
Slick: A Framework for High Throughput Network
Applications in the Kernel

Alex Gartrell

April 11, 2011

1 Introduction

With the increasing use of the Internet and Networked services, the ability to make such
services perform better, specifically in terms of increasing throughputs and, by extension, the
number of requests that can be handled, is more important than ever. This has been shown
by the changes in architecture of such services from having many processes, to having many
threads, and finally to having a single thread with a fast event loop. Still, such services are
constrained by the maintenance of the process abstraction (i.e. the isolation of tasks from
each other and the inner workings of the operating system), which imposes a great cost on
every network transaction.

In order to avoid the overheads associated with maintaining the process abstraction, we
shift the networked service into a kernel module, where it can be loaded directly into the
kernel’s execution path. We made this movement reasonably straight forward by providing
a set of abstractions that mirror the libevent library for event based programming in a user
process. Additionally, we provide a handful of utilities that would be otherwise unavailable in
the kernel in contrast to userland, such as Thrift protocol parsers and libevent-style buffered
sockets.

We have shown quantitatively that the kernel approach to networked services dominates
the user process approach for small granularity sends and receives in terms of throughput
with similar latencies. Additionally, we have provided abstractions that have made it possible
to port user process networked services without completely rearchitecting the existing code
base or being constrained by a framework that makes assumptions about the service.

Slick differs from prior work in that its main focus is making the Linux kernel a hospital
place for which to write networked services without compromising on performance. This
is different from other attempts which have involved writing a kernel from scratch for the
purpose of networked services [3], or providing a more specialized caching layer for static
content and requests [2] which is particularly powerful for certain workloads [4] but does not
generalize to as many networked services as slick.

Our microbenchmarks for send and recv with small buffers show that there is certainly
a much larger cost for user process network transactions than their kernel counterparts, as

1

the throughput for the kernel variant with small payloads (32 to 128 bytes) ranged from 30
to 60 percent higher. This was further corroborated by our larger scale bench mark that
involved forwarding messages from many clients to many servers, where the throughput for
small messages was also far better.

Providing a networked service from inside the kernel certainly has its drawbacks: ap-
plication developers must deal with a different and kernel-specific set of primitives, crashes
are fatal for the entire system, and many assumptions may not be forward compatible with
future kernel releases. However, there are certainly advantages in terms of performance.
Additionally, we believe that the abstractions offered by Slick minimize the pain of porting
existing services to or writing new services for use in the Linux kernel. Thus, application
developers who find themselves constrained by user process overheads with small workloads
should consider slick a viable avenue through which to increase the performance of their
service without putting forth a tremendous amount of effort.

2 Prior Work

The X-Kernel [3] specifies a top-to-bottom approach that allows programmers to specify
protocols and have the kernel distribute messages to the appropriate processes based upon
their protocol. Slick differs from this in that it rests upon a well established kernel, the Linux
kernel, instead of a brand new one.

The Adaptive Fast Path Architecture [2] [4] provides a network interposition layer within
the kernel that allows for the caching of static content in memory. This results in the ability
to serve static content at a much higher rate. Slick differs from this in that it is meant to place
as much of the application as desired in the kernel; shortly, AFPA could be reimplemented
using Slick.

Goglin, Glück, and Primet [1] provided a special Network API for faster MPI-type mes-
sage passing for use with filesystems, in which they were able to take advantage of kernel
space to offer fewer copies, which improved latencies. This paper differs from their work in
that it addresses the improvements of using the standard API in the kernel as compared to
in user space. The work done by Gogle, Glück, and Primet could be used to further improve
Slick, which is one more argument for handling networked services in kernel.

3 Approach

The slick architecture as discussed here has three layers: a socket notification layer called
Klibevent, a socket buffering layer called BufferedSockets, and a Thrift parsing layer called
ThriftSockets. The Klibevent varies greatly from the traditional approach to the problem,
a poll, select, epoll, etc. loop, but the other layers are more or less equivalent to their user
process equivalents, which is significant because it means that they can be ported to standard
programs for more convenient testing of Slick-based utilities.

2

3.1 Klibevent

Klibevent works by interposing on regular network event functionality. In order to support
the wide number of network protocols currently available to developers, the Linux Kernel
utilizes something similar to object oriented polymorphism, which is that they pass around
structs filled with function pointers. This allows more generic code (like that used in the
networking system calls) to operate more generically.

Listing 1: An example of “object orientedness” in the Linux Kernel
566 return sock−>ops−>sendmsg (iocb , sock , msg , s i z e) ;

This approach is taken throughout the Linux Kernel’s networking code, which is of special
interest to us for its socket activity notification mechanisms. These callbacks within softirqs
after events like the arrival of data or a change in the state of a TCP connection. By
overwriting these callbacks in an intelligent way, we are able to gather this information with
next to no additional overhead.

