
SECOND DRAFT
MAY 25, 2010

Predicting Risk from Financial Reports with Supervised Topic Models

Neel Shah
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
neelshah@cmu.edu

Noah A. Smith
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
nasmith@cs.cmu.edu

Abstract

Forecasting from analysis of text corpora is an exciting research area, one that has
potential for application to a variety of fields such as finance, medicine and con-
sumer research. We apply techniques from Natural Language Processing (NLP) to
classifying documents with class labels based on real-world continuous quantities
associated with the forward-looking portion of the text’s meaning. In particular,
we study Financial Reports because of the presence of a large text corpus that is
highly standardized and widely studied by financial analysts in industry. In con-
ducting our analysis we use a class of generative probabilistic models known as
Topic Models. In such a model, documents are a mixture of topics, where a topic
is defined as a probability distribution over words. These models are interesting
because they provide a simple probabilistic procedure for generating documents.
Such a procedure can be inverted using standard statistical techniques, allowing
us to infer a set of topics from which a particular document was generated. We
then associate the inferred topic distributions with class labels based on real-world
quantities such as company-level financial indicators for the classification task.

1 Introduction

1.1 Motivation

The context of much of what follows is structured after Kogan et. al. [1]. We extend their work
by solving a similar problem with a different class of models. In particular, while they use Support
Vector Regression (SVR) to predict real-world continuous quantities associated with a document’s
meaning, we use Multi-Class Supervised Latent Dirichlet Allocation (Multi-Class sLDA) to assign
class labels based on the same real-world continuous quantities associated with the same document’s
meaning. Since Support Vector methods can be used for classification as well, uses and implemen-
tations of which are very well-documented, one of our earliest motivations was for this work to
provide a side-by-side comparison of discriminative (Support Vector Classification) and generative
(Multi-Class sLDA) classification methods applied to the same problem space.

1.2 Problem Statement

We are solving a text classification problem: given a piece of text, predict a class label based on a
real-world continuous quantity associated with the text’s meaning. In particular, we use a company’s
annual financial report to classify the financial risk of investment in that company, as measured
empirically by a quantity known as stock return volatility.

Predicting financial risk is important to stock investors and financial analysts who use such company-
level indicators for building an optimal portfolio and publishing company evaluations in secondary



reports, respectively. While these financial reports are by no means an exclusive part of an investor’s
or analyst’s decision criterion, they are often the first thing considered when trying to build a holistic
picture of a company’s state of current operations and future profitability. The unique place they
occupy in the financial community is because of the fact that they are government mandated (by
the SEC) and anything included in such reports is required, by law, to be accurate. The assumption
is that these financial reports contain a significant amount of information about a company’s value.
While [1] explored the secondary question of whether these costly-to-produce reports are actually
informative and whether they serve their purpose of actually protecting the investor, we solely focus
on our model’s predictive performance on this classification task.

As hinted at, we are interested in solving this problem primarily because it is a test-bed for NLP
research, specifically in the area of Text-Driven Forecasting. The output variable (volatility), em-
pirically measured, is uncontroversial and widely used in the financial community in almost every
discussion of a candidate stock’s potential for investment. Unlike other tasks in Statistical NLP,
prediction tasks usually have target variables whose usefulness is controversial. Because our output
variable is a summary statistic about the real-world, it is independent of human expertise, knowledge
or intuition. This is a large part of the reason why we extend the work of [1], because the ”prediction
task proves a new objective test-bed for any kind of linguistic analysis.”

Unlike in other NLP problems, we do not have to rely on costly annotated resources. By law, both
the text and the historical financial data are freely available as a byproduct of the American financial
system. Additional data can be obtained almost effortlessly by anyone with the right text mining
tools. For our research, we use the data collected by the authors of [1] for their work, additional
details of which are outlined in the Section 2.

1.3 Notation and Terminology

We present standardized notation and language for modeling text collections. Core entities are
”words,” ”documents,” and ”corpora.” Topic models aim to introduce latent variables that represent
abstract notions such as topics, which may not always correlate with our notion of topics of a docu-
ment. Topic Models are not tied to text and many successful applications of the model we use have
been documented in other problem areas, particularly image label classification as in [4].

The terms defined below (as in [3]) will be used in the sections that follow (unless otherwise speci-
fied):

• A word is the basic unit of text corpora, which we define to be an item from a vocabulary
indexed by {1, ..., V }.
Words are represented as unit-basis vectors that have a single component equal to one
(corresponding to the index position in the vocabulary) and all other components equal to
zero. Thus, using superscripts to denote components denote components of the vth word
in the vocabulary is represented by a V -vector w such that wv = 1 and wu = 0 for u 6= v.

• A document is a sequence of N words denoted by w = (w1, w2, ..., wN ), where wn is the
nth word in the sequence.

• A corpus is a collection of M documents denoted by D = {w1,w2, ...,wM}.

2 Dataset

2.1 Financial Reports

Financial Reports or ”Form 10-K” statements are produced by all publicly-traded companies as
required by the Securities and Exchange Commission (SEC). As summarized in [1], each company-
level report is in a standardized format and is intended to give a comprehensive summary of the
company’s performance. Each report typically contains historical data about the company’s orga-
nization and financial data about its operations. These reports are publicly available and regularly
published on the SEC’s website1. The structure of the 10-K report also specified in detail on the
SEC’s website. The authors of [1] have collected 54,379 reports published over the ten-year period

1http://www.sec.gov/edgar.shtml



1996-2006 from 10,492 different companies. Since each report has a date of publication, we can tie
the text back to the financial variables we want to predict.

With the goal of predicting future events in mind, we choose to focus on a specific section of the
10-K report. This is Section 7, also known as ”Management’s Discussion and Analysis” (MD&A)
section. Within this section, we focus on Subsection 7A, also known as ”Quantitative and Qualitative
Disclosures about Market Risk.” By law, companies have to put a disclaimer on forward-looking
statements to the effect that projections of future performance are not guaranteed, and things could
go otherwise. Because of this, most, if not all, forward-looking text statements are contained in
Section 7 within Subsection 7A. All other sections are filtered from the report.

