
Online Metric Matching on the Line

Senior Research Thesis

Kevin Lewi
April 2011

Abstract

Given a metric space, a set of points with distances satisfying the triangle inequality,
a sequence of requests arrive in an online manner. Each request must be irrevocably
assigned to a unique server before future requests are seen. The goal is to minimize the
sum of the distances between the requests and the servers to which they are matched.
We study this problem under the framework of competitive analysis.

We give two O(log k)-competitive randomized algorithms, where k is the number of
servers. These improve on the best previously known O(log2 k)-competitive algorithm
for this problem. Our technique is to embed the line into a distribution of trees in a
distance-preserving fashion, and give algorithms that solve the problem on these trees.
Our results are focused on settings for the line, but these results can also be extended
to all constant-dimensional metric spaces.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 In this paper . 2

2 Preliminaries 4
2.1 Definitions and Notation . 4
2.2 Constructing an HST from the Line 5
2.3 Assumptions . 8

2.3.1 Colocated Requests and Servers 8
2.3.2 Guess-and-Verify . 9

3 An O(hd) Algorithm 12
3.1 Matchings on an HST . 12

3.1.1 Characterizing Optimal Matchings 13
3.2 A Deterministic Algorithm . 14
3.3 Conflict Sequences . 16

3.3.1 Canonical Conflict Sequences 17
3.4 Competitive Ratio . 20

4 A Variant of the MNP Algorithm 23
4.1 The Algorithm . 23
4.2 The Proof . 23

4.2.1 Proof of the Structure Lemma 24
4.2.2 Bounding the Total Cost . 27

5 An O(log k) Algorithm for the Line 32
5.1 The HST-Greedy Algorithm . 32

5.1.1 Analysis via a “Hybrid” Algorithm 33
5.1.2 Proof of the Hybrid Lemma 34

5.2 A Tight Example for the Algorithm 41

ii

6 Conclusion and Open Problems 43

Bibliography 44

iii

Chapter 1

Introduction

In the online metric matching problem, requests appear one at a time on the metric
space. As a new request arrives, it must be assigned to a unique server. After a
request has been assigned, it cannot be modified. The goal is to find a matching
for each request such that the total sum of distances between request-server pairs is
minimized. In the offline version of this problem, all requests arrive “simultaneously”,
so the problem is equivalent to the minimum weighted bipartite matching problem
(but on a metric), and can be solved using traditional network flow algorithms.

The heuristic we use to measure the quality of an online algorithm is its competitive
ratio. Given a fixed setting of servers on a metric space, the competitive ratio of an
online algorithm is the ratio between the online algorithm matching’s cost and the
offline optimal cost. We are interested in bounding the worst-case competitive ratio
across all settings of servers on metric spaces.

1.1 Motivation

The online metric matching problem was first introduced by Kalyanasundaram and
Pruhs in [KP93]. Since then, there has been a considerable amount of work on
attempting to bridge the gap between the upper and lower bounds. For general
metrics, there is an O(log2 k)-competitive randomized algorithm by BBGN , and the
best deterministic algorithm for general metrics is O(k)-competitive. However, the
tightest lower bound for the problem on the line is 9.001 for deterministic algorithms
by Fuchs et al [FHK05].

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

An instance of the online metric matching problem (V, d,R, S, k) is defined by a metric
space (V, d), with the sequence of requests R = r1, · · · , rk and each ri ∈ V . The
set of servers S = {s1, · · · , sm} is such that m ≥ k and each si ∈ V . The integer k
represents the number of requests to arrive.

A solution to an instance of this problem is a permutation π = π1, π2, · · · , πk of a
subset of the set of servers S. The cost of such a solution is defined as

∑k
i=1 d(ri, πi),

where d is the metric used in the metric space (V, d).
The added restriction of the online version of this problem (as opposed to the offline

version) is that the sequence R of requests is revealed one element at a time, rather
than all at once. Thus, an online algorithm is forced to make assignments one-by-one,
as each request arrives. If the online algorithm has made i < k assignments so far,
then only the first i+ 1 requests r1, · · · , ri+1 are revealed. When the algorithm has
made i = k assignments, then all requests have been assigned to unique servers, and
there is no more work left to do.

We call a deterministic online algorithm c-competitive on a specific instance of this
problem if the algorithm achieves a solution whose cost is c times the offline optimal
solution. For randomized algorithms, c-competitiveness on an instance means that
the solution achieves an expected cost that is c times the offline optimal solution. The
competitive ratio of an algorithm is defined as the maximum over all instances of the
ratio between the algorithm’s (expected) cost and the offline optimal’s cost for each
instance. An algorithm is called c-competitive if its competitive ratio is c.

1.3 In this paper

We present several algorithms that perform competitively for the online metric match-
ing problem. The techniques described here extend upon the results of Fakcharoenphol
et al. to produce algorithms that perform O(log k)-competitively on the line metric.

The first result is a combinatorial proof that a simple, deterministic algorithm on
a hierarchically well-separated tree (HST) is O(hd)-competitive. By using randomness
to break ties, this extends to an O(h log d)-competitive randomized algorithm on
HSTs. Call this algorithm HST-greedy. We also include HST constructions from
the line that allow d = O(1) and h = O(log k), so this gives rise to an O(log2 k)
algorithm for the line. We also show how randomization can produce an O(h log d)-
competitive algorithm (randomized HST-greedy) on HSTs. Next, we give a proof
using potential functions (inspired by Meyerson et al.) that randomized HST-greedy
in fact is O(log k log2 d)-competitive on the line. This result can also be extended to
other low-dimensional metric spaces, where d remains a constant.

Our main result is a proof that when HST-greedy is performed on an HST derived

CHAPTER 1. INTRODUCTION 3

from the line, the algorithm is O(1)-competitive on the HST, and hence O(log k)-
competitive on the line. The approach used for this proof is completely separate from
the previous proofs, taking advantage of the fact that the HST was constructed from
the line.

Chapter 2

Preliminaries

2.1 Definitions and Notation

Given a tree T rooted at r, define the depth of the root as 0, and the depth of each
other node as one more than the depth of its parent. An edge has depth i if its
endpoint closer to the root has depth i. For α > 1, a tree is called an α-HST if the
length of each edge at depth i is W/αi. Moreover, we will assume that all the leaves
have the same depth; it is easy to ensure this while changing interpoint distances by
at most a constant factor (depending on α). Similarly, we can define the level of
the leaves in T to be zero, and the level of a node to be one greater than the level
of its children—all leaves having the same depth means the level of every node is
well-defined, and is just the depth of the leaves minus the depth of that node. The
“arity” of the HST is the maximum number of children that any node has; binary trees
have an arity of 2.

In this paper, we appeal to the results of FRT , who introduce the notion of a
hierarchically well-separated tree (HST).

Definition 2.1.1. An α-HST is a rooted weighted tree with the following properties:

• the edge weights of all edges of the same level must be identical

• the edge weights of level i− 1 are α times the weights of the edges at level i

We will also talk about degree-d α-HSTs when the degree is important. A “binary”
HST is a degree-2 HST. All of the algorithms discussed will involve taking the line L
in the instance of the problem and constructing an α-HST T such that for all pairs of
points x, y in the metric space,

• dL(x, y) ≤ dT (x, y)

• E[dT (x, y)] ≤ O(log k)dL(x, y)

4

CHAPTER 2. PRELIMINARIES 5

2.2 Constructing an HST from the Line

We are interested in embedding the integer line in the interval [1, k] into a binary HST
T such that for any integers 1 ≤ x ≤ y ≤ k, dL(x, y) ≤ dT (x, y) and E[dT (x, y)] ≤
O(log k)dL(x, y). For simplicity, we will assume that k a power of 2. In all of the
schemes that we are investigating, we are superimposing T on top of the line, where
each leaf of T occupies some integer point on the line within the interval [1, k]. Since
no point on the line corresponds to more than one leaf, the adjacent points i and i+ 1
for 1 ≤ i ≤ k − 1 are always separated by the structure of the tree. Consequently, the
non-leaf nodes with two children of T (of which there are 2k − 1) lie in the divisions
between i and i + 1 for 1 ≤ i ≤ k − 1. We will say that they lie in the interval
[i, i+ 1]. Furthermore, we will call these points “cuts”. For a cut x, define l(x) to be
the location of x. If x lies in [i, i+ 1], then we say that l(x) = i. Also, define the depth
d(x) of a cut x to be the length of the path from the root to the node associated with
x.

Note that the precise structure of a binary tree can be completely characterized
by its cuts. Thus, a binary HST construction algorithm simply decides the location
l(x), and depth d(x) of each of these cuts x, with the binary restriction that there
cannot be more than 2i cuts of depth i for 0 ≤ i ≤ h− 1.

Also, for the edge lengths of the α-HST, we will adopt the convention that edge
lengths starting from the bottom level of the tree upwards are: c, cα, cα2, · · · , where c
is some constant. In fact, we will only be considering the case where α = 2.

As mentioned previously, any algorithm can be formulated in terms of the properties
of the k − 1 cuts. We give each algorithm in terms of how it arranges the cuts, and
then a proof for why it achieves an O(log k) stretch for any two points in the interval.

First, we show the following lemma. Let Ai,j, denote the event that there exists a
cut of depth i in the interval [j, j + 1] for some 1 ≤ j < k.

Lemma 2.2.1. If the height h of T is log2(k)+c1 for some small constant c1, then for
all 1 ≤ x < y ≤ k, E[dT (x, y)] ≤ O(k)dL(x, y). If, in addition, Pr[Ai,j] ≤ 2i/(k − 1)
for all 1 ≤ j < k and 0 ≤ i < h, then for all 1 ≤ x < y ≤ k, E[dT (x, y)] ≤
O(log k)dL(x, y).

Proof. First, note that if Ai,j occurs, then

dT (j, j + 1) = 2c(1 + α + · · ·+ αh−1) ≤ 4c · αh−i

by the structure of the HST. Thus, we get that

E[dT (j, j + 1)] =
h∑
i=0

E[dT (j, j + 1)|Ai,j] ·Pr[Ai,j] ≤
log2(k)+c1∑

i=0

4c · αlog2(k)+c1−i ·Pr[Ai,j]

CHAPTER 2. PRELIMINARIES 6

Now, we know that Pr[Ai,j] ≤ 1, so 4c · 2log2(k)+c1−i = O(k)/2i, so

E[dt(j, j + 1)] =

log2(k)+c1∑
i=0

O(k)/2i ≤ O(k) ·
∞∑
i=0

1/2i = O(k).

Now, suppose we can safely assume that Pr[Ai,j] ≤ 2i/(k − 1). Since α = 2,
the product 4c · 2log2(k)+c1−i · (2)i/(k − 1) = 4c · 2c1 · k/(k − 1) for all i, and so the
sum is (log2(k) + c1) · 4c · 2c1k/(k − 1) = O(log2(k)). Thus, we can conclude that
E[dT (j, j + 1)] ≤ O(log k).

Now, for arbitrary x and y such that 1 ≤ x < y ≤ k, we can break up the
distance on the line into segments of length 1. Thus, without the assumption that
Pr[Ai,j] ≤ 2i/(k − 1), we conclude that

E[dT (x, y)] =

y−1∑
i=x

E[dT (i, i+ 1)] = O(k)(y − x) = O(k)dL(x, y).

