
Extended Abstract:

Decision Problems on Iterated Length-Preserving Transducers

Alan Pierce
Advisor: Klaus Sutner

Abstract

Finite-state transducers are simple theoretical machines that are useful in expressing easily-
computable functions and relations. This investigation considers the relations formed when
transducers are iterated arbitrarily many times, a construction which is useful in model check-
ing. In particular, we consider a number of decision problems over various classes of transducers,
and attempt to determine whether each decision problem is decidable. For example, a Turing
machine construction can show that the string reachability problem on arbitrary iterated trans-
ducers reduces from the halting problem, and is thus undecidable. This setup is useful for
investigating how restricted a transducer must be before its iteration is no longer able to simu-
late a Turing machine (for different notions of simulation). The main result of the paper is that
both reset transducers—which have a highly restricted concept of memory—and binary tog-
gle transducers—which must express all letter transformations as permutations—are capable of
simulating a Turing machine computation.

1 Introduction

Finite-state transducers are reasonably simple machines that, in a sense, capture the notion of an
easily-computable function (or, more generally, an easily-computable relation). From a theoretical
standpoint, transducers are important because they generalize the theory of regular languages to
the theory of rational sets and relations, which are obtained by a natural algebraic construction as
seen in [2]. In practice, transducers have been used in various areas of computer science, including
natural language processing and model checking.

This paper focuses on the relation formed when a transducer is iterated arbitrarily many times.
In particular, if τ is the relation computed by a transducer, then its iteration, τ∗, is the reflexive
transitive closure of τ . This construction is especially useful in model checking: for example, if the
memory of a system is modeled as a string x, and the transition system is modeled as a transducer
with transduction τ , then deciding properties of τ∗ is equivalent to reasoning about the long-term
behavior of the system.

It is easy to show that a fully-general transducer is able to compute a single step of a Turing machine,
so an iterated transducer is able to simulate a Turing machine running for arbitrarily-long amounts
of time. Thus, many meaningful properties of general iterated transducers are undecidable. A
number of partial algorithms have been developed for understanding iterated transducers when
possible, such as in [3]. This paper takes more of a theoretical approach and focuses on showing
various problems to be undecidable.

1

One goal of this paper is to determine how restricted a transducer must be before it can no longer
simulate a Turing machine. In papers such as [4], the definition of an iterated transducer is modified
slightly so that it recognizes languages, with the class of all iterated transducers generating the class
of recursively enumerable languages. Our approach is different: we keep the definitions intact, and
show that iterated transducers can simulate Turing machines by showing certain decision problems
to be undecidable.

The main contribution of this paper is in showing that several highly-restricted variants of trans-
ducers are still capable of simulating Turing machines. In particular, we show that certain problems
about binary toggle transducers and about reset transducers are undecidable.

This extended abstract is organized as follows. Section 2 provides necessary definitions and intro-
duces the classes of transducers and the decision problems that are under consideration. Section 3
introduces simple results which provide a context and proof strategy for the more significant proofs.
Section 4 contains outlines of the main results of the paper. Section 5 discusses conclusions and
future work.

2 Preliminaries

2.1 Definitions

The reader is assumed to be familiar with basic formal language theory and computability theory;
the purpose of this section is to fix definitions and notation.

If Σ is a finite set of symbols (an alphabet), then Σ∗ refers to the set of strings over the alphabet
Σ. ε denotes the empty string. Arbitrary elements of Σ are usually denoted σ. Arbitrary strings
are usually denoted x, y, etc.

A DFA is a machine consisting of a finite state set, a single start state, and a set of final states.
The exact semantics can be found in any introduction to automata theory. A language (that is, a
set of strings) is regular if it is recognized by some DFA.

A transducer, usually denoted T , is a 5-tuple (Q,Σ, δ, I, F). Q is a finite set of states, Σ is a finite
alphabet, δ ⊆ Q×(Σ∪{ε})×(Σ∪{ε})×Q is the transition relation, I is the set of initial states, and
F is the set of final states. Intuitively, each element of the transition relation reads some character,
writes some character, and changes state. A transition (q, σ1, σ2, s) ∈ δ is written as qσ1 → σ2s. A
pair of strings (x, y) is accepted by T if there is some transition path from a state in I to a state in
F such that the “read” symbols concatenate to x and the “write” symbols concatenate to y. Note
that, in general, the transition relation may be nondeterministic.

