
Using Machine Learning Techniques to Uncover What Makes 

Understanding Spoken Chinese Difficult for Non-native Speakers 
 

 

John Kowalski 

Advisor: Geoff Gordon 

 

 

Abstract 
 The Pinyin Tutor has been used for the past few years in over thirty classrooms at 

universities around the world. A large amount of data have been collected from this 

program on the types of errors students make when trying to spell the pinyin of the 

Chinese phrase spoken to them. We plan to use this data to help answer the question of 

what is hard about understanding Chinese. Is it a particular set of consonants, vowels, or 

tones? Or perhaps do certain difficulties arise in the context in which these sounds are 

spoken? Since each pinyin phrase can be broken down into features (consonants, vowel 

sounds, and tones), we can apply machine learning techniques to uncover the most 

confounding aspects for beginning students of Chinese.  We can extend the methods we 

developed here to create an ML engine that learns on the fly for each student what they 

find difficult. The items to be presented to the learner can be chosen from a pool based on 

the predicted probability of being correctly answered by the student. This will allow the 

Chinese learner to focus on what he or she is having most difficulty and hopefully more 

quickly understand spoken Chinese than without such focused "intelligent" instruction. 

 

 

1. Introduction 
 One of the hurdles for students in introductory Chinese courses is understanding 

what Chinese word or phrase has been spoken to them.  On top of learning new 

vocabulary, translation, and grammar skills, simply answering, "What did you hear?" is 

often difficult for beginning students.  Improving this rudimentary skill for each student 

in the classroom can be tedious and in general a poor use of class time.  Luckily, 

computer tutors are perfectly suited for such instruction.  At the Pittsburgh Science of 

Learning Center (PSLC), the Pinyin Tutor was developed under the direction of Dr. Brian 

MacWhinney for this purpose (figure 1).   Pinyin is a system of writing Standard 

Mandarin using Roman characters and is commonly taught to first-semester students of 

Chinese in the first year of instruction.  The Pinyin Tutor's instructional model is quite 

simple: a Chinese word or phrase is "spoken" through the students' personal computer 

speaker and the task is to enter the pinyin of the sound they heard.  If correct, the tutor 

congratulates the student and presents the next item in the lesson.  If incorrect, the tutor 

gives feedback on what part of the phrase is incorrect and gives the student an 

opportunity to try again.  The items the student answered incorrectly on the first try are 

put back into the pool to be presented again; items answered correctly on the first try are 

eliminated from the pool.  The student assignment is to continue until all items in the 

lesson have been answered correctly on the first try (without feedback from the tutor). 

 

 

 



2. Pinyin Basics 

 Each syllable in Pinyin can be thought of as being comprised of three 

components: an "initial" consonant sound (b, n, zh, …), a "final" vowel sound (ai, ing, 

uang, …), and a tone marking (1,2,3,4,5) indicating the rising and/or falling pitch of the 

syllable.  In total there are twenty-three initials, thirty-six finals, and five tones (figure 2). 

 

 

3. Identifying What Causes Students the Most Difficulty 
 The current version of the Pinyin Tutor keeps track of what Chinese words or 

phrases are answered incorrectly by students and re-drills the word or phrase until the 

student can identify it without help from the tutor.  Beyond knowing what words or 

phrases students are having trouble with, the obvious next question to ask is what 

component(s) of these items are causing the most difficulty.  Are there some initials, 

finals, or tones particularly problematic?   And then beyond asking this question for 

individual components, we must consider difficulties that may arise in the context in 

which these sounds are spoken.  For instance, is final “ao” easy to hear in “hao3”, but not 

in “bao4”?  

 

 To answer these questions, we can train a statistical model to measure student 

performance.  If we can obtain a reasonably low generalization error with this model, we 

can use the parameters learned to discover what the easy and difficult components are. 

