
Using Machine Learning Techniques to Uncover What Makes

Understanding Spoken Chinese Difficult for Non-native Speakers

John Kowalski

Advisor: Geoff Gordon

Abstract
 The Pinyin Tutor has been used for the past few years in over thirty classrooms at

universities around the world. A large amount of data have been collected from this

program on the types of errors students make when trying to spell the pinyin of the

Chinese phrase spoken to them. We plan to use this data to help answer the question of

what is hard about understanding Chinese. Is it a particular set of consonants, vowels, or

tones? Or perhaps do certain difficulties arise in the context in which these sounds are

spoken? Since each pinyin phrase can be broken down into features (consonants, vowel

sounds, and tones), we can apply machine learning techniques to uncover the most

confounding aspects for beginning students of Chinese. We can extend the methods we

developed here to create an ML engine that learns on the fly for each student what they

find difficult. The items to be presented to the learner can be chosen from a pool based on

the predicted probability of being correctly answered by the student. This will allow the

Chinese learner to focus on what he or she is having most difficulty and hopefully more

quickly understand spoken Chinese than without such focused "intelligent" instruction.

1. Introduction
 One of the hurdles for students in introductory Chinese courses is understanding

what Chinese word or phrase has been spoken to them. On top of learning new

vocabulary, translation, and grammar skills, simply answering, "What did you hear?" is

often difficult for beginning students. Improving this rudimentary skill for each student

in the classroom can be tedious and in general a poor use of class time. Luckily,

computer tutors are perfectly suited for such instruction. At the Pittsburgh Science of

Learning Center (PSLC), the Pinyin Tutor was developed under the direction of Dr. Brian

MacWhinney for this purpose (figure 1). Pinyin is a system of writing Standard

Mandarin using Roman characters and is commonly taught to first-semester students of

Chinese in the first year of instruction. The Pinyin Tutor's instructional model is quite

simple: a Chinese word or phrase is "spoken" through the students' personal computer

speaker and the task is to enter the pinyin of the sound they heard. If correct, the tutor

congratulates the student and presents the next item in the lesson. If incorrect, the tutor

gives feedback on what part of the phrase is incorrect and gives the student an

opportunity to try again. The items the student answered incorrectly on the first try are

put back into the pool to be presented again; items answered correctly on the first try are

eliminated from the pool. The student assignment is to continue until all items in the

lesson have been answered correctly on the first try (without feedback from the tutor).

2. Pinyin Basics

 Each syllable in Pinyin can be thought of as being comprised of three

components: an "initial" consonant sound (b, n, zh, …), a "final" vowel sound (ai, ing,

uang, …), and a tone marking (1,2,3,4,5) indicating the rising and/or falling pitch of the

syllable. In total there are twenty-three initials, thirty-six finals, and five tones (figure 2).

3. Identifying What Causes Students the Most Difficulty
 The current version of the Pinyin Tutor keeps track of what Chinese words or

phrases are answered incorrectly by students and re-drills the word or phrase until the

student can identify it without help from the tutor. Beyond knowing what words or

phrases students are having trouble with, the obvious next question to ask is what

component(s) of these items are causing the most difficulty. Are there some initials,

finals, or tones particularly problematic? And then beyond asking this question for

individual components, we must consider difficulties that may arise in the context in

which these sounds are spoken. For instance, is final “ao” easy to hear in “hao3”, but not

in “bao4”?

 To answer these questions, we can train a statistical model to measure student

performance. If we can obtain a reasonably low generalization error with this model, we

can use the parameters learned to discover what the easy and difficult components are.

3.1. Modeling a Pinyin Syllable

 As a first try, we can model a syllable by constructing a linear prediction with 64

covariates (one for each 23 initials, 36 finals, 5 tones), and output whether this item was

answered correctly. So we have:

ŷ = β0 + β1*x1+ β2*x2 + ... + β64*x64

Where:

y=1 (correct), y=0 (incorrect).

xn=1 if feature n is present, 0 otherwise.

βn=coefficient for feature n to be learned.

 So once this model is trained and we have learned a value for each β, we can use

the model to help us predict whether a syllable will be answered correctly by setting three

covariates (xn’s) to 1 corresponding to the initial, final, and tone present in that syllable,

and the rest of the 61 covariates to 0. The output ŷ will then give us a clue as to whether

this syllable will likely be answered correctly. For instance, for ŷ in the range [0,1], we

can consider values above .5 likely correct, and values below .5 likely incorrect.

