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Abstract
As speech technology continues to advance, the languages for which they are

studied, and for which they have been developed also expands to cover more and
more of those used by the first world countries. It is not until the recent years have
efforts been made to apply our growing knowledge to languages of the developing
world. However, building speech technologies for these languages has revealed new
challenges such as the limited economic, human and speech resources, as well as the
low-literacy of target population.

In my thesis, I will describe an approach to develop speech recognition for lan-
guages of the developing word. The resulting technique will help build speech recog-
nizers that retain the high recognition accuracy of a high-quality commercial speech
recognizer over a small vocabulary.

Our approach addresses many issues faced by similar efforts today. It is de-
signed to utilize an existing, well-trained speech recognizer as the baseline to cir-
cumvent the reliance on large amount of audio data and human resource for develop-
ing acoustic models for a target language. Then, by using cross-language phoneme
mapping, we can use the baseline recognizer to build new recognizers for any tar-
get language. Furthermore, we design the approach to minimize the need of human
expertise through the incorporation of a data-driven approach in generating the pro-
nunciation rules for the target language.

Finally, I will present test results of our technique on both first world and resource-
poor languages, and discuss both the potentials of our approach and possible future
extensions.
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Chapter 1

Introduction

Technologies in speech recognition has readily perpetrated daily lives of many advanced nations.
From voice commands to electronics, to speech interfaces in the video games of recent years, the
applications of accurate speech recognizers for a language continues to create more convenience
for the people speaking that language. However, among the approximately 7000 living lan-
guages used in the world today, only a tiny fraction has been incorporated into commercial and
open source speech engines, due to factors such as small potential market of the products and
low availability of resources to develop them. Commercial packages like the Microsoft Speech
Server (MSS) provides high quality recognizers for the worlds most commonly used languages
and dialects. Open source recognition engines like the CMU Sphinx allow the training language
models in any languages, but with the premise that the trainer has much knowledge about how
speech technology works.

Studies in recent years have pointed to both the efficacy and practical benefits of developing
speech technologies for areas of the developing world [7, 9, 15, 16, 17]. It is highly certain at
this point that once high-quality and low-cost speech recognizer emerges, the low/semi-literate
population will be provided many more productive means of communication, information ac-
cess, data collection, etc. Therefore, speech technology is seen as a possible link between the
developing areas and the information age.

At the same time, however, a growing understanding of the work has led to the identifica-
tion of major road blocks in our efforts. In particular, high-quality automatic speech recognition
(ASR) is an essential part of voice user interfaces (VUI) such as ones in various spoken dialogue
systems (SDS). But a creating a good ASR for any language requires resources such as audio
data, linguists, and technical experts; and the process of building the ASR takes time and money
– all of which are unreasonable requirements in rural areas where many of the populations are
low-literate.

To summarize many of the more immediate problems we face, we propose the following
question: How do we develop a technique that will allow low-cost, accurate speech recognizers
to be built, for any language in the world? We seek to provide one answer to this question in
this research, by developing practical methods for creating speech recognizers for the resource-
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scarce languages where many of the speakers are illiterate. Specifically, our design will focus on
achieving following goals in building high-quality speech recognizers:

• The technique should work for any language.
• The technologies utilized must be cost-efficient.
• The resulting speech recognizers should be fit for use by the low-literate people.
• The speech recognizers should have high accuracy over small vocabulary.
• A speech recognizer built with an implementation of the technique should not require

either linguistic or technical expertise.
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Chapter 2

Background

Speech technology is a few decade old. Serious studies regarding speech technology for develop-
ing countries began only very recently, but yielded sanguine outlook on the potential applications.
However, few good solutions have been proposed to solve the many problems we face in general.

