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Abstract

Bayesian theories of the brain have provided insights into perception, but the un-
derlying neural mechanisms which could implement these computations remains
unknown. To perform Bayesian inference, sensory information must be combined
with prior information about the natural world. We investigated how these natural
priors could be learned and encoded in populations of neurons in primary visual
cortex. We found that the distribution of neuronal tuning properties for depth-tuned
neurons was very similar to the distribution of depths occurring in natural scenes.
This finding is consistent with the hypothesis that neurons are performing opti-
mal sampling of the natural environment based on the information maximization
principle. By using the priors encoded in the tuning properties of neuronal popula-
tions, we were able to develop a framework for performing Bayesian inference in
the brain.



Chapter 1

Introduction

1.1 Overview

Numerous psychological studies have shown that human observers are able to opti-
mally integrate noisy sensory stimuli with prior information and resolve ambiguity
[9, 6]. These studies show that humans can perform optimal Bayesian inference in
many tasks, and contexts. However, the neural mechanisms which underly these
computations remains unknown. To perform Bayesian inference, the brain must
store and utilize priors, which encode our prior beliefs, knowledge, and experience
about the world. Here we evaluate the encoding of prior information in primary
visual cortex, and the role that this prior plays on information encoding.

Before we can adress how priors could be encoded, we must have a better grasp on
the representations used by neural populations in sensory systems such as primary
visual cortex. Sensory systems in the brain play the crucial role of connecting
an individual to the outside world. These systems have the job of encoding and
representing external stimuli by converting analog input (such as brightness of light
on the retina) into binary spiking responses. The set of spiking responses of a
population of neurons is thought of as the neural representation, or neural code for
that population. Understanding what code is used by populations of neurons, and
what information they encode remains an open question in neuroscience. Until we
understand how the activity of neurons encodes information, we cannot reliably
understand the types of computations being performed by the brain.

One of the tremendous difficulties in deciphering the neural code is the tremendous
number and diversity of neurons in the human brain. The numerous biological
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cell types, structures, and activity patterns create an incredibly complex system.
Modern recording techniques can only capture a small fraction of this activity,
but these samples of the population can still yield insights into the properties of
the brain. When looking at a small (1mm cube) patch of primary visual cortex,
there still exists a tremendous diversity in neural properties. Some neurons will
respond more to colors, or textures, whereas others will respond to edges, curves,
or binocular signals combined from both eyes. The diversity in properties makes
the neural code much more complicated to decipher, but also allows for a more
robust representation of the external world[1]. Understanding how this diversity
comes about and how it aids in information coding has proved to be a difficult task.

Through evolution and learning, the brain has developed diverse neural populations
which operate to encode information about the environment. But what principle
has guided this learning? In other words, what is the information that this popula-
tion is trying to encode, and how does its structure and diversity aid in achieving
that goal? If we can learn what information a population of neurons is encoding,
we will have a better idea of the function the population serves.

Many prior studies have postulated that the function of sensory systems is to pro-
vide a maximally informative representation of the world while limiting energy
usage [9, 8, 7]. The classic study by Olshausen and Field demonstrated that recep-
tive fields in primary visual cortex (V1) match the bases learned from independent
component analysis of natural images [8]. These learned bases indicate that the re-
ceptive fields of brightness-tuned neurons in primary visual cortex are encoding a
sparse representation of the natural images that maximizes the information content.

However, very little work has gone into relating how other properties of the nat-
ural world may influence the properties of the brain. Here we have attempted to
understand how statistics of depth in the natural would are related to properties of
neurons encoding depth in primary visual cortex. However depth is not explicitly
encoded in visual cortex, but instead is derived from disparity, which measures the
discrepancy between where an object is projected onto your left eye and where it
is projected onto your right eye. In this thesis, we address the relationship between
disparity in the natural world and the brain, and how priors for disparity could be
encoded in neural populations.