In [1], the filtering procedure is performed by the a lightweight hand-written Python script that does
loose string matching for the Section 7, 7A and 8 headers. It finds the longest reasonable ”Section
7” match (in words) of more than 1,000 whitespace-delineated tokens. Section 7, and the entire
Report in more recent years, typically begins with an introduction as follows (from H&R Block’s
2005 Form 10-K, before tokenization, for readability; boldface added):

In this report, and from time to time throughout the year, we share our expecta-
tions for the Companys future performance. These forward-looking statements
are based upon current information, expectations, estimates and projections
regarding the Company, the industries and markets in which we operate, and our
assumptions and beliefs at that time. These statements speak only as of the date
on which they are made, are not guarantees of future performance, and in-
volve certain risks, uncertainties and assumptions, which are difficult to pre-
dict. Therefore, actual outcomes and results could materially differ from what is
expressed, implied or forecast in these forward-looking statements. Words such as
believe, will, plan, expect, intend, estimate, approximate, and similar expressions
may identify such forward-looking statements.

Note that some documents downloaded do not pass the filter at all and are excluded from the work
in [1] and present work as well. For example, some reports that include Section 7 ”by reference” are
excluded by the filter because the text is not directly included in the document.

The authors of [1] tokenized the text, which included ”punctuation removal, downcasing, collapsing
all digit sequences, and heuristic removal of remnant markup.” Since our goal is to focus on finding
indicators of risk directly from the text, the removal of numerical information is justified. If we used
the numerical information as predictors of risk we would be using financial data streams directly,
which circumvents our goal of using the text reports.

Table 1 gives statistics for the corpora used in this work, which is a subset of the corpus without
missing volatility measurements. The authors of [1] explain the drastic increase in length during
the 2002-2003 period by the passage of the Sarbanes-Oxley Act of 2002 by the U.S. Congress (and
related action by the SEC) in the wake of Enron’s accounting scandal. The new regulation imposed
revised standards on what publicly-traded companies in the U.S. should report.

year words documents words/doc.
1996 5.5M 1,408 3,893
1997 9.3M 2,260 4,132
1998 11.8M 2,462 4,808
1999 14.5M 2,524 5,743
2000 13.4M 2,425 5,541
2001 15.4M 2,596 5,928
2002 22.7M 2,846 7,983
2003 35.3M 3,612 9,780
2004 38.9M 3,559 10,936
2005 41.9M 3,474 12,065
2006 38.8M 3,308 11,736
total 247.7M 26,806 9,240

Table 1: Dimensions of the dataset used in [1] and this work after filtering and tokenization.



2.2 Volatility Measurements

The financial community widely regards stock-return volatility as a measure of risk. By definition
it is the standard deviation of a stock’s return over a finite window of time. Stock-return volatility
is directly related to the range of fluctuations in a stock’s price: a stock has high volatility when its
price fluctuates widely and low volatility when its price fluctuates narrowly or stays constant.

We repeat the derivation of stock-return volatility as the authors of [1] have.

Let rt = Pt

Pt−1 − 1 be be the return on a given stock between the close of trading day t− 1 and day
t, where Pt is the(dividend-adjusted) closing stock price at date t. The measured volatility over the
time period from day t− 1 to day t is equal to the sample standard deviation:

v[t−τ,t] =

√√√√ τ∑
i=0

(rt−i − r̄)2

/
τ (1)

where r is the sample mean of rt over the period. In [1], the above estimate is treated as the true
output variable on training and testing data.

However, note that this is not the only the volatility measurement available to us. Another popular
measure of volatility usually treated with the same level of attention as stock-return volatility is im-
plied volatility. Implied volatility assumes that the observable stock returns come from a model of
the stock’s price at any given a time. For example, such a model could assume the stock price fol-
lows some continuous-time stochastic process dependent on a fixed set of parameters, one of which
is stock volatility. Given a set of stock price observations over a given period of time and all the
model parameters except for stock volatility, one can use the model to derive the volatility implied
by the stock price observations, values of the other fixed parameters and the model’s assumptions.
Calculating implied volatility is as easy as calculating stock-return volatility because of the widely
documented models for stock-price movements and inversion procedures that have been produced
for them. One cannot help but notice the parallels between our generative model and the procedure
for obtaining implied volatility. While this approach allows us to encode assumptions about a partic-
ular market’s stock price movement, its reliance on financial expert knowledge makes it a subjective
output variable. However, we want our target to be based on observation rather than theory in order
for our prediction task to remain extensible to other forms of linguistic analysis. Thus, we maintain
our choice of stock-return volatility as our output variable.

As in [1], we note the differences between predicting stock-returns volatility and predicting stock-
returns. Both are fundamentally different tasks. In the former, we are interested in predicting how
stable a stock’s price will be over a future time period. In the latter, we are predicting how well a
stock will perform. As is acknowledged by the financial community, directly predicting a stock’s
performance based on easily available public information is difficult due to the ”efficient market hy-
pothesis” [9]. In contrast, predicting a stock’s riskiness using public information is uncontroversial
and an underlying assumption in many economically sound pricing models.

If the ”efficient market hypothesis” is to be believed, as is empirically suggested, predictability of
returns, if possible, could be traded away by virtue of buying/selling stocks that are under- or over-
valued [9]. In short, predicting stock returns is based on the principle that if it could have been done,
it would have been done already and any gains from doing so would have been traded away. On the
other hand, a similar strategy costs much more to implement using predictability of volatility.

For each report included in our corpus, the authors of [1] used the Center for Research in Security
Prices (CRSP) US Stocks Database to obtain the price return series along with other firm character-
istics. Using the above definition of stock-return volatility, they calculated two volatilities for each
company/report observation: the twelve months prior to the report (v(−12)) and the twelve months
after the report (v(+12)).

Since we are solving a classification problem, the real-valued continuous volatility measurements
are converted into volatility class labels. For a given corpus, we gather volatility measurements for
all documents in the corpus as above and store them in a list of size n. Then we sort this list and
divide it into k partitions where k is the number of class labels we desire. Then we go over each



partition i (starting with the lowest, or i = 0) where i ∈ {0, ..., k − 1} and assign the label i to all
the associated documents in that partition.