We can supplement this single-syllable model with interaction terms, adding a

term for each interaction of initial-final, initial-tone, and final-tone. This will enable us

to answer for instance, whether some features are typically easy by themselves, but when

combined are difficult. We can also add terms to indicate the number of times a student

was exposed to these features and contexts, enabling us to potentially discover some

feature to be initially difficult, but fast to learn once presented.

Another way to define a model of a syllable is by using the logistic “squashing”

function and performing logistic regression analysis to train it. When using this

technique, instead of fitting directly to a linear equation, we fit our data to a logistic

curve:

ŷ = f(β0 + β1*x1+ β2*x2 + ... + β64*x64)

Where:

y=1 (correct), y=0 (incorrect).

xn=1 if feature n is present, 0 otherwise.

βn=coefficient for feature n to be learned.

f() = logistic function

The logistic function is defined:

f(z) = e
z
 / (e

z
 + 1) , where:

z = β0 + β1*x1+ β2*x2 + ... + β64*x64

The logistic function f() will take any value from negative infinity to positive

infinity and convert it to values between values of 0 and 1. Logistic analysis is a natural

choice for fitting a model to our categorical data where correct=1 and incorrect=0.

3.2. Training the Models

Having constructed representations of student ability at identifying Chinese

syllables, we now want to train these models and arrive at the coefficients to best predict

student correctness. The method we will first use is the Least-Angle Regression (LARS),

modified to simulate the lasso (least absolute shrinkage and selection operator). Lars and

the lasso are regression algorithms especially suited for high-dimensional data (Efron, et

al, 2004).

Using data we collected from the Pinyin Tutor in Fall 2008, we have

approximately 250,000 training examples (tuples of Chinese syllable and binary indicator

of whether student correctly identified it). The lasso takes this input and fits our linear

model described above using the criterion:

Minimize(Σ(y - ŷ)2
), under constraint that:

Σj (| βj |) <= s
Where:

- y is the actual indicator of correctness from the training data (0=incorrect,

1=correct)

- ŷ is the running predicted output of our model computed by the lasso. We assume

if ŷ > .5, then predict correct, ŷ <= .5, then predict incorrect

- s is a bound that can be used as a tuning parameter.

What makes the lasso special is the “s” parameter. If it is sufficiently large, the lasso

is basically the ordinary multiple linear least squares regression of y on the xn covariates.

But for smaller positive values, lasso computes a “shrunken” version of the usual least

squares estimate. This shrunken version will often lead to some of the coefficients (β’s)

being zero, so choosing a value for s is like choosing the number of predictors in the

model (Tibshirani, 1996). For a graph of LARS-Lasso coefficient learning progress for

our 64-covariate pinyin model, see (figure 3). To see how well the model predicts as we

increase the value of the s parameter, see the graph of the K-fold cross-validated mean

squared prediction error as the model is learned by LARS-Lasso (figure 4).

Just as we have used LARS-Lasso to efficiently compute “shrunken” least squares

estimates, we use L1-regularized logistic regression for its feature selection properties

(Koh, 2007). This will give us the flexibility similar to the “s” parameter in lasso. We

use the method developed by Koh, et al. for its ability to scale well to large sparse

problems (like for our 2374 covariate model for all interaction terms of the basic 64

skills).

Formally, L1-regularized logistic regression learns a weight (coefficient) vector w
T

and intercept v under the constraint that we:

Minimize (1/m)
i=1

m

∑ f(w
T
ai + vbi) + λ||w||1

Where:

- m is the number of training examples

- bi is the binary output of training example i

- w
T

is the weight (coefficient) vector

- ai is the vector of covariates for training example i

- v is the intercept

- ||w||1 denotes the L1-norm (sum of absolute values of all coefficients)

- λ > 0 is the regularization parameter (conceptually similar to the “s” parameter in

Lars-Lasso)

- f() = logistic loss function, defined as f(z) = log(1+e
-z
)

The results we’ve obtained running L1-logistic regression on the basic syllable model

are similar to what we found with Lars-Lasso. We will keep this analysis technique and

the efficient method to solve it in mind as we grow to more expressive models that are

more computationally intensive to train.