We found that the distribution Fisher information in disparity-tuned neurons was
nearly identical to the distribution of disparities in natural scenes. This result indi-
cates that disparity-tuned neurons in primary visual cortex utilize a representation
which maximizes the information about the stimulus in the external world. Fur-
thermore, this distribution of Fisher information represents an encoding of prior
information in the neural population. This bias in Fisher information may be the
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brain’s way of using this prior for Bayesian inference. Further work needs to ad-
dress what types of algorithms could utilize this bias in Fisher information to aid
in Bayesian decoding.

We also evaluated the role of temporal dynamics in information encoding, and
found that disparity-tuned neurons increase the information encoded about the
stimulus over time. This finding indicates that even in primary visual cortex,
populations of neurons are integrating information about the stimulus over time.
Thus low-level cortical areas are not just passively providing feed-forward input to
higher layers, but instead may be playing a larger role in our active perception.

When looking at higher-order statistics, we found no correspondence between the
co-occurrence statistics in natural rangemaps and correlations between neurons.
Thus disparity-tuned neurons in primary visual cortex may not encode these more
complex statistical structures.

1.2 Learning priors from nature

Deriving natural statistics from the environment requires a dataset which captures
the natural world. Here we analyze 50 rangemaps collected using LIDAR. These
images provide a representative example of the types of visual input present in the
natural world. We selected 50 rangemaps that had resolutions near 22.5 pixels per
degree, and masked out people, cars, and other unnatural objects. Typical images
consisted of trees, shrubs, grass, and other natural objects.

To compare with neural data, we converted the depth from the rangemaps into dis-
parity. This conversion requires knowledge of where humans fixate in a particular
scene. Here we make the simplifying assumption that a human observer would ran-
domly fixate on any particular pixel in the rangemap with equal probability. This
greatly oversimplifies the human fixation distribution, but resembles the empirical
fixation depth distribution [2]. For each fixation, we can convert the given depth
map into a disparity map. These disparity maps are then a representative example
of the types of inputs that the human visual system would experience.

Using these disparity maps, we can compute basic statistics such as the general dis-
tribution of disparities found in natural scenes (histogram), or look at the pairwise
co-occurrence statistics between certain pixels to learn higher-order structures in
disparity.

3



1.3 Information content of neural populations

Information from the left and right eyes is first combined in the primary visual
cortex (V1) to compute disparity. In V1, large populations of neurons are found
that respond preferentially to certain disparity stimuli [3]. We performed record-
ings from V1 of an awake behaving monkey while presenting dynamic random
dot stereograms. Each trial contained a binocular movie which showed a disc at
a certain disparity for 1 second. These stimuli are essentially constant disparity
stimulus, and allow us to measure the firing rate of neurons as a function of dispar-
ity. Using a multielectrode array, we were able to simultaneously record from up
to 50 disparity-tuned neurons. These simultaneous recordings allow us to analyze
the temporal interactions and dynamics of a large group of neurons.

Here we were interested in estimating the information content of this disparity-
tuned population of neurons. If the distribution of information contained in the neu-
ral population matches the distribution of disparities contained in natural scenes,
then this population of neurons may be following the information maximization
principle.

Directly computing the information contained in a population of neurons is in-
tractable. To reduce the complexity of the problem, we first assumed that informa-
tion is contained only in the firing rate of a neuron over the entire trial, and not in
the temporal pattern of spiking activity within the trial. With this assumption, the
mutual information between the stimulus and the neural response can be computed
for small populations. However, we are working with hundreds of neurons and
must approximate this information metric. Instead of directly estimating mutual
information, we instead estimate Fisher information, which can be used to lower
bound mutual information. Fisher information can be computed analytically from
the means and standard deviations of neural activity.

However, this approach makes many assumptions about the variability of neural
responses and provides extremely noisy results. Neurons with very low firing rates
but steep slopes would provide peaks in the information, even though their tuning
was extremely weak. These “bad” cells would tend to have predicted Fisher infor-
mation orders of magnitude higher than the rest of the population, and would tend
to have extremely low firing rates. In typical analyses these types of cells were
thrown out, but we wanted to keep them in the analysis to estimate the information
contained in the entire population.

