
Mobile Cloud Computing for Data-Intensive Applications
Senior Thesis Extended Abstract (Revised)

Vincent Teo, vct@andrew.cmu.edu
Advisor: Professor Priya Narasimhan, priya@cs.cmu.edu

Abstract

The computational and storage capabilities of today’s mobile devices are rapidly catching
up with those of our traditional desktop computers and servers. In fact, mobile phones with 1
GHz processors are readily available in the market today. Unfortunately, all of these processing
resources are mostly under-utilised and are generally used to process local data and programs
only. With the use of local wireless networks, we can enable these phones to communicate with
each other without utilising the resources of a global cellular network. This has the potential to
enable collaborative data-intensive computing across a cloud of mobile devices without straining
the bandwidth of global networks.

To achieve these objectives, Hyrax [3] was initially developed by Marinelli as a MapReduce
system [1] that is deployed on a networked collection of Android smartphones. Hyrax is based
on Hadoop [4], which is a Java implementation of the MapReduce system and the Google File
System [2]. While Marinelli has developed a system that is suitable for initial use to discover
the resource constraints/challenges, performance and the scalability aspects of using mobile
devices for collaborative data-intensive computing, that initial implementation of Hyrax was
not suitable for wide-scale deployment on the mobile devices of common users. To that end, we
have improved on Marinelli’s implementation of Hyrax, and aim to develop a mobile multimedia
share-and-search application that allows users to discover relevant multimedia content on the
mobile phones of those within reasonable proximity (ie within the same wifi network). We also
evaluate the performance of this new implementation of Hyrax and identify areas for future work,
especially in improving the performance and resource consumption (especially power resources)
of Hyrax. Furthermore, we also consider the risk that the use of Hyrax poses to the users of the
mobile devices that run Hyrax.

1 Introduction

1.1 Motivation

The primary motivation is that of all the processing powers of a mobile device being idle most
of the time. However, besides playing the same role as a traditional server, the fact that these
devices are mobile give them certain advantages over traditional static servers.

Mobile devices already typically contain a lot of sensors and multimedia data. Hence these
data are already on devices within the cloud, therefore uploading them to the cloud would
be a simple matter that should not be expensive in terms of resources used. Furthermore,
making use of sensor logs and other local data also offer the possibility of performing location-
dependent computations and data sharing through colloboration with other devices in their
immediate vicinity. Therefore, as opposed to a traditional cloud, the nodes of such a mobile
cloud can take advantage of physical location and physicaly proximity to perform computation
more strategically. For example, we could envision that making use of sensor logs and other
local data offers the possiblity of performing location-dependent computations and data sharing
through collaboration with other devices in their immediate vicinity. There mobile devices can
communicate with each other directly without making use of a central server, hence avoiding the
use of the global network bandwidth (ie Internet / Mobile Data Network). It would therefore be

1



useful to have a mobile cloud computing platform available that allows us to build applications
that will enable us to make full use of these mobile resources.

1.2 Hadoop

We only give a brief overview of Hadoop in this section.
Hadoop is made up of two major components: The Hadoop Distributed File System [6]

(HDFS, which is similar to the GFS) and the MapReduce system.
A Hadoop job is typically split up into a Map phase and a Reduce phase. Maps are indepen-

dent tasks that can be run concurrently and independently on different slave nodes, and as the
output from these Maps become available, Reduce tasks can begin to process these output to
produce the final output for the job. Hadoop is designed to assign tasks to nodes that already
contain the data required for the task in order to reduce network transfers.

The HDFS is controlled by the NameNode and various DataNodes, while the MapReduce
system is controlled by the JobTracker and various TaskTrackers. Typically the NameNode and
JobTracker are run on master nodes (or on a single master node), while each slave node runs
an instance of DataNode and TaskTracker each.

The NameNode is responsible for managing the entire HDFS and determining which nodes
are to hold blocks for data on the HDFS, while the DataNodes are responsible for the data
blocks on their own individual nodes and reporting the status of their individual nodes to the
NameNode.