2.1 Applications and Efficacy of Speech Technologies in the
Developing World

The notion that speech technology can be a major factor in the advancement of the develop-
ing world is sustained by many observations. Particularly, relevant studies have often identified
illiteracy/low-literacy as a major road-block in establishing technologies of the fist world coun-
tries in a underdeveloped region with very specific cultures and customs. Yet, despite the inability
of many major technologies to take hold, cell phone has been a widespread success, readily ab-
sorbed by communities of developing areas [7]. It thus appears reasonable to expect SDS and
ASR to be the bridge between the low-literate population and information technology.

Major efforts to experiment with speech and/or touch-tone systems in developing countries
began with UC Berkley’s TIER groups Tamil market project [9], and we have since seen a
number of case studies and experiment conducted in the rural areas of the developing world
[6, 8, 9, 15, 18]. Some of these studies, including The Tamil Market, CMU’s Healthline, etc.
yielded optimistic results on the effectiveness of speech recognition for the low-literate people.
These findings, in turn, drove us to find general solutions that collectively solves the various
common problems in effectively providing speech recognition technologies to a developing area.

And the issues involved in creating SR for the developing regions are understandably multi-
faceted. The article by Brewer et al [4] included a overview of real challenges caused by illiteracy
when it comes to speaker recruiting, audio collection, as well as user testing – all of which call
for novel ways to achieve desired knowledge/result. Moreover, experiments conducted at Mer-
aka Institute [1, 3] suggests that developing competent SR systems will require tens of speakers
and up to hundreds of training samples per speaker. It is clear at this point that the traditional
approach to building speech recognizers from scratch maybe to costly and also impractical in the
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settings in which they are to be constructed.

2.2 Related Methods in Speech Recognition

Looking at techniques for speech recognition in the past, we take particular note on radical ones
that could potentially eliminate expert involvement and may not require training data with vast
coverage of a target language.

In the past two decades there has been many efforts to construct multilingual phoneme
databases. One series of work done by Schultz and Waibel was the GlobalPhone project [10,
11, 12, 13], where large amount of data was collected from source languages, so that only a
limited amount of training data will be required to create acoustic models in a new language.
Their models generated by a data-driven approach could not beat those obtained from a heuristic
approach, however, so there still was no satisfactory solutions to eliminate human involvement
in building recognizers for a target language.

An earlier approach employing both a cross-language pronunciation transcription and a data-
drive approach to automatically process speech was done by Constantine and Chollet [5]. Specifi-
cally, they employ relatively simple approach using GA to generate phoneme transcriptions based
on a multilingual speech database.

A more recent work by Bansal, Nair, Singh and Raj [2] introduced a joint decoding algorithm
on the training audio of a target language to automatically determine the pronunciations. How-
ever, modification of the decoding algorithm for audio has to be done at a low level in speech
engines, and that excludes the prospects of using off-the shelf recognizers as a base-line in which
training with the source language(s) has already been done.

2.3 The Salaam Approach

To date, one assuring solution proposed to comprehensively address many common issues in
related works of the field is the Speech-based Automated Learning of Accent and Articulation
Mapping (Salaam) by Sherwani [14], which is in turn first introduced as the ”Poor Man’s Speech
Recognizer” in previous technical research publications by Sherwani et al on speech technology
for low-literate users [15, 16, 17].

The published Salaam approach is aimed at building small-vocabulary recognizers by tran-
scribing the pronunciation of a word from the target language into phonemes in the source lan-
guage, using a well-trained speech recognizer as an underlying recognizer. Specifically, cross-
language phoneme mapping using existing recognizers is employed as the work around to avoid
training acoustic models relying on bountiful data. Moreover, the baseline recognizer was also
used to semi-automatically decode training data of the target language to help with obtaining
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more accurate pronunciations, improving upon those provided by a human expert.

Several existing research has tested all or parts of the Salaam approach. Sherwani’s own test
of the method at an international conference yielded less than 10% word error rate (WER) on
various languages, with vocabulary sizes from ranging from 3 to 10 words[14]. A comparative
study on voice interfaces in Rural India [8] has attained less than 6% WER over a small domains
over languages with a system using recognizers trained on other languages. Another project con-
ducted by the Meraka Institute in African test a few recognizers build atop recognizers trained on
other languages [19], and received varied results from as high as over 90% to as low as just over
50% recognition rate. Both studies showed that the Salaam approach can reach promising per-
formance but understandably falls short compared to recognizers trained directly using resources
from the target language.

