
Dynamic Casts in the Plaid Programming Language

Mark Hahnenberg, advised by Jonathan Aldrich

April 11, 2011

Abstract

Typestate is a new paradigm in programming language design that
allows programmers to explicitly specify state transitions, which in-
clude the addition and removal of the fields and methods of objects at
runtime, within their programs. Plaid, a general-purpose programming
language in development at Carnegie Mellon, reifies this idea of types-
tate in an actual implementation. In Plaid, object aliasing complicates
the static verification of state transitions by making it impossible to
know with certainty the state of all other objects after a transition
has been performed [1]. Plaid solves this issue with permission kinds,
which help programmers as well as the compiler reason about aliasing
in programs. In most languages, runtime or dynamic casts must be
introduced either explicitly by the programmer or implicitly by the
compiler at certain points in a program in order to ensure that the
language is typesafe. The addition of aliasing information to a gradual
type system raises several issues in the implementation of these casts.
In order to cast something to a type with a specific permission, aliasing
information must be maintained at runtime to verify that the resulting
permission is compatible with all other existing permissions for that
object. For my thesis I defined a static and dynamic semantics for
dynamic casts in the Plaid programming language, incorporated these
semantics into the Plaid compiler implementation, and examined the
impact of this implementation on the overall performance of compiled
Plaid programs.

1



1 Background

The Plaid programming language is a gradually-typed typestate-oriented
programming language being developed at Carnegie Mellon. To provide the
necessary context of the contributions of this thesis, we will examine each
of these aspects of Plaid and how they interact with one another.

1.1 Gradual Typing

Historically, one of the defining characteristics of any programming language
was its type system (or lack thereof), and the first thing that anyone learning
a new programming language would worry about with respect to the type
system was which of the two major camps it falls into: statically-typed
languages or dynamically-typed languages.

A statically-typed language checks the types of the expressions a pro-
grammer has entered to make sure they are consistent with the programmers
stated expectations as well as with the expectations of the compiler itself.
This allows the compiler to catch certain types of programmer errors at
compile time, drastically reducing the cost of these errors[insert reference],
but at the cost of some productivity overhead.

A dynamically-typed language does not perform any static checks,
instead leaving these checks to be done at runtime. Obviously this removes
any potential for the compiler to catch programmer mistakes at compile
time, but it also provides additional flexibility and dynamism.

There is a significant amount of material detailing the pros and cons
of both statically- and dynamically-typed languages. There is also a third,
somewhat newer camp that is a combination of the two: gradual typing. A
Gradually-typed programming language allows the programmer to omit
some type annotations, causing the compiler to interpret those objects with-
out type annotations as having a dynamic type (i.e. no type information is
known or tracked for the object). This feature allows the programmer to
leverage the benefits of both statically- and dynamically-typed languages.
A gradually-typed language must introduce additional casts, which is why
its presence in Plaid is relevant to this thesis.

1.2 Typestate

Many real world programs consist of a number of objects transitioning
among a set of states throughout the life the program. A method call for
an object may make sense when that object is in one state while it would

2



be considered an error to call the same method when that object is in a
different state. For example, imagine a File object. A File can either be
open or closed. The open() method, when called on a File that is closed,
changes the state of that File to open. However, calling the open() method
again on that now open File would not make sense with respect to the
semantics of a typical file I/O API. Typestate seeks to make these sorts
of interactions explicit in the type system of the programming language so
that the compiler can statically check them.

public class File {

private String fileName;

private OSFilePtr rawFile;

public void open() {

if (rawFile != null) {

throw new RuntimeException("File is already open!");

}

rawFile = // ...

}

public void close() {

if (rawFile == null) {

throw new RuntimeException("File is already closed!");

}

// ...

rawFile = null;

}

public void read() {

if (rawFile == null) {

throw new RuntimeException("Cannot read from file: file is closed!");

}

// ...

}

}

Figure 1.2.a - A File I/O Implementation without Typestate

state File { val String fileName; }

state OpenFile case of File {

val OSFilePtr rawFile;

method unit close()[OpenFile>>ClosedFile] { /* ... */ }

3



method String read() { /* ... */ }

}

state ClosedFile case of File {

method unit open()[ClosedFile>>OpenFile] {

// ...