The JobTracker is responsible for distributing tasks (such as Maps and Reduces) to the
individual slave nodes, while the TaskTrackers are responsible for actually executing the tasks
and reporting the status of the tasks to the JobTracker.

Further information about Hadoop can be obtained from The Apache Hadoop Project web-
site [4].

1.3 Limitations of Initial Implementation

The initial implementation of Hyrax by Marinelli was based on Hadoop 0.19.0 (later patched to
Hadoop 0.19.1). However, it made use of features and programs on the Android platform that
required root access to the devices, and was therefore not suitable for wide scale deployment on
the mobile devices of common users (the assumption being that most users do not have root
access to their Android devices).

2 Implementation

A description of how Hadoop 0.21.0 was ported over to the Android OS will be given in this
section. We elected to develop the new version of Hyrax for Android 2.1 (or later), for the reason
that the API for Android 2.1 is closer to that of Sun’s Java implementation. This is important
since Hadoop was originally written with Sun’s Java implementation in mind, and there are
differences in the API available between Sun’s Java implementation and that for Android. It
would therefore be easier to port Hadoop over to Android 2.1 than to an earlier version of
Android since less changes would have to be made to the code. Furthermore, we expect that
most users would have at least Android 2.1 running on their mobile phones, considering that
the latest version of Android for smartphones is currently Android 2.3. (According to a chart on
the Google Developers website, it appears that 93.8% of Android devices that have accessed the
Android Market within the last two weeks of the beginning of April 2011 were running versions
of Android that were 2.1 or higher [5].) However, many of the function calls made by Hadoop
are still not available on the Android 2.1 API (some of them have since been implemented on
the Android 2.3 API), and had to be either rewritten or removed altogether.

2



2.1 Porting Hadoop

Since the primary purpose of the mobile phones was to run as slaves on the Hyrax cluster, we
concentrated on porting the relevant code for the DataNode and TaskTracker over to Android.
The main challenge of porting the code over remained with fixing the incompatibilities between
Sun’s Java implementation and the Android API, as well as calls to shell utilities such as df

which have a different output format from that of a normal Unix distribution.
Three major changes were made to Hadoop during the porting process. The first was to

change the configuration files from XML files to properties file, which require less resources to
parse [3]. Since the phones wrote configuration files for the jobs in properties files as well, this
also required that we also change the code for the master node on the desktop machine to read
properties files instead of XML files.

The other major change that was made was in the way Map and Reduce tasks were launched
on the slave nodes (ie the phones). Originally, Hadoop launches Map and Reduce tasks by
running each task in a new process. As noted in [3], we are unable to execute new JVM
instances on the mobile phones due to the lack of the java program on the phones. Thus, a
call to the main method of the child process is made instead, and the task is executed in a
new thread of its own in order to allow the Hyrax app to continue running and accept user
interactions.

The final major change that was made was due to the lack of support for executing traditional
Java bytecode on Android devices. Hadoop sends tasks to the TaskTrackers through Java classes
that are sent to the slave nodes when required. Due to the difference in the format of the
bytecode that can be executed on Sun’s JRE implementation and Android’s runtime system,
this system will not work without recompiling the original Java bytecode to the .dex format
that Android uses, which means that Java classes that were compiled using a Sun compiler will
not run on the Android phones. Therefore, all code that Hyrax is expected to execute must be
included in the Hyrax package installed on the mobile devices in the current implementation.
This ability to dynamically load classes that describe jobs might be supported in a future
implementation.

Besides the three major changes above, the concept of a machine name on the cluster was
also changed. Since mobile phones do not have machine names as traditional desktop computers
and servers do, a change was made to use the phone’s IP address as it’s name. The individual
and unique device IDs of the phones (possibly hashed due to privacy concerns) could also be
used as usernames (so the same phone will always be treated as the same user regardless of its
IP address, which should not be assumed to be fixed). This will be especially useful when this
system is deployed on a proper case study of a multimedia-content search-and-share system.