We base many of our ideas and designs on Salaam. Some of the method’s details are de-
scribed in the next chapter.
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Chapter 3

Incorporating Salaam’s Components

Due to the promise showed by the Salaam approach under various tests, we pick up on two
of its most important components. The cross-language phoneme mapping and the data-driven
approach.

3.1 Cross-Language Phoneme Mapping

Using an existing speech recognition system, cross-language phoneme mapping can be done by
defining the word or phrase using a sequence of phonemes that are defined in the system, which
in turn represents an entry in a lexicon file. For example, the standard North American pronun-
ciation of the word “long” in phonemes of MSS U.S. English recognizer would be similar to “L
AO NG.”

A clear drawback of this approach is of course that the set of phonemes in the source language
and the target language are most likely not the same. For instance, the Hebrew word for one has
a uvular fricative phoneme that sounds like a mix between an “H” sound and the “K” sound in
English. In such cases, we pick the one that our baseline recognizer agrees with the most given
the training samples. So with the MSS U.S. English recognizer, the resulting pronunciation
would be similar to “E H AA D” or “E K AA D”, or both if the implementation allows multiple
pronunciations per word.

3.2 Data-Driven Approach in Salaam

Incorporating a data-driven approach aims to help humans with the task generate a pronuncia-
tion for new words – i.e. the aforementioned cross-language transcription. The idea is largely
reliant on the scoring of recognition results returned by the baseline recognizer. It follows that,
if the recognizer is given a large set of potential phoneme sequences, it would pick out the ones
that matches the audio input, and provide acoustic score and/or confidence score we can then
use them to pick out the best pronunciations for the training data. But, trying to match even a
5 phoneme sequence creates the search space of 375 distinct sequences on a recognizer with 37
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phonemes, making the task computationally impractical.

The design described by the published Salaam methods is a semi-automatic pronunciation
generation technique that also addresses the computational complexity issue by having a linguis-
tic expert fix down a number of phonemes that humans are more certain of (e.g. the consonants)
and then create arbitrary word boundaries in the word. The former part of this design endeavors
to relieve the recognizer of problems human experts can solve; and the latter effectively make the
resulting words induced by the boundaries “separate problems.” In practice, if we have a word
where there are 2 phonemes the expert is uncertain of, one can place the word boundary some-
where between the two phonemes, the Salaam method will match each separate word with a set
of sequences whose size is equal to or less than the total number of phonemes in the baseline
recognizer. So in general, if there are N phonemes in the recognizer and there are n uncertain
phonemes, the complexity of the search can be reduced to O(nN).

3.3 Means for Automated Learning
The most direct approach to cross-language phoneme mapping is to involve a language expert
who has knowledge of both the source and the target language, as well as a certain level of un-
derstanding for how phonology works in speech technologies. But in the setting of a developing
area, obtaining or training one such personnel can be difficult and costly.

To eliminate the need for human linguistic experts, the published Salaam method suggested
using a existing speech engine’s letter-to-sound rules to generate the initial pronunciations with
the help of a foreign word expressed in the English alphabets provided by a native speaker (much
like typing on instant messaging or SMS text messages). As such, Salaam moves much of the
burdens in pronunciation generation away from human.

7



Chapter 4

Method Design

Our method adopt cross-language phoneme mapping directly from Salaam.

As for the data-driven method, our work aims for a design that overcomes the limitations of
the old method in the following areas:

1. The published methods reliance/assumptions on the phonemes fixed by the expert or text-
to-sound rules, and on the total number of phonemes in the target pronunciation.

2. The reliance on word boundaries to reduce computational complexity. We want the result-
ing pronunciation for each word to consist of a single, continuous phoneme sequence.