3.3. Interpreting the Trained Models

Besides allowing us to predict whether a student will correctly answer a syllable,

perhaps we can glean from these models some insight as to what features are causing the

most difficulty. Since larger coefficients of each skill covariate will push the predicted

output ŷ closer to 1 (correct), and smaller coefficients will push ŷ closer to 0 (incorrect),

we can interpret these numbers as ranking skills with larger coefficients as easier and

those with lower coefficients as more difficult (figure 5).

While this interpretation may be true within the mathematical scope of this model,

ranking skills as such isn’t as accurate a representation of reality as we can get. For one,

tones fundamentally influence the way final vowel sounds are pronounced. The pinyin

final “ia” is not pronounceable unless we know the tone marking. So to say some final

ranks as more difficult than a tone doesn’t make much sense. However, as we construct

larger models and include interaction terms for each final-tone combination (and other

terms as guided by language experts), we will move ever closer to a model representing

the true nature of this task.

4. Making the Pinyin Tutor More Intelligent
 While the practice the Pinyin Tutor gives students is valuable (Zhang, 2008), it

may not be the most efficient way for students to learn since remediation is based on the

whole item, not on the parts of the item they have shown to have difficulty. For example,

if the tutor presents the two-syllable item "ni3hao3", but the student incorrectly types

"ni3ho4", the tutor will put this item back into the pool for a future re-drilling. But the

student did not demonstrate difficulty with initials "n" or "h", final "i", or the tone in the

first syllable. The student did, however, demonstrate difficulty with the final "ao".

Specifically, the student demonstrated difficulty with the final "ao", when in the second

syllable, preceded by initial "h", with tone 3. What if we could give students more

practice on the parts they have demonstrated difficulty? For our example, what if we

could give more practice on items most similar to having a final "ao" in the second

syllable, preceded by initial "h", with tone 3? We can in fact augment the Pinyin Tutor

so that we can have such "intelligent" behavior by training a hidden Markov model for

each possible feature and calculating the probability for each item in the lesson of being

in the "Unlearned" state. This technique of estimating the probability a student knows a

skill after observing their attempts is known as “knowledge tracing” in the intelligent

tutor community (Corbett & Anderson, 1995).

4.1. Hidden Markov Model Basics

 A hidden Markov model (HMM) is a statistical model that represents a Markov

process with "hidden" state. A Markov process model can be thought of as a finite state

machine where transitions between states are assigned probabilities and the probability of

transition to state B at time t+1 depends only on the state the machine is in at time t. The

"hidden" part is that we are not able to directly observe what state the machine is in

currently, just the output dependent on the current state. The output symbols per state are

assigned a probability distribution.

4.2. Hidden Markov Model Application

 We can create an HMM for each skill necessary to master correctly spelling the

pinyin of a spoken Chinese phrase. The skill set can be the 64 basic features. We can

also supplement the basic 64 skill models with models for interactions between each, so a

skill model for each interaction between initial-final, initial-tone, and final-tone (totaling

64 + 23*36 + 23*5 + 36*5 = 1187 HMMs (skill models)).

 The HMM for each skill has two hidden states: "Learned" (L) and "Unlearned"

(U). In each of these hidden states, we are able to observe whether a skill was answered

correctly (C) or incorrectly (I). The transition probabilities between each state are:

- P(learn), the prior probability of transitioning (U)->(L) at each step given that we

start at (U)

- P(forget), the prior probability of transitioning (L)->(U) at each step given that we

start at (L)

And conditional observational probabilities within each “hidden” state are:

- P(slip), the probability making an error even if the student is in the (L) state

- P(guess), the probability of guessing correctly even if the student is in the (U) state

See (figure 7).

 Now that we have the structure (states and transition paths) of the HMMs

necessary to represent the skills to tutor, we need to calculate the transition and

conditional observational probabilities between the two states. While there is no known

way to optimally "train" an HMM (it's an NP-complete problem), fortunately there is a

way to approximate transition probabilities via the Baum-Welch algorithm, which makes

use of the forward-backward algorithm used frequently in HMM computations (Rabiner,

1989).

 Using the data collected from the Pinyin Tutor in the Fall 2008 semester and

considering only the student first attempts at each item (and thus not influenced by tutor

feedback), we have approximately 250,000 student-tutor interactions for training our

pinyin skill HMMs via the Baum-Welch algorithm.