 

3.1. Modeling a Pinyin Syllable 

 As a first try, we can model a syllable by constructing a linear prediction with 64 

covariates (one for each 23 initials, 36 finals, 5 tones), and output whether this item was 

answered correctly.  So we have: 

 

ŷ  = β0 + β1*x1+ β2*x2 + ... + β64*x64 

 

Where: 

y=1 (correct), y=0 (incorrect). 

xn=1 if feature n is present, 0 otherwise. 

βn=coefficient for feature n to be learned. 

 

 So once this model is trained and we have learned a value for each β, we can use 

the model to help us predict whether a syllable will be answered correctly by setting three 

covariates (xn’s) to 1 corresponding to the initial, final, and tone present in that syllable, 

and the rest of the 61 covariates to 0.  The output ŷ will then give us a clue as to whether 

this syllable will likely be answered correctly.  For instance, for ŷ in the range [0,1], we 

can consider values above .5 likely correct, and values below .5 likely incorrect. 

 

We can supplement this single-syllable model with interaction terms, adding a 

term for each interaction of initial-final, initial-tone, and final-tone.  This will enable us 

to answer for instance, whether some features are typically easy by themselves, but when 

combined are difficult.  We can also add terms to indicate the number of times a student 



was exposed to these features and contexts, enabling us to potentially discover some 

feature to be initially difficult, but fast to learn once presented. 

 

Another way to define a model of a syllable is by using the logistic “squashing” 

function and performing logistic regression analysis to train it.  When using this 

technique, instead of fitting directly to a linear equation, we fit our data to a logistic 

curve:  

ŷ  = f(β0 + β1*x1+ β2*x2 + ... + β64*x64) 

 

Where: 

y=1 (correct), y=0 (incorrect). 

xn=1 if feature n is present, 0 otherwise. 

βn=coefficient for feature n to be learned. 

f() = logistic function 

 

The logistic function is defined: 

f(z) = e
z
 / (e

z
 + 1) , where: 

z = β0 + β1*x1+ β2*x2 + ... + β64*x64 
 

The logistic function f() will take any value from negative infinity to positive 

infinity and convert it to values between values of 0 and 1.  Logistic analysis is a natural 

choice for fitting a model to our categorical data where correct=1 and incorrect=0. 
 

 

3.2. Training the Models 

Having constructed representations of student ability at identifying Chinese 

syllables, we now want to train these models and arrive at the coefficients to best predict 

student correctness.  The method we will first use is the Least-Angle Regression (LARS), 

modified to simulate the lasso (least absolute shrinkage and selection operator).  Lars and 

the lasso are regression algorithms especially suited for high-dimensional data (Efron, et 

al, 2004). 

 

Using data we collected from the Pinyin Tutor in Fall 2008, we have 

approximately 250,000 training examples (tuples of Chinese syllable and binary indicator 

of whether student correctly identified it).  The lasso takes this input and fits our linear 

model described above using the criterion: 

 

Minimize(Σ(y - ŷ)2
), under constraint that: 

Σj (| βj |) <= s 
Where: 

- y is the actual indicator of correctness from the training data (0=incorrect, 

1=correct) 

- ŷ is the running predicted output of our model computed by the lasso.  We assume 

if ŷ > .5, then predict correct, ŷ <= .5, then predict incorrect 



- s is a bound that can be used as a tuning parameter. 

 

 

What makes the lasso special is the “s” parameter.  If it is sufficiently large, the lasso 

is basically the ordinary multiple linear least squares regression of y on the xn covariates.  

But for smaller positive values, lasso computes a “shrunken” version of the usual least 

squares estimate.  This shrunken version will often lead to some of the coefficients (β’s) 

being zero, so choosing a value for s is like choosing the number of predictors in the 

model (Tibshirani, 1996).  For a graph of LARS-Lasso coefficient learning progress for 

our 64-covariate pinyin model, see (figure 3).  To see how well the model predicts as we 

increase the value of the s parameter, see the graph of the K-fold cross-validated mean 

squared prediction error as the model is learned by LARS-Lasso (figure 4). 