Removing the hints provide by human/test-to-sound rules implies that the baseline recognizer
must be used to generate the entire phoneme sequence. To do this, we must look at some subsets
of all possible phoneme sequences/decoding, and take the ones that the recognizer agrees with
the most given the audio data of the target word. But as pointed out before, the set of potential
phoneme sequences cannot be too large. So due to computing limitation we still need to use
word boundaries, albeit in a different manner, to cut down on the size of the search space.

4.1 Method Design

We designed an iterative algorithm that progressively generates phonemes resulting in a decoded
sequence that has been given a relatively high score by the underlying recognizer. To start, we
explicitly enumerate all possible phoneme sequences for the first 1 through 3 phonemes for the
recognizer to match on the training audio, and then try to match a number of phonemes after
the initial 1 through 3, with word boundaries separating them. A graphical representation of this
would be:

“ ∗ / ∗ / ∗ / ∗ ...” or “ ∗ ∗/ ∗ / ∗ / ∗ ...” or “ ∗ ∗ ∗ / ∗ / ∗ / ∗ ...”

Where the “ ∗ ” denotes any phoneme, and “/” denotes the word boundaries. For the sake
of easy representation, we write this setup as “Phx[1 − 3]/Ph[n]”, where the “Phx[1 − 3]” is
the explicitly enumerated phoneme sequences of length 1 through 3, and the “Ph[n]” represents
n word boundary separated phoneme sequences we match after the initial explicitly enumerated
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ones 1. By this setup, when the recognizer decodes the audio data it evaluates one of the three
cases: the first phoneme by itself (separated by a word boundary from the rest), or along with
another phoneme, or along with two more phonemes. We accept the very first phonemes from
recognition results as the potential first phoneme in the final pronunciation. Note we do not just
take the sequence with the highest score because there are still boundaries in that sequence; so a
phoneme from a recognition result with low score may in fact be a part of a high-score pronun-
ciation that is without word boundaries.

In the second iteration, we concatenate each phoneme obtained from iteration one to the be-
ginning of our “Phx[1 − 3]/Ph[n]” rule. So if the first iteration gave produced the set P of m
phonemes, we will have m “XPhx[1− 3]/Ph[n]” sequences sets to match in this step for each
phoneme “X” in P . With the same logic as the first iteration, we can now accept the very first
2 phonemes from each recognition result as the potential first and second phonemes in the final
pronunciation.

Likewise, at iteration i, we should have a set Pi−1 of phoneme sequences each consisting of
i − 1 phonemes from iteration i − 1. For each phoneme sequence “X[i − 1]” in Pi−1, we will
match “X[i − 1]Phx[1 − 3]/Ph[n]” in the current iteration. The algorithm stops when on an
iteration j, we no longer produce any more phonemes from “Phx[1− 3]/Ph[n]”, i.e. the recog-
nition results are no longer than j − 1 phonemes. Then we can accept the “X[j − 1]” phoneme
sequences that have the highest scores given by the recognizer as the final pronunciations.

The size in the search space for each sequence in the set Pi−1, using a recognizer with N
built-in phonemes, is N +N2 +N3 +nN . We can further limit size of Pi−1 to be M , and upper-
bound the length of the final pronunciation of any word to be L, then the overall complexity in
the search space of pronunciation generation for that word is O(N3ML + nNML).

4.2 Generating a Pronunciation
As an example, I demonstrate here how our technique generates pronunciations for the Hebrew
word for “one”, which we represent here as “ehad”, using the English recognizer from the mi-
crosoft speech server (see Appendix B).

We begin with a English recognizer, and a set of audio samples files of “ehad”. Then we
enter the algorithm to successively generate phonemes.