For example, if k = 2, we want 2 class labels, then i ∈ {0, 1}, which corresponds to {low, high}
volatility labels. We use the median of the sorted list, to divide the members of the list into two
partitions. For volatility measurements less than the median, we label the associated documents with
the label 0 or ”low volatility” and similarly, for volatility measurements greater than the median,
we label the associated documents with the label 1 or ”high volatility.” This procedure is readily
extensible to higher k.

In order to extend to higher k, we first assume that the sorted list of volatility measurements has
size n, such that n is divisible by k. When this is the case, the division points for the partitioning
algorithm are at m∗nk where m ∈ {1, ..., k − 1}. This is based on the assumption that the size of
the sorted list n is divisible by k. When n is not divisible by k, we set n = n − (n mod k). What
this effectively does is (a) make the new n divisible by k and also (b) assigns the highest class label
k − 1 to the remainder n mod k) associated documents at the end of the sorted list. Since there are
at most k − 1 of these remainder associated documents, and k generally tends to remain small (i.e.
k � 10) and n generally tends to remain large (i.e. n� 1000), we are justified in doing this.

Transforming real-world measurable continuous quantities to class labels in such a way naturally
induces an ordering on the labels. This makes our volatility class labels ordinal, or ordered, instead
of nominal, or unordered. Ordinal labels allow you rank labels on a scale, but the real distance
between categories is unknown. For nominal values the real distance between categories is assumed
to be a uniform fixed constant between any two labels, or in other words, you cannot rank labels on
a scale. This may have a significant impact on Multi-Class sLDA, which has been documented to
show better than state-of-the-art performance only on nominal, and piecewise independent, labels
such as image classes as in [4]. Also, when picking our baseline, we have to choose an appropriate
model from the family of Generalized Linear Models (GLMs) for ordinal categorical data [10].

3 Models and Algorithms

3.1 Elastic-Net Multinomial Regression

We use Elastic-Net Multinomial Regression as our Baseline.

The authors of [11] developed a technique to improve the performance of multinomial regression.
This regularization technique is called Elastic Net and it simultaneously performs variable selection
and continuous shrinkage. The naive method is a least squares method with an l1 penalty and a
quadratic penalty. The l1 penalty, related to lasso-type thresholding, performs variable selection and
induces a sparse model. The quadratic penalty, related to ride regression, places no limitation on the
number of variables that may be selected for the model and induces a grouping effect. The elastic net
procedure is a scaled transformation of the naive method, retaining the variable selection property
while correct for additional bias, without reducing variance, introduced by extra shrinkage. For full
details, which are out of the scope of this work, see [11].

We are interested in this technique because it is widely regarded as a state of the art discriminative
classification model. We will apply the technique to the sets on which Multi-Class sLDA is applied
in order to evaluate the performance of our work.

3.2 Latent Dirichlet Allocation (LDA)

Developed by authors of [2], LDA is a generative probabilistic model, specifically, a three-level
hierarchical Bayesian model, for text corpora. Each document is modeled as a finite mixture over
an underlying set of topics2. Each topic is modeled as an infinite mixture over an underlying set
of topic probabilities. The topic probabilities provide an explicit representation of the document.
Topics can be said to represent an underlying semantic theme; a document with a large number of
words can be modeled as being composed from a smaller number of topics [3].

2latent multinomial variables that representation probability distributions on sets of words.



The authors of [2] present efficient approximate inference techniques based on variational meth-
ods and an EM algorithm for empirical Bayes parameter estimation. In the rest of the section we
summarize the finer points of [2] and its applicability to our problem.

The basic idea behind LDA is motivated by many of the advances in dimensionality reduction tech-
niques. In the field of Information Retrieval (IR), the popular tf-idf scheme is used to reduce docu-
ments of arbitrary length to fixed-length lists of numbers. Further compression of large text corpora
can be achieved by latent semantic indexing (LSI), which uses singular value decomposition to iden-
tify a linear subspace in the space of tf-idf features that captures most of the variance in the corpora.
Probabilistic LSI, a generative model, was then created as an alternative to LSI. As opposed to LSI,
which uses linear algebra to reduce dimensionality, pLSI models each word in a document as a sam-
ple from a mixture model, where mixture components are multinomial random variables and can be
regarded as topics. In pLSI each document is represented as a list of mixing proportions of topics,
leading to problems with assigning probability to a document outside the training set.

LDA aims to improve on pLSI, by using its underlying assumptions and by modeling at the
document-level. LDA is based on the bag of words assumption, which states that the order of
words in a document does not matter. This implies that the ordering of documents in a corpus does
not matter as well. While pLSI used a mixture model based on the exchangeability of words, LDA
considers mixture models based on the exchangeability of the words and the documents.

The unsupervised model aims to find a probabilistic model of a corpus that assigns high probability
to members of the corpus and high probability to other ”similar” documents.

LDA assumes the following generative process for each document w in a corpus D from [2]:

1. Choose N ∼ Poisson(ξ)

2. Choose Θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(Θ)

(b) Choose a word wn from p(wn zn, β), a multinomial probability conditioned on the
topic zn.

Simplifying assumptions from [2]:

1. Dimensionality k of the Dirichlet distribution and dimensionality of the topic variable z is
assumed known and fixed.

2. Word probabilities are parameterized by a k x V matrix β where βij = p(wj = 1 zi = 1),
which is treated as a fixed quantity to be estimated.

3. Poisson assumption is not critical, and more realistic document length distributions can be
used as needed.

4. N is independent of all other data generative variables (Θ and z) and its randomness can
be ignored.

The k-dimensional Dirichlet random variable Θ can take values in the (k − 1)-simplex (a k-vector
Θ lies in the (k − 1)-simplex if Θi ≥ 0,

∑
i = 1kΘi = 1). The Dirichlet distribution on the sim-

plex is in the exponential family, has finite dimensional sufficient statistics, and is conjugate to the
multinomial distribution. Given the parameters α and β the joint distribution of a topic mixture Θ,
a set of N topics z, and a set of N words w can be found. As is shown in [2], this can be used to
obtain the marginal distribution of a document, which can be then used to obtain the probability of
a corpus.