Listing 2: Callbacks within internal socket datastructure
319 void (∗ s k s t a t e change) (struct sock ∗ sk) ;
320 void (∗ sk data ready) (struct sock ∗ sk , int bytes) ;
321 void (∗ s k wr i t e s pa c e) (struct sock ∗ sk) ;
322 void (∗ s k e r r o r r e p o r t) (struct sock ∗ sk) ;
323 int (∗ s k back l og r cv) (struct sock ∗ sk ,
324 struct s k bu f f ∗ skb) ;
325 void (∗ s k d e s t r u c t) (struct sock ∗ sk

When we are notified through this mechanism, we add an event to a workqueue, a queue
that is used to serialize jobs and distribute them among one or more worker threads. In
doing so, we do some bookkeeping to ensure that we aren’t re-entering a callback for any
single Socket as a convenience to the programmer, who would likely otherwise have to handle
this chore herself.

3.2 BufferedSockets and ThriftSockets

BufferedSockets rest on top of the Klibevent sockets and serve two purposes: to aggregate
received data so that it can be “peeked” for the purposes of parsing, and to exist as an
overflow for data that cannot be sent in full so that we can assure atomicity for single-
message sends. It does this by providing its own versions of read and write, as well as
versions for peeking and atomically sending.

Listing 3: API of BufferedSocket abstraction
20 int Buf f e redSocket peek (Buf fe redSocket ∗bs , char ∗∗ bu f f e r) ;
21 int Buf f e r edSocke t d i s ca rd (Buf fe redSocket ∗bs , int l en) ;
22 int Buf f e r edSocket r ead (Buf fe redSocket ∗bs , char ∗buf f , int max len) ;
23 int Buf f e r edSocke t wr i t e (Buf f e redSocket ∗bs , char ∗buf f , int max len) ;
24 int Bu f f e r e dSo c k e t w r i t e a l l (Buf f e redSocket ∗bs , char ∗buf f , int l en) ;

3

ThriftSockets further extend BufferedSockets by allowing a user to send and recv
ThriftMessages. This is very convenient for the programmer, who no longer needs to worry
about constructing and deconstructing the messages herself.

Listing 4: API of ThriftSocket abstraction
75 int Thr i f tSocke t nex t (Thr i f tSocke t ∗ ts , Thr i f tMessage ∗tm) ;
76 int Thr i f t So ck e t d i s c a rd (Thr i f tSocke t ∗ t s) ;
77 int Thr i f t So ck e t wr i t e (Thr i f tSocke t ∗ ts , Thr i f tMessage ∗tm) ;
78 int Thr i f tSocke t f o rward (Thr i f tSocke t ∗ from , Thr i f tSocke t ∗ to) ;

4 Evaluation

Here, we have evaluated Slick using both an echo module, a microbenchmark designed to
test send and recv throughput at various buffer granularities, and a forwarder module,
a more complete benchmark involving a toy protocol that allowed us to test Slick under
more realistic loads involving many-to-many communication. In both instances, we tried to
minimize the amount of work done that would be similar in cost in both environments (e.g.
string parsing).

4.1 Application

Our echo protocol is dead simple. The client connects to the server, sends the size of buffer,
N to use, and then saturates the socket. The server simply receives N bytes, and sends them
back.

Our forwarder protocol is slightly more complex, and is build upon Apache Thrift, a
commonly used software framework for remote procedure invocation. We have implemented
the asyncronous call msg, which has two fields: an integer field representing the intended
destination server, and a string field that can be arbitrarily sized to represent different
payloads. Additionally, there are a number of calls that allow us to easily initialize the
forwarder in various ways that were not included in the experiment.

Listing 5: Forwarder protocol used for benchmarking
s e r v i c e Forwarder {

oneway void msg (1 : i 32 key , 2 : s t r i n g payload)
}

4.2 Reference Implementations

The user process reference implementation of the echo server is as straightforward as the
protocol suggests. It simply accepts connections, receives a buffer size, and receives and
sends as long as the connection stays alive. It is single process.

Listing 6: User process implementation of echo server
while ((fd = accept (l i s t e n e r , NULL, NULL)) >= 0) {

4

recv (fd , &bu f f s i z e , s izeof (b u f f s i z e) , 0) ;
b u f f s i z e = ntoh l (b u f f s i z e) ;

while ((amt = r e c v a l l (fd , buf f , b u f f s i z e , 0)) > 0)
s e n d a l l (fd , buf f , amt , 0) ;

c l o s e (fd) ; fd = −1;
}

The user process reference implementation of the forwarder server is slightly more in-
volved. Due to the requirement that the forwarder support multiple clients, we implemented
it using libevent, which provided an interface similar to that of klibevent and is a pretty
widely accepted mechanism for implementing this type of server, as it allows us to avoid
overheads associated with thread creation and scheduling at the cost of a slightly more com-
plex program model. Other code was reused as much as possible, including modules like
the protocol parser, to give us as fair of a comparison between Slick and the user process
implementation as possible.