In the first iteration, we build a grammar that allows the recognizer to match the audio sam-
ple with all sequences of length 1 through 3 of MSS’s English recognizer’s phonemes, repeated
from 0 up to 10 times. Conceptually, this is to matching the audio samples to the following
sequences:

1“Ph[n]” can have any number of word boundaries up to n. The greater the number of word boundaries, the less
complex the search. When the number of word bundaries is n, the size of the search space becomes O(nN), for a
baseline recognizer with N phonemes.
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*None*
AA
AE
AH
...
Z

ZH
AA AA
AA AE

...
ZH ZH

AA AA AA
AA AA AE

...
ZH ZH ZH

and we allow the recognizer to treat each audio sample as mulitple words, and match each
word to one of the above sequences.

The recognition results pooled from all samples from our run consists of “K AA D”, “T AA
D”, “H AA D”, “K AO D”, “T AO D”, and “H AO D”. As this is the first iteration, we accept the
very first phoneme from each result as the pontential first phoneme in our final sequence. In this
case, we record “K”, “H”, and “T” for the next round.

In the second iteration, we again build a grammar that consists of all the sequences in the
grammar in the first iteration, only after each of the three first phonemes:

*None*
K

K AA
K AE

...
K ZH ZH ZH

T
T AA

...
T ZH ZH ZH

H
H AA

...

we again allow the recognizer to treat each audio sample as 0-10 words, only the first word
must be matched with one of the above sequences. The words that follow must be matched with
one of the sequences from the very same grammar from the first iteration.

The recognition results pool from all samples of our run. Because this is the second iteration,
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we store the first two phonemes of each result for our next iteration.

The algorithm then repeats as the second iteration, until we arrive at iteration four, and
obtain “K AA D” as the best recognition result, which is consists of only 3 phonemes. This
means we have not generated anymore phoneme from this iteration (or, no length 4 phoneme
sequences are as good as “K AA D”). Then, instead of storing the best sequences of length upto
four for another pass, we output the best single-word recognition results from the current pass as
entries for “ehad” to the lexicon of our new hebrew recognizer. And the top three entries consists
of:

K AA D
K AA AA D
K O AA D

Appendix C shows an example of a complete set of generated pronunciations for fifty Hebrew
words.
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Chapter 5

Experimentation and Results

5.1 Data Collection

For experimenting with our technique, we have compiled a list of 50 words/short phrases (see
Appendix A) in English, consisting of numbers, commands to computer systems, and disease
names. Each entry was selected because it consists of one word or a short phrase, and it pertains
to the topic of a service provided by an SDS system (one that may use a speech recognizer built
with our technique). Because we aim for small-vocabulary speech recognizers, vocabulary sizes
of 50 or less is a good baseline for us to conduct our experiments. The first speaker for each
language provides the translation of the words in to that language in that language’s writing, and
we adhere to that translation for all subsequent recordings in that language.

At first we have recorded audio data using desktop microphones. But during the earlier
stages of the research we decided that the only recording medium we use would be either tradi-
tional/digital landline or cellular telephones, for they are prevalent in developing regions and are
what we expect the recognizers to work on. This also eliminates some of the problems we may
face, because different inputs can provide different audio data. Currently, the data we have has
been tested to all have 8kHz sample rate. However, we have not addressed the possible effects
from encryptions used by cellphone services and desktop audio input, nor the potential difference
in quality between digital and traditional landline telephones.

We have built an SDS using VoiceXML for collecting audio data, hosted by Voxeo 1. During
a recording session, a participant is prompted to read each of the 50 words one at a time. To
obtain more than one samples we iterate over the words to minimizes the effect of repetition on
the way a particular word is pronounced.

For the result I will present, we have used data from from two speakers each for Yoruba and
Hindi, and from three speakers for Hebrew. Each speaker provided five samples for each word.

1www.voxeo.com.
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5.2 Experiment Results

In this section we discuss results from four experiments on our technique.

Pronunciations generated from Single Speakers vs. Expert Pronunciations

The earliest set of promising results for the design described in this thesis consists of five-fold
cross-validation tests on the voice data of single speakers.

Figure 5.1: Recognition results for Yoruba and Hebrew for both manual and automatically gen-
erated pronunciations with varying vocabulary size.