Just as we have used LARS-Lasso to efficiently compute “shrunken” least squares 

estimates, we use L1-regularized logistic regression for its feature selection properties 

(Koh, 2007).  This will give us the flexibility similar to the “s” parameter in lasso. We 

use the method developed by Koh, et al. for its ability to scale well to large sparse 

problems (like for our 2374 covariate model for all interaction terms of the basic 64 

skills). 

 

Formally, L1-regularized logistic regression learns a weight (coefficient) vector w
T
 

and intercept v under the constraint that we:   

 

Minimize (1/m)  
i=1

m

∑ f(w
T
ai + vbi) + λ||w||1 

Where: 

- m is the number of training examples 

- bi is the binary output of training example i  

- w
T 

is the weight (coefficient) vector 

- ai is the vector of covariates for training example i 

- v is the intercept 

- ||w||1 denotes the L1-norm (sum of absolute values of all coefficients) 

- λ > 0 is the regularization parameter (conceptually similar to the “s” parameter in 

Lars-Lasso) 

- f() = logistic loss function, defined as f(z) = log(1+e
-z
) 

 

 

The results we’ve obtained running L1-logistic regression on the basic syllable model 

are similar to what we found with Lars-Lasso.  We will keep this analysis technique and 

the efficient method to solve it in mind as we grow to more expressive models that are 

more computationally intensive to train. 
 

 

3.3. Interpreting the Trained Models 

Besides allowing us to predict whether a student will correctly answer a syllable, 

perhaps we can glean from these models some insight as to what features are causing the 



most difficulty.  Since larger coefficients of each skill covariate will push the predicted 

output ŷ closer to 1 (correct), and smaller coefficients will push ŷ closer to 0 (incorrect), 

we can interpret these numbers as ranking skills with larger coefficients as easier and 

those with lower coefficients as more difficult (figure 5).  

While this interpretation may be true within the mathematical scope of this model, 

ranking skills as such isn’t as accurate a representation of reality as we can get.  For one, 

tones fundamentally influence the way final vowel sounds are pronounced.  The pinyin 

final “ia” is not pronounceable unless we know the tone marking. So to say some final 

ranks as more difficult than a tone doesn’t make much sense.  However, as we construct 

larger models and include interaction terms for each final-tone combination (and other 

terms as guided by language experts), we will move ever closer to a model representing 

the true nature of this task. 

 

4. Making the Pinyin Tutor More Intelligent 
 While the practice the Pinyin Tutor gives students is valuable (Zhang, 2008), it 

may not be the most efficient way for students to learn since remediation is based on the 

whole item, not on the parts of the item they have shown to have difficulty.  For example, 

if the tutor presents the two-syllable item "ni3hao3", but the student incorrectly types 

"ni3ho4", the tutor will put this item back into the pool for a future re-drilling.  But the 

student did not demonstrate difficulty with initials "n" or "h", final "i", or the tone in the 

first syllable.  The student did, however, demonstrate difficulty with the final "ao".  

Specifically, the student demonstrated difficulty with the final "ao", when in the second 

syllable, preceded by initial "h", with tone 3.  What if we could give students more 

practice on the parts they have demonstrated difficulty?  For our example, what if we 

could give more practice on items most similar to having a final "ao" in the second 

syllable, preceded by initial "h", with tone 3?  We can in fact augment the Pinyin Tutor 

so that we can have such "intelligent" behavior by training a hidden Markov model for 

each possible feature and calculating the probability for each item in the lesson of being 

in the "Unlearned" state.  This technique of estimating the probability a student knows a 

skill after observing their attempts is known as “knowledge tracing” in the intelligent 

tutor community (Corbett & Anderson, 1995). 

 

 

4.1. Hidden Markov Model Basics 

 A hidden Markov model (HMM) is a statistical model that represents a Markov 

process with "hidden" state.  A Markov process model can be thought of as a finite state 

machine where transitions between states are assigned probabilities and the probability of 

transition to state B at time t+1 depends only on the state the machine is in at time t.  The 

"hidden" part is that we are not able to directly observe what state the machine is in 

currently, just the output dependent on the current state.  The output symbols per state are 

assigned a probability distribution. 

