de Bruijn automata.

Below are examples of minimizing the first few de Bruijn graphs. Examples
We get similar performance for automata other than de Bruijn Nilpo-
tency, Shiftcycle
In addition, we have implemented Make this statement true the adapted
version of Kupferman’s algorithm for Harmonic Biichi Automata, resulting
in the following table:

4 Conclusion and Future Work