A transduction, usually denoted τ , is a relation on strings (that is, a subset of Σ∗ × Σ∗ for some
alphabet Σ). If x, y ∈ Σ∗, then the notation xτy means that (x, y) ∈ τ . If L is a language, then Lτ
refers to the language {y ∈ Σ∗ | xτy for some x ∈ L }.
If T is a transducer, then T (T) refers to the transduction τ consisting of all ordered pairs of strings
accepted by T . A transduction τ is rational if τ = T (T) for some transducer T .

If τ is a transduction, then τ∗ refers to the transitive reflexive closure of τ . That is, τ∗ is the set of

2

all ordered pairs (x, y) ∈ Σ∗ × Σ∗ such that there exists some finite sequence of strings z0, . . . , zn,
where x = z0, y = zn, and for each i < n, ziτzi+1.

Turing machines, usually denoted M , will be used in the proofs below. We assume that a Turing
machine is deterministic and has a single start state and a single halting state. The precise defi-
nition won’t be necessary, although we make the following simplifying assumptions when they are
convenient:

• Turing machines operate on one-way infinite tapes.

• The tape head must move either left or right at each step.

• Before halting, a Turing machine erases its tape and moves to the start of the tape.

Let K0 = {M |M halts when given the input ε }. It is well-known that K0 is undecidable.

2.2 Classes of Transducers

This paper is concerned with a number of decision problems about a variety of classes of transducers.
The following classes will be considered:

• TRANS refers to the set of all transducers.

• LP refers to the set of length-preserving transducers. A transducer T is length-preserving
if for every (x, y) ∈ T (T), |x| = |y|. In particular, length-preserving transducers may be
nondeterministic, and may have ε transitions, as long as all accepting computations are
length-preserving.

• ALPHA refers to the set of alphabetic transducers. A transducer is alphabetic if for every
transition qσ1 → σ2s, neither σ1 nor σ2 is ε, and such that the transition relation is deter-
ministic (that is, there is exactly one transition of the form qσ1 → σ2s for each q and σ1).
In addition, it must be the case that |I| = 1 (that is, there is a unique start state), and it
must be the case that F = Q. These restrictions ensure that exactly one output string is
generated for each input string. Informally, an alphabetic transducer requires each transition
to be an exact letter-for-letter replacement, and “looking ahead” is not allowed. Notice that
alphabetic transducers are always length-preserving.

• RESET refers to the set of reset transducers. A transducer is a reset transducer if it is
alphabetic and there is some function π : Σ → Q, such that every transition is of the form
qσ1 → σ2π(σ1). That is, the transition state for a reset transducer is exactly determined
by the input character, so reset transducers cannot remember information except the most
recently read character.

It can be seen that reset transducers are equivalent to one-way cellular automata. A con-
struction similar to one in [1] is presented for reset transducers, although the exact setup is
not the same.

3

• REVERSIBLE refers to the set of reversible transducers. A transducer is reversible if it
is alphabetic and for each state q ∈ Q, there is some permutation πq : Σ → Σ such that
every transition is of the form qσ → πq(σ)s. In other words, instead of freely writing a
character based on the input, the transducer must decide ahead of time a permutation for
the character transformation, but may transition to different states based on which character
was read/written. We can invert the transduction generated by swapping the input and
output symbols for each transition. This implies that reversible transducers always compute
bijections.

• BTT refers to the set of binary toggle transducers. A binary toggle transducer is a reversible
transducer over the alphabet {0, 1}. Note that in such a transducer, each state is either an
“identity” state or a “toggle” state, depending on which of the two permutations on {0, 1} is
chosen for that state.

2.3 Decision Problems

This section defines all of the decision problems that will be considered. Each one is defined with
respect to an arbitrary class of transducers. The decision problems considered are described as
L [p], where p is some predicate. The existence of certain variables implies that certain values
appear as inputs to the decision problem

C refers to a class of transducers. For each instance of τ (or τ1 or τ2), a transducer T is included
in the input, and it is assumed that τ = T (T). Σ refers to the alphabet of T . If Γ appears, then
it is assumed to be included in the input, and it is assumed that Γ ⊆ Σ. For each instance of R
(or S), a DFA D is included in the input, and it is assumed that L(D) = R. In addition, Rat (() τ)
means that the transduction τ is rational, and Reg (()L) means that the language L is regular.

For example, L [xτ∗y]C = {〈T ∈ C, x ∈ Σ∗, y ∈ Σ∗〉 | xT (T)∗y}. This is simply the reachability
problem between strings.