As expected, word recognition accuracy goes down, generally, as vocabulary size goes up 2.
The automatically generated pronunciation result for Hebrew was especially interesting because
every test audio was correctly recognized, except for a few times when the four samples were
not enough to generate a pronunciation in Hebrew, so there was no recognition, which explain
the consistent high, but not perfect, recognition accuracy .

Furthermore, for these two languages, we have obtained phoneme sequences of each word
written down by one language expert of Hebrew, and one of Yoruba. The word recognition accu-
racy on all five samples using expert pronunciations are then pitted against the word recognition
accuracy average across the 5-folds of our own generated pronunciations from four training sam-
ples on one test sample. And the results from from the experiments on both Yoruba and Hebrew
demonstrate that the automatically generated pronunciations readily beats pronunciations pro-
vided by experts.

2Word recognition accuracy is none increasing as vocabulary sizes increase. This can be seen in all of our
experiments, and is generally true for almost all cases in speech recognition.
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Cross-Speaker Results Pronunciations Generated from Single Speakers
The experiments that immediately followed was a test on cross-speaker recognition accuracy.
The pronunciations trained from each speaker are tested on the two others.

Figure 5.2: Cross-Speaker results for pronunciations trained on single speakers.

The immediate observation from the results was a surprise: there is a clear correlation be-
tween the speaker of the training data and recognition accuracy. While pronunciations trained
on speaker gxt worked fantastically, and those trained with data from speaker rxr also performed
satisfactorily, those from speaker nxb did not always do very well.

Next, there also seems to be are relationship in the effectiveness of the training data on the
testing data between the speakers. Pronunciations trained on rxr yielded a subtly higher word
recognition accuracy when tested on nxb, and at the same time, those trained on nxb clearly
favor rxr’s voice much more.

Besides the all the questions this set or results poses on the causes of the correlations, it also
provided the important implication on the potential benefits of training on multiple speakers.
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Multiple Pronunciations Per Word Generated from a Single Speaker
In this experiment was designed to study the benefits of mapping multiple pronunciations to a
single word in a recognizer.

Figure 5.3: Recognition results for Hindi of a recognizer with multiple pronunciations for a word,
and a recognizer with with a single pronunciation for each word.

This time, we accept three top unique results during pronunciation generation when training
on one speaker. For the sake of comparison, we take the same exact set of pronunciations and
remove the second and third best pronunciations. The two set of pronunciations are then pitted
against each other when testing on the data of the other speaker.

The result shows that the benefits of mapping multiple pronunciation to a word is not ap-
parent when the vocabulary size is very small. Although as the vocabulary size gets bigger,
improvements in recognition accuracy from having alternative pronunciations can be significant.
Since our method and looks at many alternative pronunciations during generation, outputting
alternatives does not cost more computing power. This is a trick worth incorporating.
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Multiple Pronunciations Per Word Generated from Multiple Speakers
In this final experiment I present, we combined the two ideas obtained from the last two experi-
ments. We generate multiple pronunciations for each word by training on multiple speakers, and
pit the results against an instance of the results from single speaker cross-speaker experiments.

Figure 5.4: Cross-Speaker results for pronunciations trained on single speakers.

As we can see, with training data from the same two speakers rxr and nxb, and testing on the
same test data from speaker gxt, generation from the combined training data set produced results
that out performs pronunciations generated by single speakers from either rxr or nxb. Moreover,
when we accepting multiple pronunciations during generation for each word, the resulting recog-
nitiong accuracy gains a significant boost. This outcome presents a very good promise for our
technique.
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Chapter 6

Conclusion

Results from the last chapter present empirical confirmation that our method can achieve high
recognition accuracy over a small vocabulary for a language without any involvement of hu-
man experts or reliance on sizable language resources. Pronunciations in the source language
generated by our algorithm consistently outperform those provided by linguistic experts, hence
proving our method to be a potent way to apply cross-language phoneme mapping when training
data in a target language is lacking. Furthermore, we have also shown that one can improve upon
the quality of a recognizer built with our technique by expanding the training set size and the
number of speakers for training, or mapping multiple pronunciations to a single word. Futher
studies can help discover other strategies to use in junction with this technique.

