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In this abstract a new approach to online prediction using nonparametric
statistics (kernel density estimation (KDE) and kernel regression (KR)) is
described and analyzed. This algorithm has the computational advantage as
other online algorithms with constant update cost; it also well addresses the
variable bandwidth selection issue arising in the online scenario.

In theory, we proved that these online estimators achieve the same min-

imax rate O(n−
2β

2β+1 ), (where n is the size of the training data and β is the
highest order of continuous derivative of the true function), as the standard
batch estimators.

In practice, we based these single online estimators on the weighted-expert
framework to select the true optimal bandwidth. Assuming the optimal
estimator is among the set of experts, the combined experts estimator adapts
to the true optimal risk rate – yielding global smoothness of the estimation.

The main contribution is the efficient online estimator with the proof of
its minimax rate of convergence. This novel approach lays the foundation
for performing more sophisticated nonparametric online predictions, for ex-
ample, the multi-task online prediction. In the following sections, we will
describe the background, methodology, outline of the theoretical analysis
and summary.

1 Background

Nonparametric statistical methods such as kernel density estimation or re-
gression have been well developed in the past few decades. Here, we briefly
introduce kernel density estimation (KDE) and kernel regression (KR). See
[3].
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KDE: given X1, . . . , Xn, as i.i.d inputs, KDE estimates the density of
point x as follows:

f̂n(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
(1)

KR: given (X1, Y1), . . . , (Xn, Yn), as i.i.d pairs, and a true function m such
that Y = m(X) + ε, where ε is an independent Gaussian noise with mean
zero and known variance, KR estimates the regression function m̂n at point
x as follows:

m̂n(x) =

∑n
i=1K(x−Xi

h
)Yi∑n

i=1K(x−Xi
h

)
(2)

In equation 1 and 2, there are two parameters that need to be chosen: the
kernel function K, and the bandwidth h. In fact the of the choice of kernel
is not very significant, and here we choose K to be the Gaussian probability
density function for its simplicity [3].

On the other hand, the choice of bandwidth, also known as the smoothing
parameter which controls the degree of smoothness of the regression function,
turns out to be critical. In the literature, it has been well studied that for

standard batch kernel estimator, the optimal bandwidth O(n−
1

2β+1 ) is closely
related to the sample size n and the degree of smoothness β of the true
function. This optimal bandwidth results in the asymptotically optimal rate

of convergence – O(n−
2β

2β+1 ), which is also the minimax rate for nonparametric
estimation [3].

In contrast to the fixed sample size n in batch estimations, in the online
scenario, predictions are made based on sequentially arriving data. With the
increasing sample size, choosing the proper bandwidth become more chal-
lenging.

The first challenge is that, suppose we knew the optimal bandwidth for
any given n and β, as 1 and 2 indicate, adaptively changing the bandwidth at
each time step would involve recomputing the kernel weights of all previous
points, which leads to a total cost of O(n2). In the paper, we developed an
efficient online kernel estimator with constant update cost and a total cost
of O(n). Furthermore, we proved that it achieves the same optimal rate as
the batch estimator.

The second challenge is that, without the assumption in the first chal-
lenge, the actual optimal bandwidth is unknown to us. All we have is the

asymptotic expression h = O(n−
1

2β+1 ). Not only do we lack the knowledge of
β, the smoothness of the true function, but we also miss the constant factor,
which depends on the unknown distribution of X. Therefore, the theoretical
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optimal bandwidth serves only as a guideline, and in practice, the bandwidth
selection is often performed through cross-validation. To overcome this chal-
lenge while preserving a low computational cost, we use the weighted-expert
algorithm. Existing results about aggregation strategies, like exponential
weighted expert algorithm [1], shows that the cumulative loss of the com-
bined estimator is at most O(n + logK) more than that of the best expert,
where K is the number of the experts and the constant factor is between
zero and one. Having this remark, we are able to claim that the empirical
performance of our algorithm adapts to the true optimal estimator at the
rate of O(n−1 logK) if the range of experts’ bandwidth contains the optimal
bandwidth.

The significance of this algorithm provides insight into the design of a
nonparametric online method with computational efficiency, asymptotically
optimal risk rate, and desirable empirical performance.

2 Methodology

2.1 Efficient Online Estimator

The core piece of our algorithm is the online kernel estimator extended from
the traditional batch kernel estimator. Although there are many variations
of kernel estimators, in the paper we focus on kernel density estimator 1, and
kernel estimator for regression 2.