Another example is L [Rat (τ∗)]C = {〈T ∈ C〉 | T (T)∗ is rational }. One hope when analyzing a
system modeled by an iterated transducer is that it can be characterized by a transducer without
iteration. It is shown in the paper that for general enough transducers, it is impossible to determine
whether such a characterization exists.

A final example is L [Rτ∗ ⊆ Γ∗]C = {〈DFA D,T ∈ C,Γ ⊆ Σ〉 | L(D)T (T)∗ ⊆ Γ∗}. One use of
this setup is to let R be the allowed starting configurations for a system. We then may wish to
check that an “error” symbol is never reachable, so we would let Γ = Σ− {error}. This setup also
is useful for demonstrating that length-preserving transducers can simulate Turing machines. By
letting R be the set of all lengths of empty tape, we know that Rτ∗ contains a string with halting
state as a character if and only if there is some length of tape causing a Turing machine to halt.

The other decision problems considered all have motivations similar to the ones above.

3 Preliminary Results

The results presented in this section follow relatively easily, and are either useful for later results
or are useful in motivating later results.

4

Lemma 1. For each fixed Turing machine M , the one-step relation on M (mapping each tape
configuration to its configuration after one computation step) is rational.

Proof idea. We construct a transducer recognizing the one-step relation on properly-encoded Turing
machine configurations. We assume that the input string contains the tape contents with a single
tape head (represented by the state) somewhere in the string. By having ε outputs, the transducer
reads a constant number of characters ahead before writing, so that all necessary context is encoded
in the state control. In the normal case, simply copy the tape symbol, and in the case of the tape
head or the surrounding characters, write the correct symbol to the tape, and write the tape head
in the correct place, using the Turing machine logic encoded into the transducer. If the tape head
moves beyond the bounds of the string, grow the tape, and if the tape contains a � symbol at the
end, shorten the string so that it does not. �

Lemma 2. L [xτ∗y]TRANS is undecidable.

Proof idea. I will show that if L [xτ∗y]TRANS was decidable, then K0 would be decidable. Let M
be a Turing machine, and let τ be the transducer provided by Lemma 1 for M . WLOG, assume
that M erases its tape contents and moves to the start of the tape just before halting. Let x be
the string containing q0 as its only character, and let y be the string containing qH as its only
character. Then xτ∗y if and only if M halts on input ε. So, if L [xτ∗y]TRANS was decidable, we
could use it to determine if xτ∗y, which would determine if M ∈ K0, so we would have a decision
algorithm for K0. �

Lemma 3. L [xτ∗y]LP is decidable.

Proof idea. Let T be a given length-preserving transducer, and let τ = T (T). If x ∈ Σ∗ is fixed,
then we can iterate τ repeatedly on x until we find a cycle. Because τ is length-preserving, the cycle
length is at most |Σ||x|, so the algorithm must always halt. We can then simply check membership
in the cycle. �

An easy corollary of Lemma 3 is that for any of the transducer classes C other than TRANS listed
above, L [xτ∗y]C is decidable.

4 Undecidability Results

The results of the paper are summarized in the following table. A cell marked with U means that
the problem is undecidable, and a cell marked with D means that the problem is decidable. It is
generally the case (although not strictly true) that an undecidability result implies that all problems
to the left in the table are undecidable, and a decidability result implies that all problems to the
right in the table are decidable.

5

TRANS LP ALPHA RESET REVERSIBLE BTT

L [xτ∗y] U D D D D D

L [Rat (τ∗)] U U

L [Rat (τ∗ ∩ (Γ∗ × Γ∗))] U U

L [τ∗1 = τ2] U

L [τ∗1 = τ∗2] U

L [Reg (Rτ∗)] U U

L [Reg (Rτ∗ ∩ Γ∗)] U U

L [Rτ∗ ∩ S 6= ∅] U U U U U U

L [Rτ∗ ⊆ Γ∗] U U U U U D

L [0∗τ∗ ∩ S 6= ∅] U U U

L [0∗τ∗ ⊆ Γ∗] U U U D

Because of the limited space in this extended abstract, only sketches of proofs will be given, and
only the most significant results are presented here.

The following theorem shows that alphabetic transducers can simulate Turing machines, for some
informal notion of simulation.

Theorem 4. L [Rτ∗ ⊆ Γ∗]ALPHA is undecidable.

Although this proof is subsumed by either Theorem 5 or Theorem 6, the construction strategy
outlined here is useful for those proofs.