But, with the assumption we get a slightly better result:

E[dT (x, y)] =

y−1∑
i=x

E[dT (i, i+ 1)] = O(log k)(y − x) = O(log k)dL(x, y).

Now, consider the following algorithm to construct an HST from the line: Take a
binary HST with 2k leaves and place its root randomly at some place in [1, k].

Since the HST has 2k leaves (although half are trimmed off because they hang
outside of the interval), and the root is placed within the interval, this root has height
log(2k) = log(k) + 1.

Here is an alternate view of the algorithm that will make analysis easier later on.
Rather than fixing the interval [1, k] and picking a random location for the root cut
within this interval, we can instead fix the binary tree of 2k leaves on the interval
[1, 2k], and then randomly select some j ∈ [2, k + 1] so that the interval we are
interested in is [j, k + j − 1].

Fact 2.2.2. There is a cut of depth i in [j, j + 1] if and only if there is a cut of depth
i in [j + k, j + k + 1], for all 1 ≤ j < k.

Lemma 2.2.3. For 0 ≤ i < h,

Pr[Ai,j] ≤ 2i/(k − 1)

CHAPTER 2. PRELIMINARIES 7

Proof. We go by induction on i. At depth 0, the algorithm is defined to place the
root cut uniformly at random at the k − 1 possible places for cuts, so for all j,
Pr[A0,j] ≤ 1/(k − 1). Assume that for some i ≥ 1, Pr[Ai−1,j] ≤ 2i−1/(k − 1).

Consider the tree of 2k leaves on the interval [1, 2k], first. The node of a cut at
depth i− 1 has two children, who are cuts at depth i. Also, any cut at depth i must
be either the left child or right child of some cut at depth i− 1.

Now, we redefine the notion of a child cut on the interval [j, j + k − 1]. For some
cut x in [j, j + k − 1], if both children (in the tree) of the the node occupied by x lie
within [j, j + k − 1], then these two children are still called the children of x on the
interval. Note that it is not possible for neither child to lie within [j, j + k − 1], since
x lies in between both children, and would thus not be within [j, j + k − 1], either.
But now, suppose that x has one child that does not lie in [j, j + k− 1]. Let this child
be called y. If y lies in the interval [m,m + 1] for some m < j, then by Fact 2.2.2,
there exists a child y′ that lies in [m+ k,m+ k+ 1]. Since m+ k ≤ j + k− 1, y′ must
lie within the interval, so we call y′ the left child of x on the interval. Likewise, if
m > j + k− 1, then by fact 2.2.2, there exists a child y′ that lies in [m− k,m− k+ 1],
and since m− k ≥ j, y′ lies within the interval, so we call y′ the right child of x on
the interval.

We now show that under this definition of children in the interval, every cut of
depth i in the interval has a parent cut of depth i− 1 in the interval. Let y be a cut
of depth i in the interval. Of course, in the tree, y has a parent, and suppose it is
located in [m,m+ 1]. If m < j, then m+ k ≤ j + k − 1, so the cut of depth i− 1 in
[m+ k,m+ k + 1] would be the parent cut of y. If m > j + k− 1, then m− k ≥ j, so
the cut of depth i− 1 in [m− k,m− k + 1] would be the parent cut of y. Thus, in
both cases y has a parent in the interval.

We have shown that every cut of depth i belongs to a parent cut of depth i− 1.
Furthermore, a parent cut of depth i− 1 cannot have more than two children. Thus,
there is a cut of depth i within the interval [m,m + 1] if and only if there is either
a cut of depth i − 1 in one of two possible positions for cuts within [j, j + k − 1].
By the induction hypothesis, the probability of either of these happening is at most
2i−1/(k − 1), so the probability that such a cut of depth i exists in [m,m+ 1] can be
at most 2i/(k − 1), which completes the induction step.

Since the height of the tree is log2(k) + 1, we can apply Lemma 2.2.1 to get that
the algorithm builds a tree that stretches the expected distance of two points x and y
on the tree by at most O(log k)dL(x, y).

CHAPTER 2. PRELIMINARIES 8

2.3 Assumptions

The following is a series of assumptions that we make for any given instance of this
problem. For each of these assumptions, we make the metric space slightly easier to
deal with, while incurring at most a constant factor in the competitive ratio of any
algorithm.

2.3.1 Colocated Requests and Servers

We’d like to make the following assumption on the underlying metric: Every request
is colocated with some server. Consider the following algorithm ColocateA, defined
for an arbitrary algorithm A.

ColocateA(R):

for each request ri ∈ R do
Move ri to a closest server s∗i .
Assign ri (now colocated with s∗i) using A.

end for

Lemma 2.3.1. For any algorithm A that is c-competitive, ColocateA is at most
(2c+ 1)-competitive.

Proof. For any ri, let s∗i be a closest server to ri. Let ŝi be the server that algorithm
A assigns ri to. Note that ColocateA also assigns ri to ŝi. Define Opt1 to be the
optimal matching under the original instance I1 for which we want to show ColocateA
is 2c-competitive, and Opt2 the optimal matching under the modified I1 where every
request is colocated with a server, where we know that A is c-competitive. We know
that A(I2) ≤ c ·Opt2(I2), and we want to show that ColocateA(I1) ≤ (2c+1) ·Opt1(I1).

Let s̄i be the server that a request ri is assigned to in Opt2(I2). First, note that
for each ri ∈ R, d(ri, s̄i) ≥ d(ri, s

∗
i) by the definition of s∗i . Thus, if we construct the

matching Opt1(I2), the cost of this matching is at most 2 Opt1(I1). Therefore, we have
that Opt2(I2) ≤ Opt1(I2) ≤ 2 Opt1(I1). This also means that A(I2) ≤ 2cOpt1(I1).

Now, consider ColocateA(I1). We have by the triangle inequality that

ColocateA(I1) =
∑
i

d(ri, ŝi) ≤
∑
i

d(ri, s̄i) +
∑
i

d(s̄i, ŝi)

But note that Opt2(I2) =
∑

i d(ri, s̄i) and
∑

i d(s̄i, ŝi) ≤ A(I2), since A assumes
each request ri appears at s̄i, and the cost incurred by A of ri must be at least the
distance from ri to its closest server, for each ri. This allows us to conclude that
ColocateA(Ii) ≤ Opt2(I2) + 2cOpt1(I1) ≤ (2c+ 1) Opt1(I1).

CHAPTER 2. PRELIMINARIES 9

2.3.2 Guess-and-Verify

Suppose that we know c(OPT) for some instance of the problem on the line. Let A be
an algorithm that does not match any request r to a server s such that d(r, s) > c(OPT).
Consider the following algorithm A′: break the line up into smaller instances I1, · · · , Im
such that if D is the largest distance between two points in Ij, then D ≤ c(OPT).
This partitioning of the original line L can be performed by breaking up L at all of
the segments of length greater than c(OPT). Now, A′ runs A on each of the smaller
segments of the line I1, · · · , I`, and mimicks A’s matching, such that if A assigns ri to
sj, then A′ also assigns ri to the same sj. Let I = {I1, · · · , I`}.

Consider the following algorithm:

DivideρA(I):

Break the line of I up into smaller instances I1, · · · , I` such that for each instance
Ij, the largest distance between two servers in Ij is less than ρ.
for each request ri do

Let Ij be the instance containing ri.
if there are no more servers in Ij then

output FAIL and halt
else

Use A(Ij) to determine which server ri assigns to.
end if

end for

Lemma 2.3.2. Denote Opt(I) as the optimal matching on the original instance, and
OPT (Ij) as the optimal matching on the segment Ij. Then,

c(Opt(I)) =
∑
Ij∈I

c(Opt(Ij))

Proof. To obtain the segments I1, · · · , I` from the original instance I, only the edges
of length greater than c(Opt) are removed. Note however that these edges cannot be
used in the matching by Opt(I), and so the lemma follows.

Corollary 2.3.3. If A is c-competitive, then DivideA is also c-competitive.

Now, using m as the total number of servers, consider:

CHAPTER 2. PRELIMINARIES 10

ContractρA(I):

while there is pair of adjacent servers si and sj such that d(si, sj) < ρ/m2 do
Contract the edge between si and sj.

end while
Call this new instance I2, and the original instance I1.
for each request ri do

Use A(I2) to determine which server ri assigns to.
end for

Lemma 2.3.4.
ContractρA(I1) ≤ A(I2) + ρ

Proof. Let dI1(si, sj) be the distance between two servers si and sj on the original
instance I1, and dI2(si, sj) their distance on I2. Then, since the procedure can only
contract at most m − 1 edges (every edge between each pair of adjacent servers),
dI1(si, sj) ≤ dI2(si, sj) + ((m− 1)/m2) · ρ. Thus, for each of the k ≤ m requests ri, the
cost of ri’s assignment by A on I2 can only increase by at most (m− 1)/m2 ≤ 1/m
times ρ. Thus, the total cost of ContractρA(I1) can only be (k/m) · ρ ≤ ρ more than
the cost of A on I2.

Since we are interested in multiplicative approximation guarantees, we can scale
distances so that the minimum non-zero distance is 1. Define

SimplifyρA(I) = Contractρ
DivideρA(I)

(I ′),

where I ′ is the instance of the problem that DivideρA(I) generates, and SimplifyρA(I)
fails if DivideρA(I) fails. Now, consider the following algorithm:

Guess&VerifyA(I):

ρ← 1
for each request ri do

while SimplifyρA(I) fails do
ρ← 2 · ρ

end while
Use SimplifyρA(I) to determine which server ri assigns to.

end for

Lemma 2.3.5. If algorithm A is c-competitive, and ρi is the ρ-value used in the
algorithm on ri, then SimplifyρiA (I) ≤ 3cρi.

CHAPTER 2. PRELIMINARIES 11

Proof. First, note that for all i, Opt(I, i) ≤ ρi ≤ 2 ·Opt(I, i). To see this, note that
DivideρA(I) can only fail if ρ < Opt(I, i), since this means that there exists some
sub-instance where an edge that was intended to be used by Opt(I, i) was cut by
DivideρA. For the upper bound, we stop increasing ρ as soon as the algorithm does
not fail, so ρi is in fact the smallest ρ-value that is a power of 2 and is such that
ρi ≥ Opt(I, i).

For the main proof, we go by induction on i, the number of requests that have
so far appeared, using Alg(I, i) to represent the cost of algorithm Alg on instance
I for the first i requests. For the base case, the claim holds since Simplifyρ1A (I, 1) =
A(I, 1) ≤ c ·Opt(I, 1). Assume inductively that

Simplify
ρi−1

A (I, i− 1) ≤ 3cρi−1.