 

 

4.2. Hidden Markov Model Application 

 We can create an HMM for each skill necessary to master correctly spelling the 



pinyin of a spoken Chinese phrase.  The skill set can be the 64 basic features.  We can 

also supplement the basic 64 skill models with models for interactions between each, so a 

skill model for each interaction between initial-final, initial-tone, and final-tone (totaling 

64 + 23*36 + 23*5 + 36*5 =  1187 HMMs (skill models)). 

 

 The HMM for each skill has two hidden states: "Learned" (L) and "Unlearned" 

(U).  In each of these hidden states, we are able to observe whether a skill was answered 

correctly (C) or incorrectly (I). The transition probabilities between each state are: 

 

- P(learn), the prior probability of transitioning (U)->(L) at each step given that we 

start at (U) 

- P(forget), the prior probability of transitioning (L)->(U) at each step given that we 

start at (L) 

 

 

And conditional observational probabilities within each “hidden” state are: 

 

- P(slip), the probability making an error even if the student is in the (L) state 

- P(guess), the probability of guessing correctly even if the student is in the (U) state 

See (figure 7). 

 

 Now that we have the structure (states and transition paths) of the HMMs 

necessary to represent the skills to tutor, we need to calculate the transition and 

conditional observational probabilities between the two states.  While there is no known 

way to optimally "train" an HMM (it's an NP-complete problem), fortunately there is a 

way to approximate transition probabilities via the Baum-Welch algorithm, which makes 

use of the forward-backward algorithm used frequently in HMM computations  (Rabiner, 

1989). 

 

 Using the data collected from the Pinyin Tutor in the Fall 2008 semester and 

considering only the student first attempts at each item (and thus not influenced by tutor 

feedback), we have approximately 250,000 student-tutor interactions for training our 

pinyin skill HMMs via the Baum-Welch algorithm. 

 

 

4.3. Using Trained HMMs to Estimate Student Learning State 

 Now that we have HMMs trained for each skill, we can calculate the probability a 

skill is in the "Learned" or "Unlearned" state after observing correct/incorrect 

observations for that skill as the student works through the tutor lesson.  Rabiner refers to 

this as "Problem 2" of HMM applications. Namely, given an observation sequence, O, (of 

correct/incorrect responses) and an HMM, λ, for the skill, we want to know the 

probability we are in a state Si ((U) or (L)) at time t.  Formally: 

 

γt(i) = P(qt=Si | O1,O2,...,Ot, , λ) 
 

Where: 



- γt(i) is probability of being in state i at time t. 

- Si is state i, where i={Learned, Unlearned} 

- Ot is the observation (Correct / Incorrect) at time t. 

- λ is the trained HMM for a skill  

 
 

Using the probabilities of being in the "Unlearned" state for each skill, we can 

now average the probabilities of each feature present in an item being in the "Unlearned" 

state and base our selection of the next item to present on this calculation.  Our aim is that 

by choosing items with highest average probability of being in the "Unlearned" state, the 

tutor will tailor its instruction for the student precisely on skills he or she is having the 

most difficulty. Our aim is for the students to attain a level of mastery much faster than 

the previous tutor model. 

 

 

5. Conclusions and Future Work 

The analyses and statistical modeling of errors students make on this fundamental 

task for beginning students of Chinese have never been done at this level before.  We 

hope through our efforts here we can illuminate in great detail what students find most 

problematic and provide insight for future language research. 

  

Running analyses on the entire data set has been a recurring challenge, as has 

been running analyses with large numbers of covariates due to computer memory 

constraints and analysis programs crashing.  While in this paper we have only discussed 

our success at the basic model with 64 skills, we are making inroads to overcome the 

technological hurdles that make larger analyses difficult. We believe completing these 

extra-large analyses with ever more descriptive models is achievable in the coming 

months. 