Proof idea. Fundamentally, with (deterministic) alphabetic transducers, information cannot flow
right, so there is no obvious way to simulate a left move by a Turing machine. This can be overcome
by having the entire tape contents move one cell to the right at each step. With this approach, the
Turing machine head stays still when it wants to move left, and moves two spaces to the right when
it wants to move right. The exact transition details are somewhat tedious, but straightforward.

Using this approach, it can be shown that it is undecidable to determine if (q0�∗)τ∗ ⊆ (Σ−{qH})∗.
In other words, we feed every possible length of starting tape, and we know that if our Turing
machine halts on ε, then some input string will eventually reach a string with the character qH .
Conversely, since the tape head will eventually conceptually run off the end of the string, if the
character qH is ever seen, then it must be due to a valid halting computation, so it must be the
case that the Turing machine halts on ε. �

The next result is significant because it implies, informally, that reset transducers are powerful
enough to simulate Turing machines.

Theorem 5. L [Rτ∗ ⊆ Γ∗]RESET is undecidable.

Proof idea. We use the fact that reset transducers are equivalent to one-way cellular automata.
That is, the symbol at position i at timestep t is a function of the symbols at positions i− 1 and i
at timestep t− 1.

As in previous proofs, we are given a Turing machine M . Our goal is to construct a transducer
that simulates this machine, so that the language (q0�∗)τ∗ contains a string with the character qH .
Since the number of states in the transducer is bounded by the alphabet size, we choose a large

6

alphabet. In each alphabet letter, we keep an integer from 1 to 4 to denote the current “stage”
in the computation cycle. A full cycle consists of 4 stages, and simulates one step of the Turing
machine. Within each stage, our alphabet takes values from Σ ∪Q ∪ (Q× Σ) ∪ (Σ×Q× Σ). The
4 transitions are described below. List item i describes the transition from stage i to stage i+ 1.

1. When transitioning to stage 2, shift all tape symbols one character to the right. If the Turing
machine is at state q and reads symbol b, then, when writing q, instead write the symbol
(q, σR).

2. Perform the identity mapping on the entire configuration, except when reading (q, σR) and
σR. In this case, replace the σR on the right with the appropriate tape symbol to write. In
addition, when writing the tape head, we are able to read the character to the left of the tape
head, so replace the tape head pair with the triple (σL, q, σR).

3. Shift all tape symbols over by 1. If the Turing machine transition is a movement to the left,
swap the tape head symbol with the symbol to its left.

4. Run the identity mapping on the tape, and if the Turing machine transition is a movement
to the right, then swap the tape head with the symbol to its right. Also, when writing the
tape symbol, reduce it from (σL, q, σR) to q′, where q′ is the new state in the Turing machine
state control.

The implementation details for each stage are reasonably straightforward and are not included.
Using this construction, we can construct a reset transducer that simulates a given Turing machine,
in the sense that qH appears on some transducer input if and only if the Turing machine halts on
input ε. �

The next result demonstrates that binary toggle transducers (and, thus, reversible transducers) can
simulate Turing machines.

Theorem 6. L [Rτ∗ ∩ S 6= ∅]BTT is undecidable.

A full version of this proof is especially difficult compared to the other proofs in this paper, so I
will only provide the high-level idea.

Proof idea. The class L [Rτ∗ ∩ S 6= ∅] is necessary, since claims about an alphabet Γ ⊆ Σ often
become trivial when Σ = {0, 1}. We let S be all strings containing x as a substring, for some
x ∈ Σ∗. Letting x be the encoded version of the Turing machine’s halting state, a decider for
L [Rτ∗ ∩ S 6= ∅] allows us to ask whether an iterated binary toggle transducer can ever conceptually
reach the halting state.

For simplicity, I will only show that reversible transducers can simulate Turing machines. Convert-
ing the construction to work in binary is simply a matter of choosing the appropriate encoding.

A number of challenges arise when trying to show that a reversible transducer can simulate a
Turing machine. Because the corresponding transduction must be a bijection, there is no concept
of “overwriting” a value; we can only write a particular character if we know its previous tape value.
Also, the Turing machine simulation must be done in an inherently-reversible way. A number of
challenges arise:

7

Making the transition reversible: In order to make the transition reversible, we keep the entire
history of each tape cell in a region called a “major block”. The tape simply consists of some
finite list of major blocks. Each major block consists of a finite list of minor blocks, where a
minor block is used to denote the state of that major block at a particular point in time.