There are two cases to consider on ρi. Let’s denote I ′ as the modified instance that
we run A on in Guess&VerifyA(I). If ρi = ρi−1, then SimplifyρiA (I, i) ≤ A(I ′, i) + ρi by
Lemma 2.3.4. Now, since A is c-competitive, A(I ′, i) ≤ c ·Opt(I ′, i), and Opt(I ′, i) ≤
Opt(I, i), since I ′ is a version of I where all distances have either stayed the same or
shrunk. Since ρi ≥ Opt(I, i), we get that

SimplifyρiA (I, i) ≤ 2ρi ≤ 3cρi,

since c ≥ 1 by the definition of competitive ratio.
Now, consider the case where ρi ≥ 2 · ρi−1, since this is the only other possibility if

ρi 6= ρi−1. Here is one way to upper-bound SimplifyρiA (I, i), conceptually. Given the
assignment of requests we have made so far from Simplify

ρi−1

A (I, i− 1), we can imagine
sending the requests back to their original location, and then assigning them according
to the matching dictated by A(I ′, i), since by the triangle inequality this is an upper
bound on the cost of the actual matching made. Thus, we have by Lemma 2.3.4 again
that

SimplifyρiA (I, i) ≤ Simplify
ρi−1

A (I, i− 1) + A(I ′, i) + ρi

Inductively, Simplify
ρi−1

A (I, i−1) ≤ 3cρi−1 ≤ (3c/2)ρi. Again, A(I ′, i) ≤ c·Opt(I ′, i) ≤
c ·Opt(I, i) ≤ cρi, so we have that

SimplifyρiA (I, i) ≤ cρi(3/2 + 1 + 1/c) ≤ 3cρi

as desired.

Corollary 2.3.6. Guess&VerifyA is 6c-competitive if A is c-competitive.

Proof. Note that Guess&VerifyA uses SimplifyρkA (I), where ρk is the final value of the
ρ used in the algorithm. This is at most 2 ·Opt(I) as shown in the previous lemma, so
SimplifyρkA (I) ≤ 3cρk ≤ 6cOpt(I), which means that Guess&VerifyA ≤ 6c·Opt(I).

Chapter 3

An O(hd) Algorithm

3.1 Matchings on an HST

We will only consider trees T with a special root vertex r. The level of vertices in
T is defined as follows: the level of the root r is defined to be 1, and the level of
any other node v is defined to be one more than the level of its parent pv. Hence,
L(v) = L(pv) + 1.

For an edge e, define the parent node of e as its endpoint that is closer to the
root of the tree, and the child node as the endpoint further from the root of the tree.
Now, the level of an edge e = {v1, v2} is the level of its parent node: in other words,
L(e) = min(L(v1), L(v2)).

Recall that an α-HST is a rooted tree T = (V,E) such that for any edge e, the
weight of e is

w(e) =
c

αL(e)−1
.

From now on, T will be used to represent an α-HST where all requests and servers
occur at the leaves.

Definition 3.1.1 (Matching). A matching M : R→ S is a map from a set of requests
R to the set of servers S.

Definition 3.1.2 (Matching Paths). Let (ri, si) be an element of some matching M ,
with ri ∈ R and si ∈ S. Suppose Pi represents the unique path from ri to si, such
that Pi has the following form:

Pi = 〈ri, v1, v2, · · · , vl, si〉.

We can define a matching path ~Pi corresponding to the matched pair ri, si thus:

~Pi = {(ri, v1), (v1, v2), · · · , (vl, si)},

12

CHAPTER 3. AN O(HD) ALGORITHM 13

where the direction associated with each arc is oriented towards si and away from ri
in P .

So far, it has been established that a matching M , which is a map from requests
to servers, can be described as a set of (directed) matching paths from each request to
its corresponding server. These matching paths consist of a collection of arcs, and let
A(M) be the multiset of all arcs in used in matching M . For each arc a ∈ A(M), let

t(a) = i if a ∈ ~Pi. Moreover, let e(a) be the edge associated with a; i.e., if a = (x, y)
then e(a) = {x, y}. An up arc is one that is directed towards the root, whereas a
down arc points away from the root.

Fix a matching M , which defines the matching paths ~Pi, and hence the multiset
of arcs A(M). For some edge e in T , let Λe be the multiset of arcs associated with e
in M . Moreover, let Λu

e be the multiset of all up-arcs at e, and Λd
e be the set of all

down-arcs. It follows that Λe = Λu
e ∪ Λd

e. Observe that for any arc a, it holds that
a ∈ Λe(a); moreover, A(M) = ∪e∈EΛe.

Definition 3.1.3 (Cost of Matching). For a matching M , the cost of the matching,
denoted by c(M), is defined as the sum of the weights of all arcs associated with M ;
i.e.,

c(M) =
∑
~Pi

∑
a∈~Pi

w(e(a)) =
∑
e∈E

w(e) · |Λe|.

An optimal matching is one that achieves the minimum cost.

3.1.1 Characterizing Optimal Matchings

The following definition and the next lemma introduces an important characteristic of
matchings of optimal cost.

Definition 3.1.4. A conflicted edge for some matching M is an edge such that both
Λu
e and Λd

e are non-empty.

Lemma 3.1.5. Let M : R→ S be a matching from the set of requests to the set of
servers on an α-HST, where all servers and requests are at the leaves. Assume that
for every request r, if M(r) = s, then there does not exist some unassigned s′ such
that d(r, s′) < d(r, s). If M has no conflicted edges, then M is optimal.

Before we prove this lemma, we present a useful definition. For some edge e, let
Te = (Ve, Ee) denote the tree rooted at the child node of e. Also, let RTe denote the set
of all requests in Te, with STe the set of all servers in Te; in other words, RTe = R∩ Ve
and STe = S ∩ Ve.

CHAPTER 3. AN O(HD) ALGORITHM 14

Proof. Every request must be matched to a server in any matching—thus, at least
βe = |RTe| − |STe| requests from RTe must be matched to servers not in Te. Thus,
for any matching M , the number of up-arcs on e is |Λu

e | ≥ βe. Similarly, at least
γe = (|R| − |RTe|)− (|S| − |STe|) requests outside of Te must match to servers within
Te. Consequently, it must also be the case that |Λd

e| ≥ γe.
For a contradiction, suppose the matching M is not optimal. Then there exists

some edge e such that |Λu
e | > βe or |Λd

e| > γe.
If |Λu

e | > βe, then at least one request r in Te must have assigned to a server s
outside of Te. Also, we have that there exists some server s′ in Te that is not assigned
by a request in Te. Let r′ be the request that is matched to s′. Then r′ is not in
Te. The matching paths used by the assignments (r, s) and (r′, s′) then cause e to be
conflicted.

The proof is similar for when |Λd
e| > γe. In both cases, we get a contradiction,

implying that M is an optimal matching.

3.2 A Deterministic Algorithm

Consider the following algorithm Adet for matching requests to servers on T :

As each new request r comes in, assign it to a closest unassigned server.

Let M be the matching produced by Adet.
Lemma 3.2.1. For every request r, if M(r) = s, then there does not exist any
unassigned server s′ such that d(r, s′) < d(r, s).

Proof. For some request r, with M(r) = s, suppose for the sake of contradiction that
some s′ remained unassigned and d(r, s′) < d(r, s). Then, when the algorithm chose to
assign r, it chose a closest server. By definition, this means that the server it chooses,
s, must be such that all other servers have distance at least d(r, s). The existence of
s′ provides the necessary contradiction to establish this lemma.

The above lemma must be established in order to apply Lemma 3.1.5 to M , which
would allow the cost of M to be directly compared to the cost of the optimal matching.
Let us now look closer at the nature of conflicted edges.

An arc a1 is said to be added before an arc a2 if t(a1) < t(a2). Likewise, a1 is added
after a2 if t(a1) > t(a2).

Lemma 3.2.2. As algorithm Adet is being run, all down arcs are added before any up
arc is added. In other words, for any edge e covered by the matching,

max
a∈Λde

(t(a)) < min
a∈Λue

(t(a)).

CHAPTER 3. AN O(HD) ALGORITHM 15

Proof. When a request r traverses an edge e upwards, this means that all servers in
Te have been assigned. When a request r′ traverses e downwards, r′ is matched to
some unassigned server within Te. Thus, if a down arc occurs after an up arc, then a
contradiction forms. More formally, it is a contradiction if there exists some a ∈ Λu

e

and a′ ∈ Λd
e where t(a) < t(a′).

At this point, more precision is needed for the categorization of conflicted edges.
Rather than simply labeling an edge as conflicted or not, the following definition can
be used to establish the number of conflicts at an edge.

Definition 3.2.3. A digon is a pair of arcs (a1, a2) such that a1 in Λu
e and a2 in Λd

e

for some edge e. A set of digons is said to be distinct if no two digons of the set share
an arc.

Lemma 3.2.4. Let M be a matching produced by Adet. Consider only the arcs in
A(M) corresponding to level i edges, and fix any maximal set of digons among these
arcs. If the set of arcs is non-empty, then there exist at least two arcs a1 and a2 that
do not belong to a digon, where a1 is an up arc, and a2 is a down arc. Also, these two
arcs lie on non-conflicted edges.

Proof. Let a1 be the arc on some edge e1 at level i, such that over all arcs at level i,
t(a1) is minimal. Intuitively, this arc represents the first request that traversed level
i. We know by Lemma 3.2.2 that no more down arcs can occur on e1. Since a1 was
also the first request to traverse this level, there could not have been any down arcs
before a1. Thus, Λd

e1
is empty, and so a1 cannot be paired into a digon, and e1 is

non-conflicted.
Similarly, let a2 be the arc on edge e2 such that over all arcs at level i, t(a2) is

maximal. Intuitively, this arc represents the last request that traversed level i. We
know by Lemma 3.2.2 that no up arcs can occurred on e1 before a2. Since a2 was
also the last request to traverse this level, there could not have been any up arcs
after a2. Thus, Λu

e2
is empty, and so a2 cannot be paired into a digon, and e2 is

non-conflicted.

The next lemma shows how to algorithmically obtain an optimal matching from
any matching produced by Adet by repeatedly removing digons.

Lemma 3.2.5. Let M be some matching produced by Adet. Suppose two arcs a1

and a2 from A(M) are chosen such that {a1, a2} form a digon. Then there exists a
matching M ′ such that A(M ′) = A(M) \ {a1, a2}. Also, c(M ′) ≤ c(M).

Proof. Suppose that for all k, M(rk) = sk. Let ~Pi (connecting ri to si) be the matching

path containing a1, and ~Pj (connecting rj to sj) be the matching path containing a2.

CHAPTER 3. AN O(HD) ALGORITHM 16

Define M ′ as follows:

M ′(rk) =

sj, if k = i

si, if k = j

sk, otherwise

By switching the matching paths ~Pi with ~Pj to not use e(a1) in M ′, a valid matching
is still maintained. Since all other arcs in M ′ also exist in M , we see that c(M ′) =
c(M)− 2w(e(a1)) ≤ c(M), with the equality being strict if w(e(a1)) > 0.

The above lemma, along with Lemmas 3.1.5 and 3.2.1 immediately imply the
following.

Corollary 3.2.6. If digons are repeatedly removed from a matching M produced by
Adet until there are no more digons, the resulting matching must be optimal.

If the number of digons removed to transform M into the optimal matching is
small, we get a bound on the competitive ratio. To do this, we next consider ways to
bound the number of digons.

3.3 Conflict Sequences

Loosely speaking, a conflict sequence is an ordered sequence of arcs that begins with
an up arc, followed by 0 or more digons, and is terminated by a down arc. The digons
are, however, obtained by pairing arcs in a specific fashion, as we describe next.

A sequence σ = a0, a1, · · · , a|σi|−1 of arcs at level i is a conflict sequence if

• aj is an up arc if j is odd, and a down arc if j is even,

• a2j−1 and a2j must belong to the same matching path (i.e., t(a2j−1) = t(a2j)),
and

• a2j+1 belongs to a matching path added after a2j (i.e., t(a2j) < t(a2j+1)), but
these two arcs form a digon (i.e., e(a2j) = e(a2j+1)).