The probabilistic graphical model of LDA in Figure 1 displays its three-levels. The parameters α and
β are corpus-level parameters, assumed to be sampled once in the process of generating a corpus.
The variables Θd are document-level parameters, sampled once per document. Finally, the variables
zdn and wdn are word-level variables and are sampled once for each word in each document. The
key difference between LDA and the simple Dirichlet-multinomial clustering model is that in LDA,
documents can be associated with multiple topics.



Figure 1: Graphical model representation of LDA. The boxes or ”plates” represent replicates. From
outside of outer plate to inside of inner plate: corpus level→ document level→ word level

Variational Inference

From [2], LDA assumes that each word of both the observed and unseen documents is generated by
a randomly chosen topic which is drawn from a distribution with a randomly chosen parameter. This
parameter is sampled once per document from a smooth distribution on the topic simplex. Such a
model is a parametric empirical Bayes model, for which we can use the empirical Bayes approach
to estimating parameters such as α and β in simple implementations of LDA.

In order to solve the inference problem for LDA, one needs to compute the posterior distribution of
the hidden variables given a document. However, this distribution is intractable for exact inference.
The authors of [2] use a simple convexity-based variational algorithm for inference in LDA. The
derivation of the variational inference procedure, fully outlined in [2], is out of the scope of this
work, but we summarize the variational inference algorithm from [2] in Figure 2.

1. initialize φ0
ni := 1/k for all i and n

2. initialize γi := αi +N/k for all i
3. repeat
4. for n = 1 to N
5. for i = 1 to k
6. φt+1

ni := βiwn
exp(ψγti )

7. normalize φt+1
n to sum to 1.

8. γt+1 := α+
∑N
n=1 φ

t+1
n

9. until convergence

Figure 2: A variational inference algorithm for LDA

Each iteration of the variational inference for LDA requires only O((N + 1)k) operations [2]. In
practice the number of iterations required for a single document is on the order of the number of
words in the document, bounding the total number of operations to the order N2k

Parameter Estimation

The empirical Bayes method is used for parameter estimation in the LDA model. Given a corpus of
documents D = {w1,w2, ...,wM}, the authors of [2] find parameters α and β that maximize the
(marginal) log likelihood of the data:

l(α, β) =

M∑
d=1

log p(wd α, β) (2)



The likelihood function contains the intractable quantity p(w α, β). They use the variational infer-
ence procedure to obtain a lower bound on the log likelihood, which can be maximized with respect
to α and β.

The approximate empirical Bayes estimates are calculated via an alternating variational EM pro-
cedure that maximizes a lower bound with respect to the variational parameters γ and φ and then
for fixed values of the variational parameters, maximizes the lower bound with respect to the model
parameters α and β.

1. (E-step) For each document, find the optimizing values of the variational parameters
{γ∗d , φ∗d : d ∈ D}. This is done as is described in the Variational Inference subsection.

2. (M-step) Maximize the resulting lower bound on the log likelihood with respect to the
model parameters α and β. This corresponds to finding the maximum likelihood estimates
with expected sufficient statistics for each document under the approximate posterior which
is computed in the E-step.

Figure 3: A variational EM procedure for LDA

We summarize the iterative algorithm from [2] in Figure 3. The two steps below are repeated until
the lower bound on the log likelihood converges. More efficient methods for parameter estimation
are documented in [2], which are once again out of scope for this work.

Applicability to our Work

LDA, in its unsupervised form, can be used to model the documents in our corpus. We could
potentially use the generated topics as features for a logistic regression model, to predict volatility
measurements or class labels. However, as we will see later, extending LDA to the supervised setting
allows us to train topics based on which are most predictive of a particular response. As opposed to
the vanilla LDA model, Supervised LDA (sLDA) actually allows us to pair documents and response
variable measurements or class labels. Using the topics along with the words in a corpus as features
in a logistic regression model has been preliminary tested, but was found to be no more helpful than
using words (or N-grams) alone. Also, predictive performance deteriorates drastically when topics
alone are used as features.

Another potential approach to document classification with the unsupervised model was demon-
strated in [2]. The documents in the corpus were reduced to a fixed set of real-valued features -
the posterior Dirichlet parameters γ∗(w). This was primarily done in order to test how much dis-
criminatory information was lost in reducing the document description to these parameters. These
low dimensional representations of the documents in a corpus were used to train Support Vector Ma-
chines (SVM) and it was found that while there was a significant reduction in the feature space, there
was little reduction in classification performance using LDA-based features. We have yet to try this
approach using our data, which would shift our focus from using a Supervised Topic Model to di-
rectly predict the class label instead to using an Unsupervised Topic Model to reduce dimensionality
so that discriminative models such as SVM would be used for the prediction task. However, ex-
periments in that direction would definitely help us compare LDA’s use as a tool for dimensionality
reduction versus a tool for regression or classification.

Document modeling for the purposes of qualitatively evaluating predicted topics seems like a
promising task. The results of such experiments are outlined in Section 5. We chose to focus on
predicting topics from the training and test sets that were used in the Supervised Learning task. This
was in order to illustrate the differences in the top-topic words chosen by each model and empirically
confirm the different goals of the LDA and sLDA models.

3.3 Supervised Topic Models (sLDA)

The authors of [3] extended the work from [2] to develop sLDA, a statistical model of labelled doc-
uments that accommodates a variety of response types. In their work they derive an approximate
maximum-likelihood procedure for parameter estimation, which relies on variational methods to
handle intractable posterior expectations. Their primary goal is to use the fitted model to predict



response values for new documents. Note that the authors of [3] primarily focus on solving regres-
sion problems, which was motivated the growing need to analyze large text corpora, especially in
the case when documents can be easily paired with an external response variable.

Similar to Section 3.2, in the rest of this section we summarize the finer points of [3] and its appli-
cability to our problem.

sLDA adds to LDA a response variable connected to each document. This response variable is a
quantity we are interested in predicting, such as the volatility measurements in [1]. The documents
and responses are jointly modeled to find the hidden topics that will best predict response variables
for future unlabeled documents. sLDA in [3] uses the same probabilistic methods as a generalized
linear model to allow for various response types: unconstrained real values, real values constrained
to be positive, unordered or ordered class labels, nonnegative integers and other types.