4.3. Using Trained HMMs to Estimate Student Learning State

 Now that we have HMMs trained for each skill, we can calculate the probability a

skill is in the "Learned" or "Unlearned" state after observing correct/incorrect

observations for that skill as the student works through the tutor lesson. Rabiner refers to

this as "Problem 2" of HMM applications. Namely, given an observation sequence, O, (of

correct/incorrect responses) and an HMM, λ, for the skill, we want to know the

probability we are in a state Si ((U) or (L)) at time t. Formally:

γt(i) = P(qt=Si | O1,O2,...,Ot, , λ)

Where:

- γt(i) is probability of being in state i at time t.

- Si is state i, where i={Learned, Unlearned}

- Ot is the observation (Correct / Incorrect) at time t.

- λ is the trained HMM for a skill

Using the probabilities of being in the "Unlearned" state for each skill, we can

now average the probabilities of each feature present in an item being in the "Unlearned"

state and base our selection of the next item to present on this calculation. Our aim is that

by choosing items with highest average probability of being in the "Unlearned" state, the

tutor will tailor its instruction for the student precisely on skills he or she is having the

most difficulty. Our aim is for the students to attain a level of mastery much faster than

the previous tutor model.

5. Conclusions and Future Work

The analyses and statistical modeling of errors students make on this fundamental

task for beginning students of Chinese have never been done at this level before. We

hope through our efforts here we can illuminate in great detail what students find most

problematic and provide insight for future language research.

Running analyses on the entire data set has been a recurring challenge, as has

been running analyses with large numbers of covariates due to computer memory

constraints and analysis programs crashing. While in this paper we have only discussed

our success at the basic model with 64 skills, we are making inroads to overcome the

technological hurdles that make larger analyses difficult. We believe completing these

extra-large analyses with ever more descriptive models is achievable in the coming

months.

Once the Pinyin Tutor is equipped with the new knowledge tracing module, we

expect students will learn more quickly and robustly than with the previous model.

Preliminary plans are being made for an in-lab study at the The Chinese University of

Hong Kong (CUHK) to test this theory. We expect the full version of the tutor as

described in this paper to be online by summer 2010, and used in schools for the Fall

2010 semester. It is currently being advertised on the Pinyin Tutor website and a beta

version is currently being tested by at least two sites.

And since the Pinyin Tutor will now be keeping track of the level of each skill for

each student, we can provide teachers and students with highly detailed reports of their

progress. For the first time, learners will know precisely what sounds and pinyin they are

having most trouble with and can pay more attention to them in the classroom and

homework assignments.

Another area for future work is to explore if there are other interesting analysis

methods available from the machine learning community. For instance, we would like to

find precise methods for comparing results of our HMM training with the Lars-Lasso or

L1-regularized logistic results and see if these very different techniques arrive at the same

conclusions. Also, we would like to explore methods that are more computationally

efficient ways of modeling and training success at identifying pinyin syllables. One such

method we’re currently looking into is a way for computing the lasso using coordinate

descent (Friedman, et al 2010).

Figure 1.

Pinyin Tutor screenshot

Figure 2.

Below are the 64 covariates along with their numeric label we used for the "basic" model

(without interaction terms).

Initials:
1 b

2 p

3 m

4 f

5 d

6 t

7 n

8 l

9 g

10 k

11 h

12 j

13 q

14 x

15 z

16 c

17 s

18 r

Finals:
19 zh

20 ch

21 sh

22 w

23 y

24 a

25 e

26 i

27 o

28 u

29 v

30 ai

31 ao

32 an

33 ei

34 en

35 ia

36 ie

37 iu

38 in

39 ou

40 ua

41 uo

42 ui

43 un

44 ve

45 vn

46 ue

47 ang

48 eng

49 ian

50 ing

51 iao

52 ong

53 uai

54 uan

55 van

56 iang

57 iong

58 uang

59 ueng

Tones:
60 Tone 1

61 Tone 2

62 Tone 3

63 Tone 4

64 Tone 5

Figure 3.