Additionally, a conflict sequence is maximal if it is not a proper subset of any other
conflict sequence.

Let the function #(σ) represent the number of distinct edges covered by σ, and |σ|
denote the number of arcs in σ. Then the following lemmas establish a relationship
between #(σ) and |σ|.

Fact 3.3.1. For any conflict sequence σ = 〈a0, a1, · · · , a|σ|−1〉, we have e(a2j) 6= e(a2k)
for all k 6= j.

CHAPTER 3. AN O(HD) ALGORITHM 17

Proof. We already know that e(a2j) = e(a2j+1), and that a2j is a down arc, whereas
a2j+1 is an up arc. But by Lemma 3.2.2, if an arc a′ in σ is such that e(a2j) = e(a′),
then t(a2j) < t(a′) < t(a2j+1). However, since a2j and a2j+1 follow consecutively in σ,
no such arc can exist.

Fact 3.3.2. For any conflict sequence σ = 〈a0, a1, · · · , a|σi|−1〉, it holds that #(σ) =
1
2
|σ|+ 1.

Proof. Since e(a2j) = e(a2j+1), every arc can be paired with the next arc in the
sequence, except for the last arc of σ. Also, e(a2j) = e(a2k) only when j = k. The
lemma follows.

3.3.1 Canonical Conflict Sequences

We want to have some notion of a fixed set of conflict sequences for a matching, such
that every arc of the matching belongs to a conflict sequence, no arc belongs to two
conflict sequences. We will denote S as the set of these canonical conflict sequences,
and Si will be used to represent the set of canonical conflict sequences at level i of T .

Lemma 3.3.3. Let RS : A→ A be the relation between two arcs a1 and a2 such that
a1RSa2 if and only if a1 and a2 belong to the same canonical conflict sequence.

There exists a setting of canonical conflict sequences S such that RS is an equiva-
lence relation.

Proof. We first define several functions for constructing S.
For the remainder of this proof, σ will be used to represent a conflict sequence

with arcs a1, a2, · · · , an.

merge(S = {σ1, σ2, · · · , σt}):
For every pair of conflict sequences (σi, σj) such that the last arc ai of σi and

the first arc aj of σj are such that t(ai) < t(aj) and e(ai) = e(aj), let γ = σj ◦ σi
and remove σi and σj from S and add γ.

Given a set of conflict sequences, merge() will extend these sequences such that
the sequences in the set returned will be maximal.

The next function we define allows us to create a conflict sequence at level i− 1
based on a conflict sequence at level i. This sequence at level i− 1 thus acts as the
parent.

CHAPTER 3. AN O(HD) ALGORITHM 18

image(σ):
Let E be the set of edges adjacent to the edges covered by the arcs of σ at

one level higher. If |E| > 1, form a conflict sequence σ′ out of the arcs in E, and
return σ′. Otherwise, return ⊥.

Fact 3.3.4. In image(σ), the arcs of E are enough to form a valid conflict sequence.

Proof. It remains to prove that the arcs lying on edges in E can be organized as a
conflict sequence at level i− 1. This can be done by showing that all properties of
being a conflicted sequence hold on some sequence involving the arcs at E in some
order.

For each edge e ∈ E, let S(e) be the set of arcs of σi that are adjacent to e. Define

f(e) = min
a∈S(e)

t(a)

Create the sequence S = e0, e1, · · · , e|E|−1, where f(e0) < f(e1) < · · · < f(e|E|−1).
Define eui as an up arc and edi as a down arc on edge ei. We want to show that

σi−1 = eu0 , e
d
1, e

u
1 , e

d
2, e

u
2 , e

d
3, · · · , ed|E|−2, e

u
|E|−2, e

d
|E|−1

is a conflict sequence at level i− 1.
By our definition, σi−1 consists only of arcs found at level i− 1.
By how we constructed σi−1, we have that each even term is an up arc. Also

note that the request that traversed up on ei must have been the same request that
traversed down on ei+1. Thus, we have that t(ei) = t(ei+1).

By how we constructed σi−1, we have that each odd term is repeated once again,
establishing that e(aj) = e(aj+1). Also note that the request that traversed down on
ei must have come before the request that traversed up on ei. Thus, we have that
t(ei) = t(ei+1).

Therefore, σi−1 is a conflict sequence at level i− 1.

Fact 3.3.5. Let σ1 and σ2 be two conflict sequences at level i. Then image(σ1) and
image(σ2) are disjoint.

Proof. Suppose an arc a at level i − 1 belongs to image(σ1) and image(σ2). Then
there exists an arc a′ at level i such that t(a′) = t(a).

By the way the parent sequences are formed from image(), it must be the case
that a′ is also a member of two sequences σ′1 and σ′2 at level i. Thus, by induction, it
only remains to show that an arc cannot belong to two sequences at the last level of
the tree.

CHAPTER 3. AN O(HD) ALGORITHM 19

Suppose for the sake of contradiction that an arc â at the last level belongs to
two sequences σ̂1 and σ̂2. Then there exist arcs â1 in σ̂1 and â2 in σ̂2 such that
t(â1) = t(a) = t(â2). However, there cannot be three arcs that have the same t-values,
a contradiction.

This next function will be used to generate a set of canonical sequences at level
i. It requires the canonical sequences at level i + 1. Let Si be the set of canonical
sequences at level i.

canonicalize(i, Si+1):
If i = h, meaning that we are canonicalizing the last level of the tree, then

define Si as:
Si = {(a1, a2) ∈ Ai : t(a1) = t(a2)}

Otherwise, if 1 ≤ i < h, then for each s in Si+1, add image(s) to Si.
In either case, merge(Si) and return Si.

Thus, we now have a way of generating the set of canonical sequences for the entire
tree.

It is trivial to show that RS is reflexive and symmetric. To show that RS is also
transitive, it is enough to show that no arc can belong to more than one canonical
sequence.

Since we remove the arcs that form a canonical sequence before adding them into
the set of canonical sequences, it cannot be the case that one arc is used twice to form
two canonical sequences.

Thus, we have shown that RS is an equivalence relation.

Lemma 3.3.6. Let F be the map defined by the image() function. Then,

F : Si → Si−1 ∪ {⊥}

is such that:

1. If F(σ) = ⊥ then |σ| ≤ 2d− 2.

2. if F−1(σ′) = {σ1, σ2, · · · , σt}, then
∑t

k=1

[
|σk|
τ
− 2
]
≤ |σ′|, where τ = d.

Proof. For property 1, we show the contrapositive. Let E be the set of edges adjacent
to arcs in σ, and suppose that σ is a conflict sequence at level i. It is enough to show
that if |σ| > 2d− 2, then |E| ≥ 1.

Suppose, to get a contradiction, that all arcs of σ are adjacent to exactly one edge
e at level i− 1. We know that for any edge e′ at level i, at most two arcs from σ can

CHAPTER 3. AN O(HD) ALGORITHM 20

lie on e′. Since the maximum degree of the tree is d, we also know that at most d
edges at level i can be adjacent to e. But by Fact 3.3.2, #(σ) > 1

2
(2d− 2) + 1 = d,

which is a contradiction.
For property 2, look at any arbitrary σk, and let Ek be the set of edges adjacent to

arcs in σk. Note that #(σk) = 1
2
|σk|+ 1, and so the Pigeonhole Principle gives us that

|Ek| ≥ d
#(σk)

d
e = d

1
2
|σk|+ 1

d
e ≥ 1

2d
|σk|

We know by Fact 3.3.4 that we can pull arcs from the edges of Ek to form a conflict
sequence. Let σ′k be this new sequence. Fact 3.3.2 then gives us that

|σ′k| = 2|Ek| − 2 ≥ |σk|
d
− 2.

Since k was arbitrarily chosen, we can then apply this to all such σk for 1 ≤ k ≤ t.
By Fact 3.3.5, the arcs in the image of σk are disjoint from the arcs of any other σj
for j 6= k. Thus, we can simply take the sum over all σk to establish a lower bound
on the union of the images of each σk. Note that the union of the images of each σk
make up σ′, and so property 2 follows.

3.4 Competitive Ratio

From now on, we will use M to denote the matching produced by our algorithm, and
M∗ the optimal matching. Note that for a canonical sequence σ ∈ Si, our algorithm
pays |σ|, hence

c(M) =
h∑
i=1

[∑
σ∈Si

|σ|

]
c

αi−1

If we define si =
∑

σ∈Si |σ|, we get

c(M) = c
h∑
i=1

si
αi−1

We can also give a lower bound on the cost of the optimal matching; note that every
canonical sequence is associated with exactly two non-conflicted edges. Recall from
Corollary 3.2.6 that removing the digons in each the canonical sequences for M gives
us an optimal matching. Hence, if ai = |Si|, it follows that

c(OPT) = 2c
h∑
i=1

ai
αi−1

.

Let us now relate the si’s to ai’s as follows:

CHAPTER 3. AN O(HD) ALGORITHM 21

Lemma 3.4.1.
si ≤ τ(si−1 + 2ai).

Proof. Let σ′ be a canonical sequence at level i−1, and suppose F(σ′) = {σ1, σ2, · · · , σt}
be the canonical sequences at level i that map to σ′. Lemma 3.3.6(2) implies that

|σ′| ≥
∑

σk∈F(σ)(
|σk|
τ
− 2).

Furthermore, we know that each σ′ at level i either maps to some sequence at level
i− 1, or maps to ⊥—in which case its length is at most 2τ − 2, and hence satisfies
2|σ′|
τ
− 2 ≤ 0.

Using these facts, we can sum over all σ’s in Si to get∑
σ∈Si

(
|σ|
τ
− 2

)
≤

∑
σ′∈Si−1

|σ′|.

Now using the definitions of si and ai, we get

si
τ
− 2ai ≤ si−1,

or si ≤ (si−1 + 2ai) · τ , which proves the claim

Lemma 3.4.2.

si ≤ τ i(
d

τ
a1 + 2

i∑
k=2

ak
τ k−1

) ≤ di

c
· c(OPT).

Proof. Let us use Lemma 3.4.1 repeatedly to represent si in terms of s1 thus:

si ≤ s1 · τ i−1 + τ i · 2
i∑

k=2

ak
τ k−1

.

We also know that ai · di ≥ si, since the maximum length of any canonical sequence
at level i is di. Thus, s1 ≤ a1 · d, and so we can infer that

si ≤ τ i(
d

τ
a1 + 2

i∑
k=2

ak
τ k−1

).

Recall that τ = d; plugging this in, we get

si ≤ di(a1 + 2
i∑

k=2

ak
dk−1

) ≤ di · 2
i∑

k=1

ak
dk−1

≤ di

c
· c(OPT).

This completes the proof of the lemma.

CHAPTER 3. AN O(HD) ALGORITHM 22

Plugging this into the definition of c(M), we get

c(M) = c
h∑
i=1

si
αi−1

≤ c
h∑
i=1

di

c · αi−1
· c(OPT) ≤ c(OPT) ·

h∑
i=1

di

αi−1
,

which implies the main result for deterministic algorithms:

Theorem 3.4.3. The competitive ratio of the deterministic greedy algorithm on α-
HSTs with maximum degree d is at most

h∑
i=1

di

αi−1
.

In particular, if d ≤ α, then the competitive ratio is at most hd.