Fix the model parameters: K topics, β1:K (each βk is a vector of term probabilities), a Dirichlet
parameter α and response parameters η and δ.

sLDA assumes the following generative process for each document and response from [3]:

1. Draw topic proportions Θ α ∼ Dir(α)
2. For each word

(a) Draw topic assignment zn θ ∼Mult(θ)
(b) Draw word wn zn, β1:K ∼Mult(βzn )

3. Draw response variable y z1:N , η, δ ∼ GLM(̄(z), η, δ) where we define
(1) z̄ := (1/N)

∑N
n=1 zn.

Figure 4: Graphical model representation of sLDA. The boxes or ”plates” represent replicates.

The distribution of the response is a generalized linear model, which contains a ”systematic com-
ponent” and a ”random component,” assumed to be from an exponential family. As opposed to the
words and the documents, the responses are treated as non-exchangeable and response is treated as
it depends on the topic frequencies which actually occur in a generated document. Figure 4 summa-
rizes the parameters that need to be estimated. In the case of sLDA, β, previously our corpus-level
parameter, is sampled once for each topic.

3.3.1 Variational Inference

Like for LDA, when attempting to solve the posterior inference problem by computing the condi-
tional distribution of the latent variables at the document-level given its words w1:N and the corpus-
wide model parameters, they arrive at a conditional distribution that is intractable.

The authors of [3] use mean-field variational inference, where Jensen’s inequality is used to lower
bound the normalizing value. The extended derivation is found in their work and is not presented
here because its complexity is out of our scope. They key difference between sLDA and LDa is in
the update for the variational multinomial φn. Since the optimization with respect to the variational
multinomial depends on the form of the partial derivative with respect to φn of the expectation of
the log-normalizer, it is dependent on our choice of the distribution of response type. This problem
will be revisited in the inference procedure for Multi-Class sLDA, in Section 3.4.1.



3.3.2 Parameter Estimation

Maximum likelihood estimation based on variational expectation-maximization is used to estimate
the Dirichlet parameters α, GLM parameters η and δ and topic multinomials β1:K from a data set of
observed document-response pairs {wd,1:N , yd}Dd=1. From [3], the expectation is taken with respect
to the variational distribution. The maximization proceeds by maximum likelihood estimation under
expected sufficient statistics.

Variational EM optimizes corpus-level lower bound on the log likelihood of the data. Response
variable’s y are augmented with document indices to make yd. Similarly, empirical topic assign-
ment frequencies Z̄ are augmented to make Z̄d and so on. Expectations are taken with respect to
document-specific variational distributions qd(z1:N,Θ).

1. (E-step) Estimate the approximate posterior distribution for each document-response pair
using the variational inference algorithm from Section 3.3.1, fully developed in [3].

2. (M-step) Maximize the corpus-level evidence lower bound or ELBO with respect to the
model parameters. More details on the ELBO are provided in the development of the
variational inference algorithm in [3].

Figure 5: A variational EM procedure for sLDA

Variational EM finds a local optimum of the likelihood function of the model parameters. The M-
step updates of the topics B1:K are the same as in LDA. The procedure for estimating the GLM
parameters are once again response distribution choice dependent and will be covered in Section
3.4.2. Since we fix the Dirichlet parameter α = 1/K where K is the number of topics, an input to
the model, we do not need to estimate it for our problem.

3.3.3 Prediction

Given a newly observed document w1:N and the fixed values of the model parameters as a fitted
model α, β1:K , η, δ, we are interested in predicting a response y or the expected response value.
This step depends on approximating the posterior mean of Z̄ using variational inference, which
we discussed briefly in Section 3.3.1. The procedure is the same as in that section, but the terms
depending on the response y are removed from the ELBO. The authors of [3] use a coordinate
ascent algorithm identical to variational inference for LDA. This algorithm is independent of the
particular response type. In summary, given a new document, we first compute the variational
posterior distribution of the latent variables Θ and Zn or q(θ, z1:N ) and then estimate the response
by computing or approximating Eq[µ(ηT Z̄)] where µ(.) = EGLM [Y .]. This quantity is calculated
as a part of the estimating the GLM parameters, discussed briefly, in the Section 3.3.2.

3.3.4 Applicability to our Work

We started with a presentation of sLDA from [3] first because it was the basis for the development
of Multi-Class sLDA. While the specific algorithms developed are for a Gaussian and a Poisson
response, the inference and estimation methods are suggestive of extensions to any other exponential
family. Since our classification task requires a Multinomial response, a member of the exponential
family, the work in [3] is very relevant to accomplishing the goals of this work. Specifically, it is
the assumption on the distribution of the response as a GLM gives us the flexibility to model any
response type from the exponential family, particularly the multinomial response type, by specifying
the base measure and log-normalizer [3].

For general exponential family response, the authors of [3] recommend using the multivariate delta
method for moments to approximate difficult expectations as been documented in their work to be
effective in variational approximations.

3.4 Multi-Class sLDA

The authors of [4] extend the work from [3] to develop Multi-Class sLDA, a probabilistic model that
simultaneously learns the latent topics among the documents that are predictive of their class labels.
For new unlabeled documents, the model provides predictive distributions of the class label.



Multi-Class sLDA assumes the following generative process for each document and class label:

1. Draw topic proportions Θ ∼ Dir(α)

2. For each word

(a) Draw topic assignment zn θ ∼Mult(θ)
(b) Draw word wn zn ∼Mult(βzn )

3. Draw class label c z1:N ∼ softmax(z̄, η), where z̄ = 1
N

∑N
n=1 zn is the empir-

ical topic frequencies and the softmax function provides the following distribution,
p(c|z̄, η) = exp(ηTc z̄)

/∑C
l=1 exp(ηTl z̄)

Figure 6: Graphical model representation of Multi-Class sLDA. The boxes or ”plates” represent
replicates.