 

Once the Pinyin Tutor is equipped with the new knowledge tracing module, we 

expect students will learn more quickly and robustly than with the previous model.  

Preliminary plans are being made for an in-lab study at the The Chinese University of 

Hong Kong (CUHK) to test this theory.  We expect the full version of the tutor as 

described in this paper to be online by summer 2010, and used in schools for the Fall 

2010 semester.  It is currently being advertised on the Pinyin Tutor website and a beta 

version is currently being tested by at least two sites.  

  

And since the Pinyin Tutor will now be keeping track of the level of each skill for 

each student, we can provide teachers and students with highly detailed reports of their 

progress.  For the first time, learners will know precisely what sounds and pinyin they are 

having most trouble with and can pay more attention to them in the classroom and 

homework assignments. 

  

Another area for future work is to explore if there are other interesting analysis 

methods available from the machine learning community.  For instance, we would like to 

find precise methods for comparing results of our HMM training with the Lars-Lasso or 



L1-regularized logistic results and see if these very different techniques arrive at the same 

conclusions.  Also, we would like to explore methods that are more computationally 

efficient ways of modeling and training success at identifying pinyin syllables.  One such 

method we’re currently looking into is a way for computing the lasso using coordinate 

descent (Friedman, et al 2010). 
 



 

Figure 1.  

Pinyin Tutor screenshot 
 

 



Figure 2. 

Below are the 64 covariates along with their numeric label we used for the "basic" model 

(without interaction terms). 

 

Initials: 
1 b 

2 p 

3 m 

4 f 

5 d 

6 t 

7 n 

8 l 

9 g 

10 k 

11 h 

12 j 

13 q 

14 x 

15 z 

16 c 

17 s 

18 r 

 

Finals: 
19 zh 

20 ch 

21 sh 

22 w 

23 y 

24 a 

25 e 

26 i 

27 o 

28 u 

29 v 

30 ai 

31 ao 

32 an 

33 ei 

34 en 

35 ia 

36 ie 

37 iu 

38 in 

39 ou 

40 ua 

41 uo 

42 ui 

43 un 

44 ve 

45 vn 

46 ue 

47 ang 

48 eng 

49 ian 

50 ing 

51 iao 

52 ong 

53 uai 

54 uan 

55 van 

56 iang 

57 iong 

58 uang 

59 ueng 

 

Tones: 
60 Tone 1 

61 Tone 2 

62 Tone 3 

63 Tone 4 

64 Tone 5 



 

Figure 3. 

The graph below represents the coefficient learning progress of LARS-Lasso on the 64-

covariate syllable model.  The x-axis represents the fraction of the abscissa values at 

which coefficients are computed, as a fraction of the saturated |beta|.  The y-axis 

represents the standardized values of the coefficients of each covariate.  As described 

earlier, the Lars-Lasso method can be thought of as a linear regression with an “s” 

parameter that allows one to choose how many covariates to include in the model.  The 

graph starts at the left with few covariates that are most predictive of whether a student 

will answer a syllable correctly (corresponding to using a small “s”). As we increase “s” 

to its maximal value (100% saturation, |beta| / max(|beta|)=1.0), we’re including all 

covariates, which is essentially a regular linear regression.  These are the values listed on 

the rightmost side of the graph.  
 

 

 
 



Figure 4. 

The graph below represents K-fold cross-validated mean squared prediction error of the 

64-covariate syllable model as modeled by LARS-Lasso.  As described in figure 3, the x-

axis represents the fraction of the abscissa values at which the CV curve should be 

computed, as a fraction of the saturated |beta|.  Here we see that the 64-covariate model 

maximizes its predictive power after about 1/3 of the most important covariates (in terms 

of predicting syllable correctness) are included. 
 

 

 



Figure 5. 

Below we list the coefficients of the basic 64-covariate syllable model learned by LARS-

Lasso on random 10,000 attempts. 
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0.289695259 Tone 3 
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Figure 6. 

Hidden Markov Model representation (one for each pinyin skill). 
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