To cope with this difficulty, we approximated the Fisher information through the
Cramer-Rao bound. The Cramer-Rao bound is an inequality which states that the
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Fisher information is greater than the inverse of the variance of any estimator. Thus
if we can come up with an estimator for the stimulus (disparity), then we can lower
bound the Fisher information contained in the neural population. Any estimator
can provide a lower bound, but we seek to saturate the bound to get the most
accurate measure of Fisher information. In hopes of achieving a more accurate
approximation, we tried using a variety of estimators including: Support vector
machines, logistic regression, Bayesian decoding, locally optimal linear estimators,
and k-Nearest Neighbors. We found that SVMs achieved the smallest variance,
and used the variance of its estimates to approximate the Fisher information of the
neural population.

We found that the distribution Fisher information in disparity-tuned neurons was
nearly identical to the distribution of disparities in natural scenes. This result indi-
cates that disparity-tuned neurons in primary visual cortex utilize a representation
which maximizes the information about the stimulus in the external world. Fur-
thermore, this distribution of Fisher information represents an encoding of prior
information in the neural population. This bias in Fisher information may be the
brain’s way of using this prior for Bayesian inference. Further work needs to ad-
dress what types of algorithms could utilize this bias in Fisher information to opti-
mally perform Bayesian inference.

1.4 Neural dynamics and correlations

One major flaw in the previous analysis is that spike count data is aggregated over
the course of an entire second. Our perceptual capabilities operate at a much faster
speed, and thus must be supported by a neural code which can perform inference
at short timescales [4]. In chapter 3, we analyzed the information content of our
neural population as a function of time. Instead of using spike counts from entire
trials, we analyzed 5 to 50ms bins of neural activity over the full 1000ms trial.
To model this time-varying neural response we used Generalized linear models
(GLMs), which can be used to represent the response of an individual neuron as
a linear combination of other factors. We used this model to predict the spiking
activity of a neuron over time using the local field potential as well as the spiking
history of other neurons in the population [5]. This model was able to capture
a large deal of the variability in a neuron’s spiking response, and provided more
accurate estimates of the information content of a neural population over time.
We also used the spike-count based techniques by sliding a window over time and
normalizing the firing rate. However, these techniques performed poorly in the
temporal domain due to the complex dynamics of neurons. In particular, these
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models fail to capture the refractory period which occurs after a neuron spikes, and
inhibits it from firing again immediately.

In chapter 4, we extend the work on relating natural scene statistics to neural prop-
erties by looking at the second-order statistics of pixel co-occurrence and pairwise
correlations. Based on our findings in chapter 2, we anticipated that neural pop-
ulations may be optimally encoding higher-order structures such as surfaces and
planes in the 3D world. For example, if surfaces are generally tilted away from the
viewer (i.e the ground plane), then neurons which encode the top and bottom of
the visual field may be negatively correlated. To evaluate this hypothesis, we first
computed co-occurrence statistics from the rangemap data. This allowed us to cre-
ate a prior over pairs of disparities, instead of just a single disparity as in chapter 2.
To compare this prior with the neural data, we must estimate the connectivity be-
tween each pair of neurons. An estimate of the connectivity, or coupling strength,
between pairs of neurons can be found using the GLM used in chapter 3. The cou-
pling strength provides a measurement of the influence of one neuron on another,
but we cannot know whether these neurons are anatomically connected. We found
that there was no correspondence between the predicted correlation derived from
the co-occurrence statistics, and the measured coupling strength determined by the
GLM. This finding indicates that disparity-tuned neurons in primary visual cortex
may not encode these statistical structures. Instead, it may be the job of neurons in
higher-level cortical areas to capture these more complex relationships and encode
the associated priors.
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