In addition to the above changes, minor tweaks were also required to the properties of
the cluster. As an example, Android only allocates up to 16MB of memory for each appli-
cation. Therefore, the amount of memory available for sorting map output key/value pairs
(mapreduce.task.io.sort.mb) has to be greatly reduced from its original default value of
100MB. Also, other properties such as the task timeout and socket write timeout values had
to be increase to take into account the slower processing capability of the mobile device as
compared to that of a traditional server.

2.2 Cluster Architecture

Our testbed consisted of a cluster of phones (currently 3), a desktop machine acting as the
master node (NameNode and JobTracker), and another desktop machine acting as the client.
They were all connected to the same router in a private local area network (the phones were
connected wirelessly via wifi, while the desktop machines had a physical ethernet connection to
the router). Besides installation of the Hyrax application, the phones required no control from
the desktop machines.

The HDFS storage space was implemented using the external storage devices of the phones
(usually a microSDTM card). Hence, an external storage device must be present on the phones
in order for Hyrax to function. While it is of course possible to augment the cluster with
traditional servers that have a lower probability of failing or disconnecting from the cluster, this

3



has not been implemented. Any such implementation will also require the changes described in
the previous subsection.

Although the phones were used purely as slave nodes and not clients in the evaluations, our
current implementation allows them to act as clients as well, which means that they have the
capabilities of starting MapReduce jobs on the cluster. This simply requires that the code for
the MapReduce job be included as part of an app, and a mechanism on the user interface of
the app to allow the user to start the job. Examples of MapReduce applications that have been
ported and tested include the PiEstimator (where the value of π is estimated using a Monte
Carlo method), RandomWriter (where random data is generated and stored on the HDFS) and
Sort (which sorts data on the HDFS).

3 Evaluation

A huge emphasis will eventually be placed on evaluating the power consumption of the system,
since this will naturally be a primary concern of most users. Besides power consumption, we
will also perform evaluations on the performance of the Hyrax system, and identify possible
components of Hyrax / Hadoop for future optimisation in terms of both performance and
resource consumption. The evaluations will be mostly based on the benchmark tests that were
used in [3], so that we will be able to compare the performance of this implementation of Hyrax
over the previous one. There will be less emphasis in comparing the performance of Hyrax with
that of Hadoop on traditional clusters since such a comparison was already performed in [3].

On a less technical side, users will also be naturally concerned about their privacy when
using Hyrax, since Hyrax has the ability to read and upload personal data on their individual
devices to the HDFS. This issue will be briefly discussed in subsection 3.3.

3.1 Hardware

3.1.1 Slave Nodes

The new implementation of Hyrax was developed using 3 Android G1 (HTC Dream) mobile
phones, all running the Android 2.1 “Eclair” operating system. These phones acted as the slave
nodes in the Hyrax cluster, and each had a DataNode thread and a TaskTracker thread running
on it. The phones were each equipped with a 528 MHz Qualcomm MSM7201A processor, 192
MB of RAM, a 1150 mAh lithium-ion battery and IEEE 802.11b/g connectivity [7]. They were
each also equipped with a microSDTM memory card (one with a capacity of 1 GB, the rest with
a capacity of 8 GB). Although the development was initially tested on phones that had root
access, the development was done with devices that do not have root access in mind. Tests will
also be performed on phones that do not have root access when those became available at our
disposal to ensure that our implementation did not make use of any features or programs that
required root access.

3.1.2 Master Node

The master node was run on a traditional desktop computer running Ubuntu 10.10. This node
had the NameNode and the JobTracker running on it. The machine is equipped with an Intel R©
Pentium R© D Processor 830 processor and 2 GB of RAM. Since the desktop machine was only
used to run the NameNode and JobTracker, the computational and memory load placed on it
was not too significant, and it is expected that the specification of its hardware will not have
much impact on the performance of the Hyrax cluster.

In addition to the master node that ran the NameNode and JobTracker, another desktop
machine was used in the evaluation process by acting as the client, starting MapReduce jobs
that were executed on the phones in the cluster.