Unlike the batch kernel estimator, which fixes one bandwidth for all ar-
riving data points, the online counterpart allows bandwidth ht varying as
time t. Formally, we define the online kernel density estimator at time T to
be:

f̂T (x) =
1

T

T∑
t=1

Kht(x,Xt) (3)

Similarly kernel regression estimator at time T is:

m̂T (x) =

∑T
t=1Kht(x,Xt)Yt∑T
t=1Kht(x,Xt)

(4)

where Kht(x,Xt) = 1
ht
K(x−Xt

ht
).

In both case, the estimator for next time step can be easily updated by
the following rule:

m̂T+1(x) =
Nom(m̂T (x)) +KhT+1

(x,XT+1)YT+1

Dnom(m̂T (x)) +KhT+1
(x,XT+1)

(5)
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Notice that the new bandwidth hT+1 is only applied to the latest data
points (XT+1, YT+1), leaving all previous points using “old” bandwidth. Al-
though we choose not to update the kernel weights for previous data points,
the accuracy is not sacrificed much. In the risk analysis section, we will show

that by letting ht = O(t−
1

2β+1 ), these online estimators achieve the same
optimal rate as the batch estimators.

In terms of the implementation detail, we need to keep the nominator and
the denominator for each possible value x in an discretized input space; this
can be implemented by binning the input space. Hence, for fixed resolution
and size of the experts, these online estimators make online prediction at
the cost of O(1) for runtime, and also O(1) for space. The impact of large
constant induced by high dimension and resolution can be soothed by parallel
computing over the grid of the input space.

2.2 Weighted Expert

Although we have asymptotic result for the step-wise optimal bandwidth ht,
the true optimal bandwidth ht remains unknown for each time step t. In
order to adapt to a (near) optimal estimation, we employ a set of experts
who make their predictions using different belief on the “optimal” bandwidth
htk varying with the time t, where k is the index of the expert.

Suppose there are K experts in an expert space ξ, and at each time step t,
experts make their predictions: {m̂E,t : E ∈ ξ}, we make our own prediction
m̂t based on the experts’ predictions. After the true label Yt is revealed, each
expert incurs an instant loss based on some loss function l : Y × Y → R,
where Y is the outcome space. The regret on expert k is defined in 6 as the
difference of the cumulative loss between our predictor and that of expert k.
The cumulative loss of the predictor and expert E at time t are denoted as
L̂t and Lk,t respectively.

RE,t =
t∑
i=1

l(m̂i(xi), yi)−
t∑
i=1

l(m̂i,E(xi), yi)

= L̂t − LE,t

(6)

If we know that one of the experts biases on the optimal bandwidth,
by minimizing the regret on the best expert, we adapt our risk to the near
optimal risk. The exponential weighting procedure described below is known
to minimize 6 at rate O(1 + n−1 logK). [1]
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2.3 Algorithm

Let the expert space ξ = {1 . . . K}.
Define m̂ξ,t, wt, Rt to be the K-length vector of experts’ predictions,

weights, and loss at the time t respectively, t = 1, . . . , T .

Algorithm 1 Online Expert Kernel Regression

for k ∈ ξ do
wk,1 ← 1

K

end for
for t = 1 to T do
m̂t ← wt · m̂ξ,t

Rt ← Rt−1 + l(m̂t, yt)− l(m̂ξ,t, yt)
wt+1 ← expRt

|| expRt||
end for

In the above algorithm, the expert’s estimator m̂ξ,t is the online kernel
estimator described in (4) with an expert-dependent step-wise bandwidth
function taken from a bandwidth space. In our algorithm, at time t, the

expert k chooses its bandwidth to be hkt = ckt
− 1

2βk+1 , where ck and βk are
the belief of expert k on the constant and smoothness parameter in the
bandwidth.

3 Risk Analysis

The general technique to show that the online estimator achieves the same
optimal rate is done by performing bias-variance risk decomposition [3] of
the online estimator, and bound it using integral approximation. The proof
section of the paper is organized as follows: we first prove the KDE case when
β = 2, and then extend it to KR (local constant regression) when β = 2. For
β > 2, we prove the result for local polynomial regression, which cancels out
all lower order terms in the Taylor’s expansion. See [2] for details of local
polynomial regression.

At the end of the proof section, we have reached the conclusion that our

online kernel estimators have the asymptotically rate O(n−
2β

2β+1 ), which is the
same as the minimax rate of the batch estimators.
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4 Summary

We discussed the challenges of nonparametric online prediction, and proposed
efficient online estimation algorithms which achieve the same asymptotically
optimal rate as their batch counterparts. Combining the weighted expert
framework, the resulting estimator adapts to the true optimal risk at a rate
of O(1 + n−1 logK). The performance is evaluated through simulation on
various regression functions.
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