Although we only have results from three different languages, these languages come from
three different areas and belong to distinct language families: the Afroasiatic languages (He-
brew), the Niger-Congo languages (Yoruba), the Indo-Aryan languages (Hindi); and the method
yielded satisfactory results for all. There is a slightly greater implication for the Yoruba and the
Hindi test sets - these languages are used by some developing areas of the world, and no deploy-
able speech technology has been developed for them so far. It would be very useful to study this
technique using other languages, especially ones from regions with significant low-literacy. We
also look forward to field-testings in developing regions with recognizers built with our method.

As per our description of the method’s design in 4.1, implementation of our method should
not entail low-level modifications to a speech recognition engine of the source language - our
design could be implemented using any recognizer, even closed-sourced ones. It could be an in-
teresting research in the future to test the method’s effectiveness/performance when implemented
with different base-line recognizers.
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Appendix A

List of 50 Words/Phrases used for Data
Collection

One Hello
Two Goodbye
Three Faster
Four Slower
Five Select
Six Start
Seven Stop
Eight Delete
Nine Add
Ten Open
Eleven Close
Twenty Sleep
Thirty Fever
Forty Smallpox
One Hundred Chickenpox
Two Hundred Cancer
One Thousand AIDS
One Million Hepatitis
Repeat Malaria
Next Diarrhea
Previous Diabetes
Go back /Scratch that Infection
Reverse Symptoms
Yes, thats correct First
No, thats wrong Second
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Appendix B

List of Phonemes for the English
Recognizer of MSS

Vowels Consonants
AA AX L
AE AX M
AH AX N
AU B
AO CH
AX D
AX RA DH
EH F
EH RA G
EI H
ER J
I JH
IH K
O + UH L
OI M
U N
UH NG

P
RA
S
SH
T
TH
V
W
Z
ZH

* Taken from http://msdn.microsoft.com/en-us/library/bb813894.aspx, retrieved in May, 2010.
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Appendix C

Example Pronunciations Generated
(Hebrew)

Pronunciation Word/Phrase Pronunciation Word/Phrase
K AA D Ehad SH AX L O M Shalom
SH N AI EI M Shnaim L I D AO L O T Lehitraot
SH AX L O L SH Shalosh M EH H EH EI AX T EI L Maher yoter
AA L B AA AX Arba M EH AH CH U T EI L Leat yoter
H AH M EI SH SH Hamesh DH AX H AA R L Bhar
SH EH SH Shesh AX K S EI AX N L D Hathel
SH EH V RA AX Sheva AX K S IH L L Atsor
SH M AO RA L I Shmoneh DH AX H AA K K Mhaq
G UH SH EH AX Tesha H O S EI AX S F Hoseff
EH S EH L Eser T K D AA H O NG T Ptah
H AO T AX F L I Ahat essreh S M G O AX L L Sgor
Z S L I M Esreem N AH S U SH O N Leh lishon
S L SH I M Shloshim H O M Homme
H O B R EI I M Arba im V IH L EH K AX P L IH L T Daleket reot
M EI EH AX Meah AX B AA B L O K U L H O NG Abaabuot ruah
M AX T D AI EI M Matayim F O P D AH N Sartann
EH N IH V Ellef EI D S Aids
M I O N Milion S EH H EH V IH T Tsahevet
EH M O SH U U V Emor shoov M AX L O I AX Malarya
AX B AA Haba SH U SH U U N F Shilshool
AA K W IH D EI AX M Hakodem S AX K IH EH D EI S T Sakeret
S K AO S M I Z EI Shkah mizeh Z I H O M Zeehoom
P AX F UH L S S Hafoh F IH NG S T O M I M Simptomim
DH AX H O L AX N Nahon L I SH O AO N Rishon
L O DH AX H O L N Lo nahon SH IH N M I Sheni
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