4



3.2 Power Consumption

The power consumption of Hyrax was evaluated by running the same RandomWriter and Sort
jobs in [3] repeatedly until the battries in the devices were depleted. Readings of the battery
level of each devices were taken periodically. We have performed the experiment on three mobile
phones, and plan to extend that to five and / or seven when possible so that we can determine
the impact on power consumption that the number of nodes involved in a job will have. We also
plan to determine how much of the battery power were used in the Map / Reduce phases of a
job. The results of this analysis could provide a future direction when working on optimisations
for Hyrax.

The result of running the experiment on three phones is shown in Figure 3.2. As can be
seen, the battery is capable of running for over 5 hours, which is comparable to the previous
version of Hyrax, where the batteries lasted for about 6 hours.

Figure 1: Graph of Battery Level against Time for a 3 Node Cluster running RandomWriter / Sort

3.3 Privacy Concerns

Privacy concerns are important to all users, and Hyrax aims to achieve its goals of enabling
mobile cloud computing without compromising on the privacy of its users. Since Hyrax is
designed to run on the mobile devices of its users, the most obvious concern is whether any of
the user’s personal data on the device will be exposed to the rest of the cluster. As dynamic
class loading is not currently implemented in Hyrax, it is not possible to execute code on the
phones that are not already part of the code of the Hyrax app. Therefore, as long as the Hyrax
application itself does not contain any code that will upload local data to the HDFS without
the user’s expressed permission, the local data of the device will not be visible on the HDFS.
Of course, this is contingent on the security of Hadoop itself, but we feel that the risk of this
is no more than any other application that is available on the Android market. However, this
will have to be reconsidered this when dynamic class loading is enabled in the future. Possible
mitigations include restricting what the code that users can call in the map and reduce functions.

Another possible concern stems from the use of sensor data, which could possibly give away
the location of a device. While this is not a concern in the current implementation, we envision
that such sensor data will be used extensively in the future in a variety of applications (possible
examples include monitoring traffic or tagging pictures etc). One possible solution is to annon-
imise the name of the source of the data. Another is to not record the source of the data at all.

5



However, such privacy concerns can and should be further explored and resolved depending on
the application.

4 Test Study

We aim to develop a mobile multimedia share-and-search application that will allow user to
upload photos from their mobile devices onto the cluster (HDFS). This will allow the other uses
in the cluster to search for and download these photos onto their own devices. For example,
users could possibly run a Hyrax job that searches through every single photo on the HDFS to
find those that contain a certain face that the users provide to the program. This application
is currently still in development, and it was planned that there is a possibility of releasing it for
Commencement 2011 in Carnegie Mellon University for guests of the event to use and provide
feedback. It would also be an excellent opportunity to collect statistics and data on a real-world
use scenario for Hyrax.

5 Conclusion

We have presented our implementation of a mobile cloud computing platform on mobile devices
running the Android OS. While our implementation works, much remains to be done to evaluate
its performance and limitations.

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
in USENIX Symposium on Operating Systems Design and Implementation, San Francisco,
CA, Dec 2004, pp. 137 - 150.

[2] S. Ghemawat, H. Gobioff and S. Leung, “The Google file system,” in Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, Bolton Landing, NY, Oct
2003, pp. 96 - 108.

[3] E. Marinelli, “Hyrax: Cloud Computing on Mobile Devices Using MapReduce,” Master’s
Thesis, Technical Report CMU-CS-09-164, School of Computer Science, Carnegie Mellon
University, 2009.

[4] The Apache Hadoop Project. http://hadoop.apache.org

[5] Google Developers. Platform Versions. http://developer.android.com/resources/dashbo
ard/platform-verions.html

[6] The Hadoop Distributed File System Architecture. http://hadoop.apache.org/hdfs/docs/
current/hdfs design.html

[7] HTC. HTC Dream specification. http://www.htc.com/www/product/dream/specification
.html

6