Chapter 4

A Variant of the MNP Algorithm

4.1 The Algorithm

Our algorithm, called Random-Subtree, for online metric matching on HSTs is
the following: when a request l comes in, consider its lowest ancestor node a that
contains a free server. Now choose a path down from a to a free server by going to a
(uniformly) random subtree that contains a free server. We imagine that each leaf
of the HST contains at most one server, and so when we reach a server/leaf s, we
map the request l to this server s. Note that this does not bias towards subtrees that
contain more servers (as the randomized greedy algorithm of Meyerson, Nanavati and
Poplawski [MNP06] does).

The performance of this algorithm is given by the following theorem:

Theorem 4.1.1. The algorithm Random-Subtree is a 2(1 + 1/ε)Hd-competitive
algorithm for online metric matching on degree-d α-HSTs, as long as α ≥ max((1 +
ε)Hd, 2).

Using the fact that we can approximate a k-point line metric by degree-2 2-HSTs
with distortion O(log k) [FRT03], we immediately get an O(log k) · 8H2-competitive
randomized algorithm for online metric matching on a line. This appears to be the
first O(log k)-competitive algorithm for this problem. Throughout the proof, we use
Hd to represent the dth harmonic number, so Hd =

∑d
i=1 1/i.

4.2 The Proof

To prove the theorem, we first show a structure lemma (Lemma 4.2.2) that accounts
for the expected number of times an edge adjacent to the root in the HST is used by
the algorithm: we show that this number is at most Hd times the number of times the

23

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 24

optimal algorithm uses those edges. We then use this result for every level to show
that the total cost still remains at most O(Hd) times the optimum, as long as the
parameter α for the HST is sufficiently large compared to Hd. This proof appears in
Lemma 4.2.7, and immediately implies Theorem 4.1.1.

4.2.1 Proof of the Structure Lemma

Consider an HST T with a set of requests S ∪ S ′ such that the requests in S originate
at the leaves of T , and those in S ′ originate at the root. Assume that the number of
servers in T is at least |S ∪ S ′|. Occasionally we will use Ti to represent the set of
requests that originate in a subtree Ti of T (rather than the subtree itself) when the
context makes this clear. Let ni be the number of servers in the ith subtree Ti of T ,
and let m∗ =

∑
i max(|S ∩ Ti| − ni, 0).

Fact 4.2.1. In any assignment of requests in S ∪ S ′ to servers, at least m∗ + |S ′|
requests use top-level edges.

Proof. The number of requests that originate in a subtree Ti is |S∩Ti|, so |S∩Ti|−ni
represents the number of requests that originate in Ti and must assign to servers
outside of Ti, and hence, must use a top-level edge. The maximum of this quantity over
all subtrees is therefore a lower bound on the number of requests that use top-level
edges.

Let M be the random variable denoting the number of requests in S ∪ S ′ that use
a top-level edge when assigned by the algorithm Random-Subtree.

Lemma 4.2.2 (One-Level Lemma).

E[M] ≤ Hd · (m∗ + |S ′|).

Proof. Let the k requests S ∪ S ′ be labeled r1, r2, · · · , rk, where r1 is the earliest
request and rk is the last request.

We define time t to be the instant just before request rt is assigned, so that
t = 1 represents the time before any request assignments have been made, and
t = k + 1 represents the the time after all request assignments have been made. Let
Rt = {rt, rt+1, · · · , rk}, the set of requests at time t that have yet to arrive. At time t,
let ni,t be the number of available servers in tree Ti. A subtree Ti is said to be open
at time t if ni,t > 0 (there are available servers at time t in Ti). Let αt be the number
of open subtrees of T at time t. Define the first min(ni,t, |Rt ∩ Ti|) requests to be the
local requests of Ti at time t (these are the ones in Ti that have the highest numbered
indices), and the remaining requests in Ti to be the global requests of Ti at time t; let
Li,t and Gi,t be the set of local and global requests in Ti at time t, and let Lt = ∪iLi,t
and Gt = ∪iGi,t. All requests in Rt ∩ S ′ are called root requests of T at time t, and
form the set Rt.

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 25

Remark 4.2.3. At time t = 1, R1 = S∪S ′, ni,1 = ni, and the number of global requests
in Ti is |Gi,1| = max(|S ∩ Ti| − ni, 0), and the number of root requests is |Ri,1| = |S ′|.
The total number of global requests at time 1 is m∗.

We will maintain functions Ft : Rt → Z≥0; such a function Ft is called well-formed
if it satisfies the following properties:

• Ft(rj) = 0 if and only if rj ∈ Lt (i.e., it is a local request at time t), and

• for all global and root requests rj ∈ Gt ∪ Rt, Ft(rj) is an upper bound on αj
(the number of open subtrees at time instant j) with probability 1.

To ensure that our functions are well-formed initially at time 1, we set F1(rj) = d
(the degree of the tree) for all rj ∈ G1 ∪R1 (global and root requests at time 1), and
F1(rj) = 0 for all rj ∈ L1 (local requests at time 1). It is immediate that the map
F1 is well-formed. We will define a (well-formed) map Ft for every time instant t, as
described in the following discussion.

Consider time instant t, and suppose that the well-formed map Ft has been defined.
If rt ∈ Lt, then define Ft+1(rj) = Ft(rj) for all rj ∈ Rt. Note that if a request at time
t is a local/global/root request, then it is still a local/global/root request at time t+ 1,
so it follows that Ft+1 is still well-formed.

Now suppose rt ∈ Gt ∪Rt—it is a global or root request. For convenience, we say
that a request rj “becomes global” at time t if rj is local at time t− 1, but rj is global
at time t. Recall there are αt open subtrees at time t; moreover, since rt is a global
request, its own subtree is not open at time t. For each open subtree Ti, there are
|Rt ∩ Ti| requests and ni,t free servers in it, so if |Rt ∩ Ti| ≥ ni,t then assigning rt to a
server in this subtree would cause some request rj in Rt ∩ Ti that is local at time t to
become global at time t+ 1 (because ni,t−1 would become ni,t − 1). Let at(Ti) = j, so
that at(Ti) is the index of the request rj that turns global in subtree Ti; if there is
no such request, set at(Ti) = k + i. Let At = {at(Ti) | Ti open at time t}; note that
|At| = αt. Now denote the elements of At by {pj}αtj=1 such that p1 < p2 < · · · < pαt .
Note that each pj corresponds to at(Ti) for some subtree Ti.

Remark 4.2.4. Note that pαt > k; indeed, since the total number of requests in S ∪ S ′
is at most the total number of servers. If rt is global, then the subtree containing rt
has no available servers but has at least one request (namely rt), which must assign
to some open subtree Ti which has more available servers than requests. Alternatively,
if rt is a root request, then there must exist some there must be at least one open
subtree Ti which has strictly more available servers than requests—for this subtree Ti,
the corresponding at(Ti) is greater than k.

Now, let rt get randomly assigned to a server in one of the open subtrees, say in
subtree Ti. We now need to define the map Ft+1. There are two cases to consider:

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 26

• If at(Ti) > k (i.e., none of the requests in Ti ∩ Rt+1 become global at time t),
then we set Ft+1(r) = Ft(r) for all requests r ∈ Rt+1.

• If at(Ti) ≤ k, then say at(Ti) = pα(t)−q+1 in the ordering given above (i.e.,
at(Ti) was the qth largest value in At). Now assign Ft+1(r) = Ft(r) for all
r ∈ Rt+1 \ {rat(Ti)}, and Ft+1(rat(Ti)) = q − 1.

Lemma 4.2.5. The map Ft+1 is well-formed.

Proof. By induction, the map Ft was well-formed. In the first case when rt is local,
since the map remains unchanged on Rt+1, and so do the set of local/global/root
requests in Rt+1, the claim follows.

When rt is a global or root request and mapped into Ti, if none of the requests in
Ti ∩ Lt−1 become global due to this change, the well-formedness of Ft+1 follows again.
So, let’s consider the case where the request rj ∈ Ti becomes global because of rt. We
previously defined that j = at(Ti), and that j is the qth largest of the sequence of At.
Moreover, since rj is mapped by Ft+1 to an integer q ≤ k, it suffices to show that at
most q − 1 subtrees will be open at time j. Indeed, we claim that for any subtree Th
with at(Th) < at(Ti) = j, there will be no servers available in Th at time j. To see
this, note that since at(Th) < k, there must be some request that becomes global if rt
assigns in Th. Thus, the number of requests in Th that had indices smaller than j (and
hence arrive before rj) was equal at time t to the number of available servers in Th,
and hence these requests alone would cause Th to be closed. Moreover, for subtree Ti,
the fact that rj becomes global at time t means that Ti will also be closed at time j.
Hence, the only open subtrees at time j would be the subtrees T` which were open at
time t, and which had at(T`) > j. There are at most q − 1 of such subtrees T`, since j
is the qth largest of the sequence. This shows that Ft+1 is well-formed.

Observe that the changes to the map Ft over time are very simple: maps Ft and
Ft+1 differ in at most one request from Rt+1. Moreover, this difference is when some
local request rj becomes global at time t, and hence is mapped to some positive integer
value instead of to zero. The value Ft′(lj) then remains unchanged thenceforth (for
times t′ = t+ 1, t+ 2, . . . , j).

Finally, let us define a potential function:

Φt =
∑
r∈Rt

HFt(r),

where we consider H0 = 0. Also, define ρt to be the number of requests that our
algorithm has matched outside their subtrees at time t.

Lemma 4.2.6. For all 1 ≤ t ≤ k + 1, E[Φt + ρt] ≤ Hd · (m∗ + |S ′|).

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 27

Proof. We prove this by induction on time t. The base case is when t = 1. Then
ρ1 = 0; the number of global/root requests is m∗ + |S ′|, and since each such request r
has F1(r) = d, we get that Φ1 = Hd · (m∗ + |S ′|).

Inductively assume the claim is true at time t. Thus, E[Φt + ρt] ≤ Hd · (m∗ + |S ′|).
We want to show the same at time t+ 1, right after rt has been assigned. We claim
that

E[Φt+1 + ρt+1] ≤ Φt + ρt,

which will complete the proof. There are two cases:

• Suppose rt is a local request: its subtree contains an unassigned server, so
ρt+1 = ρt. Moreover, Ft(rt) = 0 by the well-formed property, so Φt+1 = Φt.

• Suppose rt is a global request, and gets assigned to subtree Ti. In this case,
ρt+1 = ρt + 1. Now consider E[Φt − Φt+1]. This is

HFt(lt) −
1

αt

αt−1∑
j=0

Hj ≥ 1

since Ft(rt) ≥ αt by the well-formedness of map Ft, and Hm − 1
m

∑m−1
j=0 Hj = 1.

Hence, in both cases, conditioned on everything that happened before time t, the
value E[Φt+1 +ρt+1] ≤ Φt +ρt, where the expectation is taken over the random choices
of lt. This completes the induction, and the proof of the lemma.

Since ρk+1 = M , and Φk+1 = 0, this finishes the proof of the lemma.

4.2.2 Bounding the Total Cost

Given the one-level lemma with parameter γ, we can now show the following result
for α-HSTs:

Lemma 4.2.7. Suppose T is an α-HST rooted at r. For any set S of requests at the
leaves of T , and requests S ′ at the root of T , such that |S ∪ S ′| is at most the number
of servers in T . If we let Alg(R, T) be the cost of Random-Subtree on the set of
requests R on the tree T , and Opt(R, T) the cost of the optimal solution, it holds that

E[Alg(S ∪ S ′, T)] ≤ cγOpt(S ∪ S ′, T)

for c = 2(1 + 1/ε) as long as α ≥ max(2, (1 + ε)γ).