}

}

Figure 1.2.b - A File I/O Implementation without Typestate

1.3 Permissions

In Plaid, the types of objects change at runtime. Aliasing makes it impos-
sible to statically guarantee that a particular object is in the state we think
it is [1]. Imagine a function foo that takes two arguments, x and y of type
OpenFile. In foo we call close() on x, changing its type to ClosedFile.
What is the type of y at this point? If x and y were aliases of the same
File object, y now has the type ClosedFile. If they were not, then y is
still has the type OpenFile. For the compiler to statically check this kind
of situation it needs at least some guarantees as to the type of y or all bets
are off. Plaid solves this problem through the use of permission kinds.

method unit foo(OpenFile x, OpenFile y) {

x.close();

// What is the type of y now?

y.read(); // Is this read() valid?

// ...

}

Figure 1.2.b - A File I/O Implementation without Typestate

Aliasing permissions are additional information associated with each
reference to an object that give additional static information to the compiler,
allowing it to resolve situations like the one described above. They have
three pieces of information associated with them: how many other aliases to
this object could potentially exist (many or none), what sorts of operations
can be performed on this particular alias (i.e. whether or not we can change
the state of this object), and what sorts of operations can be performed on
any other aliases.

4



2 Problem

In order to be able to statically check programs that use typestate and
typestate transitions, we must track aliasing information using permissions.
These permissions are incorporated into the type of each alias in the pro-
gram. In order for our language to be typesafe, the compiler will need to
insert some dynamic casts at the boundaries between statically typed and
dynamically typed code as well as at other locations in the code, for exam-
ple, where permissions are split and joined (i.e. at method call boundaries).
There are two broad categories of the type of semantics that could be used
for these permission casts: lazy or eager.

3 Lazy vs. Eager Semantics

Lazy permission casts delay the checking of aliasing information for consis-
tency until after the cast itself (the point at which it eventually does occur
is dependent on the exact semantics). Eager permission casts, on the other
hand, check each permission cast for consistency the moment it occurs.

During the first part of this thesis, the pros and cons of the lazy and eager
semantics were investigated and weighed against one another to decide which
should be implemented. The eager semantics are relatively straightforward
to implement, while the lazy semantics are a bit more complex. Additionally,
the eager semantics fails right when a bad cast occurs, making it easier to
see what the program was doing when that bad cast occurred. The lazy
semantics might not catch this bad cast until much later. Blame tracking
can partially alleviate this problem, but it increases the complexity and
removes some of the observational locality of what the program was doing
when the bad cast occurred. Unfortunately, the eager semantics can fail on
a cast that actually would not be a problemif there exist any aliases that
conflict with the one being cast but they would not be used again, then the
eager semantics will still fail where the lazy would succeed.

The lazy semantics were thought to maybe provide some benefit in a con-
current setting, although the implementation designs for the lazy semantics
turned out to be just as bad and in some cases even worse with respect
to the number of compatibility checks and the amount of locking required
when performing casts.

5



4 Implementation

The eager semantics were implemented by maintaining with each object a
reference count of each kind of alias currently present in the program. When-
ever a cast is performed these reference counts are checked for consistency
with the permission to which the alias is being cast.

The implementation of the Plaid language type system also includes spe-
cial splits and joins for method calls. Whenever we pass objects to method
calls, we are creating new aliases for those objects within those methods,
so we need to split off permissions from the ones we currently are holding
to give to the method. When that method returns, we need to join the
permissions of those aliases we created with the ones we left behind when
we called the method. These are where most of the casts in the language
come from since the compiler inserts them automatically for every method
call.

5 Future Work

At the time of writing this extended abstract, benchmarks still need to be
run on the eager implementation.

There is some additional information that can be tracked by the aliasing
permissions, namely state guarantees. They guarantee a ceiling state (i.e.
the most general supertype possible) for a particular alias. This extra infor-
mation allows the compiler to more accurately track the state of a particular
object, which in turn allows the type system to catch more errors than it
would without state guarantees.

While they have been included in past publications on gradual typestate
[2], state guarantees are not currently part of the official Plaid language
specification. When the specification matures a little to the point where
these are included, dynamic casts with state guarantees could be examined
further.

References

[1] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
aliased objects. OOPSLA, 2007.

[2] Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan Aldrich. Gradual
featherweight typestate. CMU-ISR-10-116R, 2010.

6