The graphical model of Multi-Class sLDA displays the parameters that need to be estimated. Note
the similarity between this and Figure 4 (changes are bolded). In sLDA, the response variable for
each document is assumed drawn from a generalized linear model with input given by empirical
distribution of topics that generated the words. In [3], the response variable is real valued and drawn
from a linear regression. Since our goal is to build a classifier,we consider a class label response
variable, drawn from a softmax regression for classification. This complicates the approximate
inference and parameter estimation algorithm, but extends the work done by authors of [3].

3.4.1 Variational Inference

As we discovered was the case for LDA and sLDA, the posterior inference is not directly possi-
ble. Mean-field variational methods for a scalable approximation algorithm are applied. The full
derivation is in [4].

3.4.2 Parameter Estimation

Provided a corpus of documents with class labels, D = {(wd, cd)}Dd=1, we find the maximum
likelihood estimation for text topics β1:K and class coefficients η1:C . As in LDA and sLDA, we
use the variational EM, which replaces the E-step of expectation maximization with variational
inference to find an approximate posterior for each data point. In the M-step, as in exact EM, we
find approximate maximum likelihood estimates of parameters using expected sufficient statistics
calculated in the E-step.

3.4.3 Prediction

Prediction involves classification of unlabeled documents. First we need to perform variational
inference given the unknown document. Use a variant of the algorithm in 3.4.1 to determine q(θ, z).
Because the class label is not observed we remove the λmn terms from the variational distribution
and the terms involving ηc from the updates on the topic multinomials.



From [4], the probability of the label c is estimated by replacing the posterior p(z w, r) with the
variational approximation

p(c | r, w) ≈
∫

exp(ηTc z̄ − log(

C∑
l=1

exp(ηTl z̄)))q(z)dz

≥ exp

where the last equation is obtained using Jensen’s inequality and q is the variational posterior com-
puted in the first step.The second term in the exponent is constant with respect to class label. Thus
the prediction rule is

c∗ = arg max
c∈1,...,C

Eq[η
T
c z̄] = arg max

c∈1,...,C
ηTc φ̄

We apply two approximations. First we approximate the posterior with q. Second we approximate
the expectation of an exponential using Jensen’s inequality. This could be a potential source of error,
because such approximations, though supported by [4] are admitted to be theoretically unfounded.

3.4.4 Applicability to our Work

The model finds a set of topics that are predictive of class labels. This is precisely the problem we
set out to find and use in our work.

4 Experimental Methodology

In this section, we describe how experiments were designed. In particular we focus on the construc-
tion of the tools, algorithms and training/test sets. The smallest unit we use to compose training/test
sets is a year’s worth of documents where the year ∈ {1996, ..., 2006}. From collections of these
smaller units, or subsets of the set ∈ {1996, ..., 2006}, we construct larger training/test sets. Since
we have the goal of predicting future volatility in mind, the units used in the construction of the
training set are from years before the units used in the construction of the test set.

4.1 Data Format

Both LDA and Multi-Class sLDA implementations require the data to be in a specific format, one
that reminds us of the exchangeability assumptions (for words and documents) that both models
were build upon. This format, referred to as the LDA format, is as follows:

Each document is succinctly represented as a sparse vector of word counts. The data is a file where
each line is of the form:

[N] [term1]:[count] [term2]:[count] ... [termN]:[count]

where [N] is the number of unique terms in the document, and the [count] associated with each
term is how many times that term appeared in the document. Note that [term1] is an integer which
indexes the term; it is not a string.

Each unique term in a document is given the distinction type. On the other hand, each instance of a
particular unique term is given the distinction token.

The LDA format allows for a sparse and compact representation of our text corpora.

The original corpus is a collection of text documents. Each document contains the target section of
the 10-K statement in words, space separated, for a particular company in a particular year.

The corpus in LDA format is a data file and a vocabulary file.

data file contains documents (newline delimited) in the format specified above (no original identi-
fying text, just indices and counts)

vocabulary file contains the unique words that appear in the corpus, newline separated, with the
line number (0 indexed) corresponding to number that is used as an index for the word in
the data file.



The vocabulary file is only used to obtain the top-topic words and is not used by the estima-
tion/inference procedures.

From the original corpus of documents, it is straightforward to convert into LDA format. Given the
text of a particular document, we need to loop over each word in the document (space delimited),
adding each word to our dictionary (a map) of <word> and <word counts>. We create such a
dictionary for each document in the corpus. The intersection of all the words the appear in these
dictionaries is the unique vocabulary of this corpus, which we constructed in the process of forming
each individual dictionary. We sort the words in this vocabulary in alphabetical order and then write
each word to the vocabulary file (newline delimited), thus forming the index of words to numbers to
be used by the data files. Then for each dictionary (order of documents does not matter), we append
to a data file in the format specified above. Once this has been done for all dictionaries, we have the
data file in LDA format as our representation of our text corpus.

4.2 Filtering Procedure

Due to limitations in the Multi-Class sLDA implementation, we needed to employ a filtering pro-
cedure when designing training and test sets. The filtering procedure serves two main purposes.
First, it ensures that the construction of the test set excludes any new words not encountered when
constructing the training set. Second, it limits the number of total tokens of a corpus when forming
training or test sets for input into the model.

The first concern has a simple fix. We begin by constructing a training set, which gives us a data
file and a vocabulary file. Then using the training set’s vocabulary file as a guest list during the
construction of the test set, which excludes any words from the test corpus not found on the list.
The reason why we need to do this is because the Multi-Class sLDA model works in two phases:
estimation and inference. The inference procedure, which uses the fitted model to do prediction on
the test set, cannot react to words not in the fitted model. The fitted model is constructed by the
estimation procedure, which uses the training set to generate the fitted model. Because of this, the
inference procedure cannot react to words not in the training set, which we exclude from our test
set. We need to implement smoothing in the inference procedure if we want it to be able to handle
new words (unseen during training), which is a more involved process.

The second concern has a more complex fix. We want to limit the total tokens of a corpus when
forming training or test sets. The tokens of a corpus are the individual instances of words that
appear in the corpus. In the results section we outline the pre-filter number of tokens and the post-
filter number of tokens in order to illustrate the consequences of the procedure. However, we do
not know beforehand the maximum number of total tokens in a training/test set the Multi-Class
sLDA implementation can handle. Also, since tokens correspond to the individual instances of
types appearing in the corpus, even if we did know an upper limit on the tokens, we have no way
of choosing which ones to exclude. For example, there could be > 10,000 tokens of the type ”a”
and ”the”, which is the amount we need to reduce our total token amount by, and we do not have a
heuristic to decide between the two.