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 28

Proof. We prove this by induction on the depth of the HST. The base case of this
problem is implied by the one-level lemma on a star (say of unit edge lengths); note
that the algorithm incurs a cost of 2M , whereas Opt(S∪S ′, T) = |S ′|+2m∗ ≥ |S ′|+m∗.
Hence we get that E[Alg(S∪S ′, T)] = E[2M] ≤ 2Hd·Opt(S∪S ′, T) ≤ cγOpt(S∪S ′, T).
Recall that M is the number of requests in S ∪ S ′ that in our algorithm’s matching
use top-level edges, and m∗ is the number of requests in S that use top-level edges in
the optimal matching.

For the inductive step, let us prove the claim for an α-HST T under the assumption
it inductively holds for all the α-HSTs Ti that are the subtrees of the root. Let the
length of edges incident to the root be 1, the length of their children be 1/α, etc. Let
the length of the path from the root to a leaf in T be (1 + β), which implies that
β ≤ 1

α−1
. Let ni be the number of servers in a subtree Ti of T .

Consider the optimal matching Opt, and define the following quantities:

• Let Γ∗i be the requests originating in Ti that OPT matches outside Ti (call these
the Opt-global clients), and let m∗i = |Γ∗i |,

• Let Λ∗i be the requests in Ti that Opt satisfies with servers in Ti (these are the
Opt-local clients)

• Let Si = Λ∗i ∪ Γ∗i , and note that S = ∪iSi.

Fact 4.2.8 (Optimal Cost).

Opt(S ∪ S ′, T) =
∑
i

Opt(Λ∗i , Ti) +
∑
i

m∗i · 2(1 + β) + |S ′| · (1 + β).

Proof. We can partition the set S ∪ S ′ into the three types of subsets Λ∗i , Γ∗i , and S ′.
For each request r in Λ∗i we note that the optimal cost of assigning r is determined by
Opt(Λ∗i , Ti), since r’s server must be in Ti. For every request in Γ∗i , we must assign
from some subtree Ti to Tj by using a top-level edge. Thus, we simply pay twice
the length from the root to a leaf for each request in Γ∗i , which can be expressed
as 2(1 + β)m∗i for each subtree Ti. Finally, the requests that begin at the root (of
which there are |S ′| many) will pay the length of the root to a leaf, which is exactly
1 + β.

Now, let Mi be the set of requests originating outside Ti (but possibly at the root
of Ti) that the algorithm satisfies by assigning into Ti. Look at Si ∪Mi—these are all

the requests that the subtree Ti encounters, and let Xi = Ŝi ∪ M̂i be the first ni of
these requests which can be satisfied within the subtree Ti. (Note that the sets Mi,

Xi, Ŝi, and M̂i are all random variables.)

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 29

Fact 4.2.9.

E[Alg(S ∪ S ′, T)] =
∑
i

E[Alg(Ŝi ∪ M̂i, Ti)] +
∑
i

E[|Mi|] · (2 + β).

Proof. Suppose r is some request in Ti that Alg assigned to some server in Tj 6= Ti.
We account for this assignment’s cost by breaking the path from r to s into two parts.
The initial part, accounted for by the latter term of the equation, includes the edges
used from r to the root along with both edges incident to the root. The path from r
to the root is of length β + 1, and the additional edge incident to the root is of length
1, giving us β + 2. Since there are |Mi| such requests for each subtree Ti, we see that
the second term covers all of the initial parts of the paths of each global request.

The reason for the above convention is that now that we have covered all outgoing
requests, we can imagine all global incoming requests as having originated at the root
of the tree, since their inital parts have already been accounted for. Therefore, this
quantity can be described as Alg(Ŝi ∪ M̂i, Ti) for each subtree Ti.

By our inductive assumption we know that for any Ŝi and M̂i defined for a tree Ti,

E[Alg(Ŝi ∪ M̂i, Ti)] ≤ c γ Opt(Ŝi ∪ M̂i, Ti). (4.1)

Fact 4.2.10.

OPT (Ŝi ∪ M̂i, Ti) ≤ OPT (Λ∗i , Ti) +m∗i · 2β + |Mi| · β.

Proof. To bound OPT ’s cost on Ŝi ∪ M̂i, we imagine the requests in Ŝi ∩ Λ∗i being
sent according to where OPT (Λ∗i , Ti) sent them, and the remaining requests being
assigned arbitrarily to the remaining servers. The former cost is upper bounded by
OPT (Λ∗i , Ti). For the latter term, there are |Ŝi ∩ Γ∗i | ≤ |Γ∗i | = m∗i requests which
incur a cost of at most 2β (since they go from some leaf to another within the fixed
subtree Ti), and the remaining requests—at most Mi of them—incur a cost of at most
β (since they go from the root of Ti to a leaf).

Using Facts 4.2.9 and 4.2.10 with (4.1), we get

E[Alg(S ∪ S ′, T)] = c γ
∑
i

(
Opt(Λ∗i , Ti) +m∗i · 2β + E[|Mi|] · β

)
+
∑
i

E[|Mi|] · (2 + β).

(4.2)

Comparing this expression with Fact 4.2.8 (and cancelling the Opt(Γ∗i , Ti) terms),
it suffices to show that∑

i

c γ
(
m∗i · 2β + E[|Mi|] · β

)
+ E[|Mi|] · (2 + β) ≤

∑
i

c γ (2m∗i + |S ′|)(1 + β).

(4.3)

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 30

Finally, we can use the one-level lemma to claim that

E[|Mi|] ≤ γ · (
∑
i

m∗i + |S ′|). (4.4)

Using this, abbreviating m∗ =
∑

im
∗
i and s′ = |S ′|, and cancelling γ throughout, it

suffices to show that

cm∗ 2β + (m∗ + s′)(cγβ + (2 + β)) ≤ c (2m∗ + s′)(1 + β). (4.5)

Or equivalently, it suffices to choose c such that

c ≥ (m∗ + s′)(2 + β)

(2m∗ + s′)(1 + β)− 2β m∗ − (m∗ + s′)γβ
(4.6)

as long as the expression in the denominator is positive. But the expression on the
right is

m∗(2/β + 1) + s′(2/β + 1)

m∗(2/β − γ) + s′(1/β + 1− γ)
≤ max

(
2/β + 1

2/β − γ
,

2/β + 1

1/β + 1− γ

)
, (4.7)

so as long the greater of 2/β+1
2/β−γ and 2/β+1

1/β+1−γ is bounded above by c, we are in good

shape. If α ≥ 2, then 1/β ≥ α− 1 ≥ 1 and the latter expression is the larger one, so
we can focus on that. But that expression is 2α−1

α−γ , which is bounded above by 4 if

α ≥ 2γ. In general, we could set α = (1 + ε)γ, in which case we could set c = 2(1 + 1
ε
).

The following is a proof for completeness:

Lemma 4.2.11. For 1/β ≥ α− 1, we have that

2/β + 1

1/β + 1− γ
≤ c.

Proof. Plugging in c = 2(1 + 1
ε
) and α = (1 + ε)γ we get:

c ≥ 2/ε+ 2− 1/(εγ)

c ≥ 2γ + 2εγ − 1

εγ

2(1 + ε)γ − 1 ≤ cεγ

(2α− 1) ≤ c(α− γ)

2α− 1

α− γ
≤ c

CHAPTER 4. A VARIANT OF THE MNP ALGORITHM 31

Now, note that f(x) = 2x−1
x−γ is a decreasing function, so we have that α ≤ 1/β + 1

implies that f(α) ≥ f(1/β + 1). Since c ≥ f(α), then c ≥ f(1/β + 1), and so

2(1/β + 1)− 1

1/β + 1− γ
≤ c.

This completes the proof of the bound on the expected cost of Random-Subtree.

Chapter 5

An O(log k) Algorithm for the Line

5.1 The HST-Greedy Algorithm

Consider the following algorithm for online minimum matching on the line. This
deterministic algorithm takes a line L (on the set of servers S, with |S| = k), and a
binary 2-HST T superimposed on it in the natural fashion as in the figure, such that
distances dT in the HST dominate the distances dL along the line. Given a sequence of
requests σ = r1, r2, . . . , rk appearing online, the algorithm matches each request ri to
a distinct server f(ri) as follows: for the request ri, let ai denote the lowest ancestor
of ri in the tree such that the subtree T (ai) rooted at xi contains a free server. Assign
ri to the free server in T (ai) that is closest to ri along the line; this server is called
f(ri). We call this the HST-greedy algorithm, and denote the matching produced by
it on a request sequence σ as Gσ.

Theorem 5.1.1. The cost (along the line) of this matching f is at most a constant
times the cost (along the tree) incurred by any other matching f ∗. I.e.,∑

i

dL(ri, f(ri)) ≤ O(1) ·
∑
i

dT (ri, f
∗(ri)), (5.1)

Combining this with the fact that we can choose this tree T from a probability
distribution such that the expected distances in the tree are greater only by a factor
of O(log k), we get:

Corollary 5.1.2. The randomized algorithm that picks a random binary 2-HST for
the line and runs the HST-greedy on this tree is an O(log k)-competitive randomized
online algorithm for metric matching on the line.

In the subsequent discussion, we will find it useful to generalize the discussion to
the case where we approximate the line using α-HSTs of maximum degree D. In this

32

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 33

case we assume that the children of each node are numbered 1, 2, . . . , D in the natural
left-to-right order. In this case, we need to generalize the HST-greedy algorithm above
“break ties consistently”; let us call this the generalized HST-greedy algorithm. In
particular, on request ri, let ai again be the lowest node such that T (ai) contains a
free server. Now let bi be the lowest-numbered child of ai such that T (bi) contains a
free server; if the leaves of T (bi) lie to the left of ri, send ri to the closest free server
to its left, else send it to the closest free server to its right. In the binary case, T (bi)
is the subtree that does not contain ri, and hence following the generalized algorithm
just gives us the original HST-greedy algorithm for the binary case.

5.1.1 Analysis via a “Hybrid” Algorithm

To prove Theorem 5.1.1, first consider a “hybrid” algorithm that matches the request
r1 to an arbitrary server s1, and then runs the HST-greedy algorithm on the remaining
requests in σ. Denote the matching produced to be Hσ; note that this matching is a
function of the choice of s1.

Lemma 5.1.3 (Hybrid Lemma). There is a λ = O(D) such that for any set of
servers S on the line, for any request sequence σ = r1, · · · , rk, and for any choice of
assignment r1 → s1,∑

i

dL(ri, Gσ(ri)) ≤
∑
i

dL(ri, Hσ(ri)) + λ dT (r1, s1), (5.2)

Note that if G were the optimal matching on the line, and H would match r1 → s1

and then find the optimal matching on the remaining requests, such a claim is easily
seen to be true with additive error 2dL(r1, s1). Here we show that even the HST-greedy
algorithm satisfies such a property with O(1) dT (r1, s1).

