
Kernel Accommodations for I/O Intensive Workloads

Nathan Wan (advised by Professor Dave Andersen)

Recent advances in storage technologies have lead to widespread availability
of solid state storage devices. These devices are extremely different from their
mechanical counterparts in that they can process I/O commands at a far superior
rate. Suboptimal performance of nodes in the FAWN (Fast Array of Wimpy
Nodes) project inspired this work, where Intel Atom processors could not saturate
the random read rate of the solid state drive like an Intel X25-E. We probe the
command rates that can be achieved by Linux drivers and the kernel’s I/O stack.

Introduction

There exists a disparity in the
performance of modern processors and
persistent storage devices. Historically,
processors were the focus of technological
advancement. We investigate some current
limitations of existing hardware and
paradigms of I/O. In doing so, we consider
other paradigms for an Operating System to
access data on persistent storage.

My project focuses on “wimpy”
processors attached to higher performing
solid-state disks (SSD’s). Let “beefy” and
“wimpy” refer to the power and speed of a
processor. A beefy processor might be an
Intel Core i7, which has multiple cores on
the same die, powerful processing features,
high clock speeds and greater power
consumption. A wimpy processor, like the
Intel Atom, may only have one or two cores,
a slower clock speed, yet a lower power
requirement. Also of interest is the rate at
which a storage device can process
commands, which is the number of I/O
operations per second (IOPS).

FAWN

In the Fast Array of Wimpy Nodes
project, nodes run a datastore program on a

dual-core Intel Atom processors with an eye
toward energy efficiency. Each node has
persistent storage provided by Intel X25-
E/M SSD’s, but do not maximize the
performance of the SSD. The metric of
interest is the IOPS rate. A major bottleneck
for the FAWN system is the performance of
random reads of small data of disk.

Internally, drives have queues that
allow it to handle multiple commands
simultaneously. By saturating the drive, we
press the hardware IOPS limit but there is
difficulty as the commands issued serially
by the processor. Even though more
powerful processors, like those of the Intel
Nehalem Platform, require accessing
multiple SSD’s to approach the IOPS
saturation limit, the Atom processors are
much further from that limit. A FAWN
node may achieve about 40k random reads
per second from an SSD under with some
heuristic changes to the kernel, while the
same device on an i7 processor can achieve
70k IOPS. The CPU overhead for IO
workloads is not exclusive to wimpy
processors, but the effects are exacerbated
on wimpier processors. Any advantages
gained from this work will avail all
processors, though the wimpies may reap
greater benefit.

The I/O Stack

Today’s established kernels were built
in the time of rotating hard disk drives and
even though SSD’s bandwidth is usually
comparable, the rate which the drive
handles commands deviates considerably.
With no moving parts, SSD’s gain in power
consumption savings and orders of
magnitude greater IOPS. Currently, the
I/O stack for common storage devices for
the Linux kernel looks something like this:

System Call

File System

Block Driver

Request Queue

SCSI Command

libATA

User Application

Storage Device

Our focus will revolve around the lower
layers, closer to hardware, as changes to
kernel wide constructs, like the block layer
or file system, would require fundamental
changes.

Block Layer

Significant previous work has been done to
optimize the performance of rotating disks,
particularly the sequential read or write
operation. The block subsystem makes
requests to the hardware through Request
Queue structures, which are another
scheduling construct to optimize the
performance of the rotating unit. By
merging and reordering the requests, the

kernel trades some processor computation
to push the performance limit of rotating
drives. To the solid-state disk, which has no
moving parts aside from possibly a cooling
fan, this scheduler becomes pure overhead.
The Request Queue ultimately outputs a
serial stream of I/O requests

The block layer remains the interface for the
kernel and file system to access storage
devices. In a sense, this is unlikely to
change soon because the solid-state drives
are designed with interfaces that emulate
existing paradigms, even if the SSD’s are
capable of something more parallel. This
requires the operating system to be more
intelligent with the given resources. For
example, we have been very interested in
exploiting the Native Command Queue,
NCQ, allows the hardware to store multiple
commands. Filling and completing
commands on this queue in an appropriate
manner could provide the desired IOPS
rate.

Disk Drivers

Eventually when issuing a
command, the physical hardware device
must be accessed. In fact, the driver
actually plays an important role in the
performance of I/O because in issuing the
commands. Using blktrace, a system in the
Linux kernel to record the I/O events
within the block layer, we can measure the
time spent in each part of processing. With
respect to the issuance of commands, the
kernel comes with tracepoints for:

• when a command is started

• when the corresponding request is
allocated

• when the request is inserted into the
request queue

• when the command leaves the block
layer as it is sent to the driver

Looking at the median timings of the period
of commands, we see that time spent in the
driver dominates. That is, given a stream of
commands to issue, the majority of the time
is spent outside of the block layer, for the
disk driver to handle the request and for the
I/O stack to initialize the next command for
the block layer to process. Adding
tracepoints in the driver allows to further
distinguish the time spent in either the
driver or the other parts of the I/O stack.
This gives us a microbenchmark of the
individual disk driver.

This measurement includes the majority of
the kernel’s I/O stack, which is mostly
useful for analysis, but does not show the
full potential of the hardware.

SCSI Slammer

One way to gauge the maximum
possible performance is to completely
bypass the larger abstractions of the I/O
stack and focus on the drivers. The kernel
uses SCSI commands to unify the interface
with many attached devices. The device
will operate on ATA commands coming
from the kernel, but the block layer actually
issues SCSI commands to the SCSI disk
driver.

Using a kernel module that only
issues SCSI commands, we can “slam” the
disk with random read requests and
ascertain the system’s performance,
especially with respect to the interrupt rate.
The goal is to push the driver and interrupt
mechanism to the limit, to explore an upper
bound on the IOPS rate. This is useful for

measurements on both wimpy and beefy
processors.

Command Multiplier

Currently, the final piece will be
another modification to benchmark the
system. To continually saturate the queue,
l ibATA , the driver for translating SCSI
commands to ATA commands as well as
issuing them to the device, will expel twice
the commands actually issued by the kernel.
For every command issued, the lowest level
driver will create an additional command to
read or write to some garbage page. Since
commands are issued serially, a wimpy
processor will naturally have difficulty
issuing commands at the same rate as a
beefy processor. By issuing the additional
commands at the lowest level, we are able
increase the saturation of the disk with
minimal overhead.

By issuing more commands to disk,
we intend to further gauge the performance
of a disk that is more saturated.

N.B. Sorry missing citations