The basic idea is to eliminate tokens based on the least/most common types. For a particular type,
such as the word ”a” and ”the”, we know the exact number of times it occurs. Since the amount of
occurrences of either type is large relative to the other types in the corpus, we know that these are
more frequently occurring types. In this case, we would eliminate the more frequently occurring
type between the two choices if we needed to meet a particular token target.

Our filtering procedure abstracts this idea further. We take as input a value, α, that is between 0
and 50. This variable lets us specify the level of filtering (as a percentage) that should occur, with
higher numbers corresponding to higher levels of filtering. Given a map of <types> to the <count
of instances of that type that occur in a corpus> we sort by the count. We now have a sorted list of
length X with the least to most frequent types found in a corpus. We set the {low, high} thresholds
for filtering by taking the members of this sorted list at the α × X and (100 − α) × X positions.
Any types below or above (exclusive) these {low, high} thresholds are stop listed. For example, if
we set α at 50, the {low, high} thresholds would be set by the median member of the sorted list,
effectively filtering all types from the corpus (except for the median type). Also, by setting α at 0,
the {low, high} thresholds would be the first and last elements of the sorted list, which corresponds
to no filtering at all.



We typically set α at 1% or 5% depending on the number of documents in the corpus and the pre-
filter token count. Depending on the contents of documents in a corpus, and the resulting pst-filter
token count, this is adjusted. This filtering occurs on the training and test sets, however, it is typically
not required on the latter. Since each document has a different type distribution we cannot pick a
particular level α beforehand. We have to make judgements based on the size of the target corpus
and whether test runs of Multi-Class sLDA fail. This is a very subjective process, however, we have
tried to retain as many of the original tokens as we could have.

4.3 Baseline

We use the glmnet package and function in R published by the authors of [5] to create a baseline for
Multi-Class sLDA.

The function works well with very large sparse data matrices to fit a regularization path for the
Elastic Net for a multinomial regression model. The algorithm uses cyclical coordinate descent in a
pathwise fashion. For further details about the implementation of this procedure, see [5].

We use the notation of Section 1.3, when describing what we provide as input to the glmnet function,
with the following additions. Remember we are given that a corpus is a collection of M documents,
a document is a sequence of N words and a word is an item indexed from a vocabulary of size V .

We create a sparse matrix P with dimensions M × V . Each row of P corresponds to a document
and each column corresponds to a unique word from the vocabulary. Each cell Pij corresponds to
the number of times word j (indexed in vocabulary) appears in document i. Given that the data is in
LDA format, see Section 4.1, it is relatively easy to construct the matrix P .

We create another matrix R with the dimensions M × 1. Since each row of P corresponds to a
particular document, for that document, we populate the corresponding row of R with the response
label associated with that document.

For a given corpus, we construct the sparse matrix P and take it to be the predictors in our glmnet
function. Correspondingly, the matrix R is taken to be the response in our glmnet function. All
that remains to be tweaked are the Elastic Net mixing parameter, α, which we fix at α = 0.01 and
maximum number of iterations we would like the fitting procedure to run, we set maxit = 1000.

4.4 Document Modeling

For LDA, we use C source code released by authors of [2] as is to perform document modeling.

4.5 Classification

For Multi-Class sLDA, we use C++ source code released by authors of [4] to run our experiments
with slight modifications to handle varying training/test set size.

5 Selected Results

Table 2 describes the characteristics of the Training Sets, to which we assign an Index for reference
in the next section. In particular we list the Training Year(s) in the set, Total Number of Documents,
Pre-Filter and Post-Filter total token counts and total number of Stop types.

Table 3 describes the characteristics of the Test Sets, on which we use the model fitted on the
Training Sets in Table 2 to do inference. In particular we list the Testing Year in the set, Training
Set index, average Accuracy of Multi-Class sLDA and Baseline accuracy.



Index Train Year Docs Pre-Filter Post-Filter Stop α %
1 2001 2597 15,519,607 2,960,334 581 1
2 2002 2846 22,830,558 3,963,181 710 1
3 2003 3612 35,402,868 5,282,014 912 1
4 2004 3559 38,975,123 5,766,147 974 1
5 2005 3475 41,901,864 6,071,990 1036 1
6 2004,2005 7034 80,876,987 9,862,448 1269 1
7 2003,2004,2005 10,646 116,279,855 2,517,774 7296 5
8 2002,2003,2004,2005 13,492 139,110,413 2,753,075 7902 5
9 2001,2002,2003,2004,2005 16,089 154,630,020 2,885,818 8361 5

Table 2: Characteristics of training sets used in experiments.

Test Year Index Docs Accuracy % Baseline %
2006 1 3306 53.3 62
2006 2 3306 56.2 66.7
2006 3 3306 66.3 73.7
2006 4 3306 68 80.3
2006 5 3306 67.7 79.6
2006 6 3306 67.1 75.1
2006 7 3306 57.3 68.5
2006 8 3306 59.7 67
2006 9 3306 57.4 64.9

Table 3: Characteristics of test sets used in experiments.



6 Discussion

The driving force behind this work was to extend the results of [1] and develop benchmarks for a new
direction in Text-Driven Forecasting. We have used a relatively new class of generative probabilistic
models, Supervised Topic Models, in order to solve a text classification problem, in which we used
the text to make predictions about volatility class labels that correspond to measurable real-world
continuous quantities. We applied the technique to predicting financial volatility class label from
companies’ 10-K reports and found the initial average classification accuracy results to be promising.
An extension would be to use Supervised Topic Models to solve the texts regression problem and use
the text to directly make predictions about real-world measurable quantities as in [1]. Solving the
text regression problem using Supervised Topic Models is not as easy as growing the number of class
labels k in our Multi-Class sLDA model to approach∞; instead, the target variable’s distribution,
the inference and estimation algorithms need to be modified as is done in [3]. Another way to make
our work directly comparable to [1] is to train and test a Support Vector Classifier (SVC) on the
same sets as documented in the Results Section. This is much easier to do since fast algorithms
for SVC already exist. Another issue is the predictive performance of our model, which is better
than random, however, still far from the discriminative baseline (Elastic-Net Logistic Regression).
This raises questions as to the applicability of generative models as a whole to such prediction tasks,
questions which we explore in the next Section.