Also, before we prove this lemma, let us use it to prove the theorem. Given any
request sequence σ and matching f ∗, we can define a sequence of hybrid algorithms
{H t}kt=0, where H t matches the first t requests ri in σ to f ∗(ri), and then runs the
HST-greedy algorithm on the remaining requests. Note that H0 is just the HST-greedy
algorithm, and Hk produces the matching f ∗. Moreover, by ignoring the servers in
{f ∗(ri) | i ≤ t}, just considering the request subsequence rt+1, . . . , rk, we can use the
lemma to claim that

k∑
i=t+1

dL(ri, H
t(ri)) ≤

k∑
i=t+1

dL(ri, H
t+1(ri)) + λ · dT (rt, f

∗(rt)),

or by adding
∑t

i=1 dL(ri, f
∗(ri)) to both sides,

k∑
i=1

dL(ri, H
t(ri)) ≤

k∑
i=1

dL(ri, H
t+1(ri)) + λ · dT (rt, f

∗(rt)).

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 34

Now, this summing this for all values of t, and using that H0 = G and Hk = f ∗, we
get

k∑
i=1

dL(ri, G(ri)) ≤
k∑
i=1

dL(ri, f
∗(ri)) + λ ·

∑
i

dT (rt, f
∗(rt)).

Finally, since dL ≤ dT , we get that

k∑
i=1

dL(ri, G(ri)) ≤ (λ+ 1) ·
∑
i

dT (rt, f
∗(rt)),

and hence Theorem 5.1.1 follows.

5.1.2 Proof of the Hybrid Lemma

Let us now proceed with the proof of Lemma 5.1.3. We first make a few simple claims
relating the behavior of the algorithms G and H given any initial set of servers S and
a request sequence σ.

Firstly, if there are any requests ri such that Gσ(ri) = Hσ(ri), we can delete the
request ri from σ, and delete the server Gσ(ri) from S, to get another server set and
sequence with the same behavior; hence we will assume for the rest of the section that
for each ri ∈ σ, Gσ(ri) 6= Hσ(ri).

Defining the Cavities

Lemma 5.1.4. If the set of available servers in G’s run and H’s run just after
request rt has been satisfied is denoted by AG(t) and AH(t) respectively, then either
AG(t) = AH(t), or |AG(t) \ AH(t)| = 1 = |AH(t) \ AG(t)|.

Proof. Suppose Gσ(r1) = x1; recall that Hσ(r1) = s1, and by the above observation,
x1 6= s1. Hence, AG(1) \AH(1) = {s1}, whereas AH(1) \AG(1) = {x1}. Let us call the
former a “G-cavity” and the latter an “H-cavity”. Now, inductively assume the claim
is true just before assigning rt. If AG(t− 1) = AH(t− 1), then the claim is trivially
true from then on, so assume there is a unique G-cavity gt−1 and H-cavity ht−1. Let
Hσ(rt) = st and Gσ(rt) = xt. There are some cases to consider:

1. If xt = gt−1 and st = ht−1, then AG(t) = AH(t).

2. If xt 6= gt−1 and st = ht−1, then it follows that AH(t) \ AG(t) = {xt}, whereas
AG(t) \ AH(t) = {gt−1}—i.e., gt = gt−1 but ht = xt.

3. If xt = gt−1 and st 6= ht−1, then it follows that AH(t) \ AG(t) = {ht−1}, whereas
AG(t) \ AH(t) = {st}—i.e., ht = ht−1 but gt = st.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 35

4. Finally, we claim that the case xt 6= gt−1 and st 6= ht−1 must imply that xt = st.
Indeed, say that the lowest ancestors considered by HST-greedy when assigning
rt in the two runs are aG and aH respectively. If these are not identical, say
aG is lower: then T (aG) contains a server in G’s run but not in H’s, but since
the only additional free server in AG(t − 1) is gt−1, we would get xt = gt−1

and a contradiction; a similar analysis shows that aH cannot be lower. Hence
aG = aH = a, say. Now if rt is assigned to the first free server it encounters within
T (a) (by first scanning to the left of rt for a free server in T (a), then scanning to
the right) in both runs, and neither is assigned to the G-cavity or the H-cavity,
then xt = st, which contradicts the assumption that G(rt) 6= H(rt). Hence,
gt = gt−1 and ht = ht−1, and so AG(t) \ AH(t) = {gt} and AH(t) \ AG(t) = {ht}.

Another way to view the above lemma is to consider the symmetric difference
Gσ∆Hσ of the two matchings, and to claim that this is a single path or cycle. We
start off with two edges (r1, s1), (r1, x1); each subsequent time we place down two
edges adjacent to rt, and these extend the path (in cases 2 and 3) until we close a
cycle (as in case 1, when both the G-cavity and H-cavity disappear), at which time
the process stops.

In the rest of the argument, we define gt to be the unique G-cavity in AG(t)\AH(t),
and ht to be the unique H-cavity in AH(t) \ AG(t). Moreover, since we are interested
in the difference between costs incurred by G and H respectively, we can assume that
AG(t) 6= AH(t) for all time t < k, and hence that gt and ht are defined for all times
t ∈ {1, 2, . . . , k − 1}.

Moreover we will be relating the runs of G and H, so some jargon will be useful
to avoid confusion. When we refer to server(s) in G’s run, we call them G-servers.
The request rt is assigned at time t, and we refer to the situation just before this
assignment as being at time t−, and just after this assignment as being at time t+;
note that (t− 1)+ = t−.

Lemma 5.1.5. Suppose a∗ is the least common ancestor of (r1, s1) in T . Then, for
all times t < k, {gt, ht} ⊆ T (a∗), the subtree rooted at a∗. Henceforth, let us denote
the subtree T (a∗) as T ∗.

Proof. To begin, g1 = s1, and hence in T (a∗). Also, h1 = x1 is chosen by the HST-
greedy, and must lie in the lowest subtree containing both r1 and a free server; hence
this is a (not necessarily proper) subtree of T (a∗). Let t be such that {gt, ht} 6⊆ T (a∗)
but {gt−1, ht−1} ⊆ T (a∗), and rt the request at time t. Since rt assigns to a unique
server, it cannot move both gt and ht out of T (a∗) at the same time. Suppose gt ∈ T (a∗)
and ht 6∈ T (a∗). Then the number of available servers in T (a∗) at time t− in G’s run
is not equal to the number of available servers at time t− in H’s run. The same holds
true if gt 6∈ T (a∗) and ht ∈ T (a∗).

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 36

Figure 5.1: In this small example, suppose H is the matching (r1, g0), (r2, h0), (r3, g1),
and G initially matches r1 to h0. Then, as r2 arrives in G’s run, it will be assigned to
h1, the new H-cavity, and when r3 arrives, it will be assigned to g0, causing g1 to be
the new G-cavity.

By the Induction Hypothesis, {gi, hi} ∈ T (a∗) for all i < t. Therefore, all assign-
ments have been made within T (a∗), and so the number of free servers is the same
between G’s run and H’s run at time t−. This contradiction establishes the desired
claim.

An Accounting Scheme

The “hybrid lemma” Lemma 5.1.3 showed that it suffices to bound the difference in
cost incurred by HST-greedy G on a sequence, and the cost incurred by the hybrid
algorithm that assigned r1 → s1 and used HST-greedy from that point onwards. Now
we show that this difference is costs can be measured merely in terms of the line
distances traveled by the cavities.

Lemma 5.1.6 (Accounting Lemma).

∑
t≤k

dL(rt, Gσ(rt))−
∑
t≤k

dL(rt, Hσ(rt)) ≤ 2
k−1∑
t=2

dL(gt−1, gt)+2
k−1∑
t=2

dL(ht−1, ht)+2 dT (r1, s1),

i.e., twice the distance traveled by the G-cavities and H-cavities, plus twice the distance
r1 → s1.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 37

Proof. First, we consider the cases where t > 1. By the triangle inequality, we get
that for any t,

dL(rt, Gσ(rt))− dL(rt, Hσ(rt)) ≤ dL(Gσ(rt), Hσ(rt)).

If Gσ(rt) = Hσ(rt), then dL(rt, Gσ(rt)) − dL(rt, Hσ(rt)) = 0, so we assume that
Gσ(rt) 6= Hσ(rt). There are three cases: either Gσ(rt) is not available for request rt in
H’s run, or Hσ(rt) is not available for rt in G’s run, or both.

• If Gσ(rt) is not available for request rt in H’s run, then by Lemma 5.1.4,
Gσ(rt) = gt−1. But then gt = Hσ(rt), and so we have that dL(Gσ(rt), Hσ(rt)) =
dL(gt−1, gt).

• If Hσ(rt) is not available for request rt in G’s run, then again Lemma 5.1.4
implies Hσ(rt) = ht−1. But now ht = Gσ(rt), and so we get dL(Gσ(rt), Hσ(rt)) =
dL(ht−1, ht).

• Finally, if both happen, then Hσ(rt) = ht−1 and Gσ(rt) = gt−1. Thus AG(t) =
AH(t), so this must be time k. Now, dL(Gσ(rk), Hσ(rk)) = dL(gk−1, hk−1), which
in turn is at most∑

t<k

(
dL(gt−1, gt) + dL(ht−1, ht)

)
+ dL(r1, g1) + dL(r1, h1)

Note that h1 = Gσ(r1) and g1 = Hσ(r1).

Adding all these cases for t > 1, we get that
∑k

t=2 dL(rt, Gσ(rt))− dL(rt, Hσ(rt)) is at
most

k−1∑
t=2

2
(
dL(gt−1, gt) + dL(ht−1, ht)

)
+ dL(r1, Hσ(r1)) + dL(r1, Gσ(r1))

Finally, adding in dL(r1, Gσ(r1))− dL(r1, Hσ(r1)) to both sides, and noting that

2dL(r1, Gσ(r1)) ≤ 2dT (r1, Gσ(r1)) ≤ 2dT (r1, Hσ(r1)),

we get

k∑
t=1

dL(rt, Gσ(rt))−dL(rt, Hσ(rt)) ≤
k−1∑
t=2

2
(
dL(gt−1, gt)+dL(ht−1, ht)

)
+2 dT (r1, Hσ(r1)),

which completes the proof.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 38

Distance Traveled by the Cavities

Given the “accounting lemma” Lemma 5.1.6, it suffices to merely bound the to-
tal distance traveled by the cavities; in this section we show that this distance
is proportional to the maximum distance between any two nodes of T ∗, which is
O(2level(a

∗)) = O(dT (r1, s1)) and completes the proof. To do this, first let us define
some useful concepts:

Definition 5.1.7 (Direction). We define dirg(t), the direction of the G-cavity gt, to
be either L or R as follows: initially, we say that dirg(1) is L. For t > 1, if gt is located
to the left (respectively, right) of gt−1 on the line, then dirg(t) := L (respectively, R),
and if gt = gt−1 then dirg(t) := dirg(t− 1).

Definition 5.1.8. Let ag(t) be the least common ancestor of g1, · · · , gt, and define
Tg(t) = T (ag(t)). Similarly, if ah(t) is the least common ancestor of h1, · · · , Hhholet,
then Th(t) = T (ah(t)).

Fact 5.1.9. If u < t, then Tg(u) ⊆ Tg(t).

Lemma 5.1.10. For t > 1, there are no free G-servers between gt−1 and gt at time
t−. Likewise, there are no free H-servers between ht−1 and ht at time t−.