4.3 Hardware

There were two machines in the experiment, fawn-desktop2 and slick0.

Table 1: Configuration of test machines

Machine CPU Memory Network

fawn-desktop2 Intel Core i7 @ 4 x 2.80 GHz 8 GB @ 1066 MHz 1 Gbps

slick0 Intel Atom @ 1 x 1.67 GHz 2 GB @ 667 MH 1 Gbps

Both machines were running the 64-bit server edition of Ubuntu Linux version 10.10.
The linux kernel run by each was version 2.6.35-22.

Additionally, both machines were connected to eachother on the same gigabit network
switch.

Load generation and performance measurement were performed by fawn-desktop2, while
the actual service was provided by slick0.

5

5 Data

Figure 1: Comparison of kernel and user echo services

Table 2: Throughput of kernel and user echo services

Buffer Size
User Process Kernel Module

Throughput Latency Throughput Latency

32 bytes 65.57 mbps 37 ms 103.66 mbps 31 ms
64 bytes 120.37 mbps 32 ms 166.24 mbps 28 ms
128 bytes 183.59 mbps 28 ms 239.50 mbps 27 ms
256 bytes 258.51 mbps 31 ms 319.28 mbps 37 ms
512 bytes 334.72 mbps 36 ms 431.90 mbps 37 ms
1024 bytes 536.86 mbps 33 ms 751.85 mbps 15 ms
2048 bytes 759.93 mbps 13 ms 757.17 mbps 15 ms
4096 bytes 784.33 mbps 17 ms 734.33 mbps 21 ms
8192 bytes 747.26 mbps 16 ms 741.97 mbps 17 ms
16384 bytes 746.63 mbps 17 ms 772.09 mbps 12 ms

6

Figure 2: Comparison of kernel and user process forwarders

Table 3: Throughput of kernel and user process forwarders

Payload Size Kernel (slick) User Process (libevent)

128 bytes 49.15 mbps 30.51 mbps
256 bytes 75.53 mbps 56.94 mbps
512 bytes 63.46 mbps 114.86 mbps
1024 bytes 67.79 mbps 213.16 mbps
2048 bytes 118.25 mbps 386.63 mbps
4096 bytes 155.79 mbps 560.33 mbps

6 Discussion

The echo service tests show that the kernel approach dominates the user process approach
when the granularity of sends and receives are small. This is almost certainly due to the
additional overheads of invoking send and recv from a process as compared to from inside
of the kernel. This shows that there is certainly merit to the idea of in-kernel networked
services for certain workloads, if only due to the saved expense.

The forwarder service tests are more ambiguous. As expected, the Slick router domi-
nates the User Process router for small payloads, where the sends and recvs must be small.

7

However, this advantage disappears as the performance of the Slick router actually degrades
as the payload size increases. This is likely due to a bug in the implementation, as there is
no reason that the router should be slower than the user process equivalent.

7 Summary

With this work, we have not yet shown that moving a networked service into the kernel is
universally advantageous. Certainly, there are situations where the extra protection provided
by the kernel to user processes is either mandatory or it is simply not worth the software
engineering effort required to make code “kernel-proof.” Slick is not the correct approach
for these situations, regardless of the performance gains it offers.

Additionally, we have failed to show that Slick is advantageous across all networking
workloads. For any real conclusions to be drawn regarding the utility of kernel-level net-
worked services, many aspects of the framework would need to be revisited and many tests
would need to be rerun. However, the results of the tests with small payloads do show that
Slick is, at the very least, promising, and deserves further investigation. Currently, work on
these issues is ongoing.

References

[1] B. Goglin, O. Gluck, and P. Vicat-Blanc Primet. An efficient network api for in-kernel
applications in clusters. In Cluster Computing, 2005. IEEE International, pages 1 –10,
2005.

[2] E. C. Hu, P. A. Joubert, R. B. King, J. D. LaVoie, and J. M. Tracey. Adaptive fast path
architecture. IBM Journal of Research and Development, 45(2):191 –206, 2001.

[3] N.C. Hutchinson and L.L. Peterson. The x-kernel: an architecture for implementing
network protocols. Software Engineering, IEEE Transactions on, 17(1):64 –76, January
1991.

[4] Philippe Joubert, Robert B. King, Rich Neves, Mark Russinovich, John M. Tracey,
Robert B. King , Mark Russinovich , and John M. Tracey . High-performance memory-
based web servers: Kernel and user-space performance.

8