7 Further Work

7.1 Discriminative vs. Generative Classifiers

As mentioned earlier, one of our first motivations was to contrast discriminative and generative
classifiers in the same problem space. Further work needs to be dedicated to fully exploring this
problem, however, we briefly comment on the high-level differences between the models using in
[1] and in our work. The below definitions are extrapolated from [6].

Discriminative models (i.e. Support Vector Machines and Logistic Regression) model the depen-
dence of an unobserved variable y on an observed variable x. This is accomplished by modeling the
conditional probability distribution P (y|x) and then using it to predict y from x. In contrast with
generative models, they do not allow one to sample from the joint probability distribution P (y, x).

Generative models (i.e. Latent Dirichlet Allocation and Naive Bayes) model data directly, which
is treated as randomly generated observable data, given some hidden parameters. They specify the
joint probability distribution P (y, x) over observations x and labels y, from which the conditional
probability distribution P (y|x) can be formed using Baye’s rule. In contrast with discriminative
models, generative models can be used to generate values of any variable in the model, as opposed
to only being able to sample target variables, y, conditioned on observed quantities, x.

The authors of [7] compare the predictive performance of models from the two types (Logistic
Regression vs. Naive Bayes) to see if a difference between the two exists and what that difference
is founded upon. We summarize some of their conclusions here and comment briefly on how it
affects us. According to them, it is widely conceived that discriminative classifiers (which model the
posterior P (y|x) directly) almost always have a higher test set accuracy than generative classifiers.
While this is likely because generative problems solve a more general problem before modeling
the posterior probabilities, they want to demonstrate when this belief is mistaken. On the other
hand, generative classifiers are advantageous because they have documented better performance
when training set sizes are small. Also, the EM methods used in generative classifiers can be more
easily extended to handle missing data. They conclude that discriminative methods have a lower
asymptotic error, while generative methods approach their higher asymptotic error much faster.

While we did not systematically repeat the results of [1] using a Support Vector Classifier, in order
to allow for a direct comparison with our Multi-Class sLDA model, our classification results lend
preliminary evidence that seems to confirm the widely held belief that discriminative methods are
better than generative methods based on test set accuracy. We recommend further experimentation
with a focus on varying training set size that directly compares Support Vector methods and Multi-
Class sLDA in order to see how they relate to the conclusion of [7]. In summary, as the training set



size increases, we should expect to see Multi-Class sLDA to initially do better, but for the Support
Vector Classifier to eventually catch up, and outperform, the accuracy of Multi-Class SLDA.

The authors of [8], directly extended the conclusions drawn from [7] and constructed a hybrid gen-
erative/discriminative model. The hybrid model is partly generative (Naive Bayes) and partly dis-
criminative (Logistic Regression). In their model, a large subset of the parameters are trained to
maximize the generative component (joint probability, P (y, x)) and a much smaller subset of the
parameters are trained to maximize the discriminative component (conditional probability, P (y|x)).
This method allows for control over groupings of variables based on their contribution to the classi-
fication decision. Also, this method allows for improvement of accuracy and coverage of the Naive
Bayes’ model, which makes independence assumptions not reflected by the observable data. In their
work, they find that the number of examples needed to fit the discriminative parameters increases
only as the logarithm of vocabulary size and document length. The hybrid model to get significantly
more accurate classification results and class posterior probabilities that are more representative of
the empirical error rates.

Using the results of [8] as an inspiration, a proposed extension to the work here would be to build
a hybrid model for this classification task for our problem. However, before we can move in that
direction, we need to evaluate whether Multi-Class sLDA, a Topic Model, is amenable to extensions
that were applied to the Naive Bayes Classifier. We believe that a hybrid model can be used to better
incorporate domain knowledge in our problem, which maybe currently hindering our predictive
performance.

Acknowledgments

Thanks to Professor Noah A. Smith for advising and Assistant Dean Mark Stehlik for managing the
Senior Thesis program. Thanks to Kogan et. al. [1] for collecting, preprocessing and publishing
the Financial Reports and Volatility Measurements used in this work. Thanks to Blei et. al. [2] and
Wang et. al. [4] for releasing the source code for their LDA and Multi-Class SLDA implementations,
respectively. Final thanks to Chong Wang of [4] for his feedback in helping resolve issues with the
Multi-Class SLDA implementation, which was critical to the completion of this work.

References

[1] S. Kogan, D. Levin, B. Routledge, J. Sagi, and N. Smith. Predicting risk from financial reports
with regression. In Proc. NAACL Human Language Technologies Conf., 2009.

[2] D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet Allocation. JMLR, 3:9931002, 2003

[3] D. M. Blei and J. D. McAuliffe. Supervised Topic Models. In NIPS, 2007.

[4] C. Wang, D. M. Blei, and L. Fei-Fei. Simultaneous image classification and annotation. In
CVPR, 2009.

[5] J. Friedman, T. Hastie and R. Tibshirani. Regularized Paths for Generalized Linear Models via
Coordinate Descent. April, 2009.

[6] D. Jurafsky and J. Martin. Speech and language processing. Prentice Hall, 2000.

[7] A. Y. Ng, and M. I. Jordan. On discriminative vs. generative classifiers: a comparison of logistic
regression and naive bayes. In NIPS 14, 2001.

[8] R. Raina, Y. Shen, A. Ng and A. McCallum. Classification with hybrid generative/discriminative
models. In NIPS 16, 2004.

[9] F. Fama. 1970. Efficient capital markets: A review of theory and empirical work. Journal of
Finance, 25(2):383417.

[10] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. New York: Springer, 2009. Print

[11] H. Zou, T. Hastie. Regularization and variable selection via the elastic net, Journal of the Royal
Statistical Society. Series B 67, 301-320, 2005.