Proof. Let rt be the request that assigns to gt in H’s run and gt−1 in G’s run. (If
the G-cavity does not move, then the claim continues to hold, as no free servers are
created and the direction does not change.) There are certainly no free G-servers
between rt and gt−1 at time t− by the algorithm’s run on G. Also, we know that there
are no free H-servers between rt and gt at time t−. The only free G-server that might
be between rt and gt is gt−1. If gt−1 is not between rt and gt, then the claim holds.
Otherwise, even if gt−1 is between rt and gt, there are still no free G-servers between
gt−1 and gt at time t−. An analogous proof holds for the H-servers.

Lemma 5.1.11. For t > 1, if dirg(t− 1) = L, dirg(t) = R, and b is the child subtree
of ag(t) that contains gt, then b does not contain gt−1. Similarly, if dirh(t− 1) = L,
dirh(t) = R, and b is the child subtree of ah(t) that contains ht, then b does not contain
ht−1.

Proof. We first show that for all 1 ≤ j ≤ t − 2, gj must lie in between gt−1 and gt.
Assume for the sake of contradiction that there exists some j such that gj is to the
left of gt−1. We know that gt−2 is to the right of gt−1 since dirg(t− 1) = L. Thus, by
repeated applications of Lemma 5.1.10, there are no free G-servers between gj and
gt−2 at time (t− 2)+. However, this contradicts the fact that gt−1 is a free G-server at
time (t− 2)+.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 39

Assume for the sake of contradiction that there exists some j such that gj is to the
right of gt. We know that gt−1 is to the left of gt since dirg(t) = R. Thus, by repeated
applications of Lemma 5.1.10, there are no free G-servers between gj and gt−1 at time
(t− 1)+. However, this contradicts the fact that gt is a free G-server at time (t− 1)+.

Thus, we have just shown that for all 1 ≤ j ≤ t− 2, gj must lie in between gt−1

and gt.
Now, let b be a child subtree of ag(t) that contains gt, and assume for the sake

of contradiction that it also contains gt−1. Then it must also contain gj for all
1 ≤ j ≤ t− 2, and so b is a common ancestor of gi for all 1 ≤ i ≤ t. This contradicts
the fact that ag(t), the root of Tg(t), is supposed to be the least common ancestor of
gi for all 1 ≤ i ≤ t, thus establishing the claim. An analogous proof holds for ht−1

under the assumptions involving ht, ah, and dirh.

Lemma 5.1.12. If dirg(t− 1) = L and dirg(t) = R, then there are no free G-servers
to the left of gt in Tg(t). Likewise, if dirh(t− 1) = L and dirh(t) = R, then there are
no free G-servers to the left of ht in Th(t).

Proof. Let rt be a request which causes the G-cavity to move from gt−1 to gt. As
the arguments in Lemma 5.1.4 show, the G-cavity moves from gt−1 to gt because H
assigns rt to st, but G assigns rt to gt−1, which means that gt := st.

Because H runs the HST-greedy procedure after the first step, there are no free
H-servers between rt and st = gt at time t−, else rt would be assigned to it. Hence, by
Lemma 5.1.4, the only free G-server between rt and st = gt at this time t− can be gt−1.
But rt → gt−1 in G, so there are also no free G-servers between rt and gt at time t+.

Since dirg(t) = R, we know that gt−1 is to the left of gt. Let b be the child subtree
of ag(t) that contains gt. By Lemma 5.1.11, b cannot contain gt−1. Now, there are
several cases to consider based upon the location of rt with respect to gt:

1. rt is to the left of every point in Tg(t). Then we have already established that
there are no free G-servers between rt and gt and time t+. Since rt is to the left
of gt, then there are no free G-servers within Tg(t) that are to the left of gt at
time t+.

2. rt is to the left of every point in b but within Tg(t). Since rt → gt in H, rt must
have turned at ag(t) to make this assignment in H, since rt is not within b. By
our algorithm, rt first considered all H-servers within Tg(t) that are to the left
of rt. But since rt assigned to gt in H, there are no free H-servers to the left
of rt within Tg(t) at time t−. Consequently, the only free G-server that might
be to the left of rt within Tg(t) is gt−1, but then at time t+, there are no free
G-servers to the left of rt within Tg(t). We have already established that there

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 40

Figure 5.2: The three cases for the location of rt.

are no free G-servers between rt and gt, and so we can conclude that there are
no free G-servers within Tg(t) to the left of gt at time t+.

3. rt is within b, or rt is to the right of gt. If rt is within b, then using Lemma 5.1.11,
gt−1 cannot be within b, and so rt prefers gt over gt−1. If rt is to the right of gt,
then we can also assert that rt prefers gt over gt−1. Since gt is free at time t− in
G’s run, rt cannot assign to gt−1 in G’s run, a contradiction.

Thus, in all possible cases, we conclude that there are no free G-servers to the left
of gt at time t+ within Tg(t), which maintains the claim. An analogous argument can
be used to show that this property holds for all ht.

The following lemma follows from the above proof:

Lemma 5.1.13. Suppose dirg(t− 1) = R and dirg(t) = L, and let u < t be the largest
integer such that dirg(u − 1) = R and dirg(u) = L, if any. Then the level of the
tree Tg(t

+) is strictly greater than the level of Tg(u
+). Similarly, if dirh(t − 1) = R

and dirh(t) = L, where u < t is the largest integer such that dirh(u − 1) = R and
dirh(u) = L, if any, then the level of Th(t

+) is strictly greater than the level of Th(u
+).

Proof. Assume for the sake of contradiction that Tg(u
+) = Tg(t

+) for some choice of
u and t. From Fact 5.1.9, we have that for all u ≤ w ≤ t, Tg(w

+) = Tg(u
+). Let v

be such that u < v < t and dirg(v − 1) = L and dirg(v) = R. Lemma 5.1.12 gives us
that there are no free G-servers within Tg(v

+) = Tg(t
−) and to the left of gv. Also,

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 41

for all v ≤ w ≤ t, dirg(v) = R since t is the first time after v that the direction can
change. By repeated applications of Lemma 5.1.10, there can be no free servers at
time t+ between gv and gt−1, either. Thus, at time t+, there are no free G-servers to
the left of gt−1 that are within Tg(t

−).
Now, note that gt is a free G-server at time t+ that is to the left of gt−1. Thus, it

cannot be within Tg(t
−), and so Tg(t

+), which must include gt by definition, is not
equal to Tg(t

−), a contradiction.

Fact 5.1.14. For all t, Tg(t), Th(t) ⊆ T ∗, the subtree rooted at the least common
ancestor of r1 and s1.

Lemma 5.1.15. For the general D-ary α-HST, the total distance traveled by either
the G-cavities or H-cavities is O(dT (r1, s1)).

Proof. As t increases, Tg may change, and define ρt such that T (ρt) = Tg(t); note that
level(ρt) is non-decreasing by Fact 5.1.9. Moreover, as long as the scope stays fixed at
some subtree T (ρt), the G-cavity gt can only change direction once, and hence the
total distance it travels is at most twice the width of T (ρt), which is 2D ·O(2level(ρt)).
Finally, by Fact 5.1.9, each of the ρi’s is a descendent of a∗, the root of T ∗. Hence the
total distance traveled by the G-cavity is at most a 2D times 1+α+α2 + . . .+αlevel(a

∗),
which is O(D ·αlevel(a∗)) = O(D ·dT (r1, s1)). A similar argument holds for the distance
traveled by the H-cavity.

Now plugging this into Lemma 5.1.6 (the “accounting lemma”), we get∑
t≤k

dL(rt, Gσ(rt))−
∑
t≤k

dL(rt, Hσ(rt)) ≤ O(D · dT (r1, s1)) + 2 dT (r1, s1).

Note that dT (r1, s1) ≥ dL(r1, s1), and hence the expression on the right is at most
λ dT (r1, s1) for some λ = O(D). This completes the proof of Lemma 5.1.3, the “hybrid
lemma” and hence the proof of Theorem 5.1.1.

5.2 A Tight Example for the Algorithm

Consider the following setting of k servers and requests on the real line:

• A server si is placed at point i for every i ∈ Z such that 1 ≤ i ≤ k.

• r1 is placed at point 2, and then for all 1 < i ≤ k, ri is placed at point i.

CHAPTER 5. AN O(LOGK) ALGORITHM FOR THE LINE 42

Thus, each adjacent server is at distance 1 from each other, there are no requests
sitting on s1, there are two requests sitting on s2, and there is one request sitting on
every other server. The optimal matching assigns r1 → s2, r2 → s1, and then ri → si
for all i > 2. The cost of this matching is 1. We want to show that the HST-greedy
algorithm has an expected cost of Θ(log k).

First, note that the binary tree of 2k leaves leaves 2k−1 cuts on the interval [1, 2k].
The depths of these cuts, going from left to right, can be expressed as the sequence

s = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, · · · .

The sequence s can also be defined recursively. Let t1 = 1 and ti = 〈ti−1〉 i 〈ti−1〉.
Then, s = tlog2(k)+1.

Now, suppose we choose some j ∈ [2, k + 1] so that [j, j + k − 1] is our interval
under consideration. Let ri be the request that assigns to s1. Then, the cost of the
matching is simply 2dL(s1, ri) − 1 = 2i − 3. It remains to figure out, for a fixed j,
which request ends up assigning to s1.

Fact 5.2.1. The sequence s is such that for any j ≥ 1, if i = j + 2sj−1, then i is the
smallest integer such that si > sj.

Now, suppose the interval under consideration is [j, j + k − 1] for 1 ≤ j ≤ k + 1.
Then, the cut between s1 and s2 is the cut placed in [j, j + 1], which has depth sj . By
Fact 5.2.1, all cuts between sj and sj+2sj−1 have depth smaller than sj, so this means

that the first 2sj−1 − 1 requests will not assign to the s1, but the next request will.
Thus, the ri that assigns to s1 is such that i = 2sj−1. Consequently, the cost of the
matching for such a j is Θ(2sj).

Fact 5.2.2. For all j ∈ [1, k + 1], there is exactly one j such that sj = log2(k) + 1,
and then there are exactly 2log2(k)−i integers j such that sj = i for 1 ≤ i ≤ log2(k).

Since each j is chosen uniformly at random, we can now compute the expected
cost of the matching M :

E[M] =

log2(k)∑
i=0

Pr[sj = i] · E[M |sj = i]

We have shown through Fact 5.2.2 that Pr[sj = i] is 1/k for i = log2(k) + 1 and
2log2(k)−i/k for i > 0, and E[M |sj = i] is Θ(2sj) = Θ(2i). Thus, we get that

E[M] =

log2(k)∑
i=0

2log2(k)−i/k ·Θ(2i) =

log2(k)∑
i=0

Θ(k/k · 2i/2i) =

log2(k)∑
i=0

Θ(1) = Θ(log k)

Thus, this specific setting of servers and requests forces Algorithm A to perform
with expected competitive ratio Θ(log k).

Chapter 6

Conclusion and Open Problems

43

Bibliography

[FHK05] B. Fuchs, W. Hochstattler, and W. Kern. Online matching on a line. Theoretical
Computer Science, 332:251–264, 2005.

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In STOC ’03: Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, pages 448–455, 2003.

[KP93] B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms,
14(3):478–488, 1993.

[MNP06] Adam Meyerson, Akash Nanavati, and Laura Poplawski. Randomized online
algorithms for minimum metric bipartite matching. In SODA ’06: Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
954–959, 2006.

44