The graph below represents the coefficient learning progress of LARS-Lasso on the 64-

covariate syllable model. The x-axis represents the fraction of the abscissa values at

which coefficients are computed, as a fraction of the saturated |beta|. The y-axis

represents the standardized values of the coefficients of each covariate. As described

earlier, the Lars-Lasso method can be thought of as a linear regression with an “s”

parameter that allows one to choose how many covariates to include in the model. The

graph starts at the left with few covariates that are most predictive of whether a student

will answer a syllable correctly (corresponding to using a small “s”). As we increase “s”

to its maximal value (100% saturation, |beta| / max(|beta|)=1.0), we’re including all

covariates, which is essentially a regular linear regression. These are the values listed on

the rightmost side of the graph.

Figure 4.

The graph below represents K-fold cross-validated mean squared prediction error of the

64-covariate syllable model as modeled by LARS-Lasso. As described in figure 3, the x-

axis represents the fraction of the abscissa values at which the CV curve should be

computed, as a fraction of the saturated |beta|. Here we see that the 64-covariate model

maximizes its predictive power after about 1/3 of the most important covariates (in terms

of predicting syllable correctness) are included.

Figure 5.

Below we list the coefficients of the basic 64-covariate syllable model learned by LARS-

Lasso on random 10,000 attempts.

-0.227838233 ve (üe)

-0.205062847 c

-0.146153347 un

-0.13763165 q

-0.128128634 r

-0.106388461 zh

-0.085701215 z

-0.081860869 iong

-0.078574248 v

-0.055606824 j

-0.051050815 x

-0.04879625 o

-0.04779997 s

-0.043854635 uan

-0.041513312 ang

-0.029042265 eng

-0.027708019 m

-0.026345493 y

-0.026324417 ing

-0.020049983 t

-0.017968735 n

-0.01500347 b

-0.012971185 uai

-0.012052117 ch

-0.002689831 l

-0.000855295 sh

0 p

0 vn (ün)

0 van (üan)

0 ueng

0.000740474 u

0.002231802 h

0.00486158 ui

0.010542571 ou

0.013836567 iang

0.015997153 uo

0.020129841 an

0.031502608 e

0.036566456 ian

0.037555292 d

0.038106812 k

0.043877758 g

0.046953773 f

0.053512103 in

0.058413901 w

0.060323097 iao

0.060392861 ao

0.061035341 ue

0.064187286 i

0.068191224 iu

0.0734974 ei

0.076838215 uang

0.087835728 ong

0.089788545 ie

0.092804293 ai

0.096112072 en

0.099807003 a

0.126843133 ua

0.202237942 ia

0.243847379 Tone 2

0.289695259 Tone 3

0.295659682 Tone 4

0.300028026 Tone 1

0.333281778 Tone 5

Figure 6.

Hidden Markov Model representation (one for each pinyin skill).

References

[1] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004), Least Angle Regression,

Annals of Statistics, Volume 32, Number 2, 407-499.

[2] L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257-286, 1989.

[3] Tibshirani, R., (1996), Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society, Series B (Methodological), Volume 58, Issue 1, 267-288.

[4] Zhang, Y. (2008), Cue Focusing for Robust Phonological Perception in Chinese.

[5] Corbett, A. and J. Anderson, Knowledge tracing: Modeling the acquisition of

procedural knowledge., 1995.

[6] Casella, George, and Berger, Roger L. (2002). Statistical Inference, Second Edition.

Duxbury Press, Pacific Grove, California.

[7] Hastie, Tibshirani, and J. H. Friedman. Elements of Statistical Learning New York:

Springer, 2009

[8] Koh, K., Kim, S., Boyd S. (2007) An Interior-Point Method for Large-Scale L1-

Regularized Logistic Regression, Journal of Machine Learning Research Number 8,

1519-1555.)

[9] Cen, H., Generalized Learning Factors Analysis: Improving Cognitive Models with

Machine Learning.

[10] Friedman, J., Hastie, T., Tibshirani, R. (2010) Regularization Paths for Generalized

Linear Models via Coordinate Descent.

[11] Hastie T, Efron B (2007). lars: Least Angle Regression, Lasso and Forward

Stagewise. R package version 0.9-7, URL http://CRAN.R-project.org/package=Matrix.

[12] Koh K, Kim SJ, Boyd S (2007b). l1logreg: A Solver for L1-Regularized Logistic

Regression. R package version 0.1-1. Avaliable from Kwangmoo Koh

(deneb1@stanford.edu).