With the setup of major and minor blocks, the transition system becomes relatively easy: in
order to make a transition, we scan the major blocks left-to-right, and for each one, we read
the last minor block, write one more minor block. When writing to a minor block, we know
by assumption that all symbols being written were the character �, so it is possible to set
up a permutation ahead of time so that the correct symbols are written. Assuming we can
safely read and write blocks in this way, we are able to use a construction such as the one
in Theorem 4. So, the problem reduces to figuring out the details of appending to a list of
minor blocks, and handling the case where we run out of space.

Appending to each the end of each major block: For this part of the construction, we can
focus on a single major block; the same algorithm is used independently for each major block.
Although appending to the end of a list is conceptually an invertible operation, there is no
trivial way to determine when the minor block being read is the last one; we must know this
in order to know when the output permutation should be the identity and when it should
write meaningful information. It is easy to show that the reverse-binary increment operation
can be computed by a reversible transducer, so we can put a counter at the start of each
minor block, and increment each counter before we reach the end. We need an END marker
to determine when the binary string ends, since it must be variable size. As an example,
this is what a major block would look like if two minor blocks were used and two remained
unused:

0 1 0 END σ0 1 0 0 END σ1 0 0 0 END � 0 0 0 END �

It is simple to check during each increment if the value was zero or not, so we can tell when
we are at the end of the list, so we know where to write the new data.

The set of input strings can be constructed to contain arbitrarily many major blocks, arbitrar-
ily many minor blocks within each major block, and arbitrarily many bits for each counter.
At this point, the construction has the property that if the Turing machine being simulated
halts on ε, then there is some input to the transducer that causes the halt state qH to appear
in some string. It remains to handle the converse.

Handling errors: The challenge with ensuring that we never mistakenly reach the state qH is
that there is no way to simply crash as a result of an error. Because reversible transducers
must generate permutations, the transducer must eventually loop back to its starting string.
In order to ensure that we never compute on a corrupted tape, we can take advantage of the
reversible property of the transducers.

The new rule can be added: if we are incrementing a counter for a minor block, and we
overflow the entire counter, then we switch to a “reverse mode”: that is, transition to a copy
of the original transducer in which the inputs and outputs are switched. This is done by
adding an ERR symbol that alternates with the END symbol. This construction ensures
that, for example, if the first counter has n bits, and it is the smallest counter in the string,
then then entire computation will be run 2n times, then it will be run in reverse 2n times to
reach the start. Because running a transducer in reverse will never reach a corrupted state,

8

we can be sure that errors will never cause us to see a false positive. It can be shown that
this same approach nests recursively; regardless of the lengths of the different counters, we
will never reach a corrupted state.

To handle the case where a major block runs out of minor blocks, we simply do nothing for
the remainder of the run. Eventually, some earlier counter must unwind the state, so we will
never reach a corrupted state.

These techniques working together allow a reversible transducer to, in some sense, simulate a Turing
machine, and thus, it is undecidable if a particular symbol (the halt state, in this case) is reachable.

�

5 Conclusion and Future Work

At first glance, it may seem that both reset transducers and reversible transducers are far too weak
to perform a Turing machine simulation. So, the results of this paper are somewhat surprising.
Although only specialized decision problems were shown undecidable, they are not completely
contrived; as explained in the preliminaries, the language L [Rτ∗ ⊆ Γ∗] can be used to express the
claim that an error is never reached. Also, the general fact that Turing machine simulation is
possible provides an indication that related meaningful problems are also undecidable.

This investigation could be extended naturally in a number of ways. The grid at the start of
section 4 leaves a number of open problems. It seems likely that nearly all of these problems are
undecidable, since many involve multiple quantifier alternations when expressed in the obvious way.
In addition, different classes of transducers and different meaningful decision problems could be
considered. An interesting open problem is to find a natural class of transducers such that is weak
enough that it cannot simulate Turing machines. However, as this paper indicates, it is likely that
it would be difficult to use such a transducer to model a system in practice.

References

[1] Jürgen Albert and Karel Culik II. A simple universal cellular automaton and its one-way and
totalistic version. Complex Systems, pages 1–16, 1987.

[2] Jean Berstel and Luc Boasson. Transductions and context-free languages. Ed. Teubner, pages
1–278, 1979.

[3] Dennis Dams, Yassine Lakhnech, and Martin Steffen. Iterating transducers, 2001.

[4] Vincenzo Manca, Carlos Mart́ın-Vide, and Gheorghe Paun. Iterated gsm mappings: A collapsing
hierarchy. Technical report, 1998.

9

