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Abstract

This paper explores unsupervised learning with undirected graphical mod-
els. We focus on the problem of bilingual part of speech (POS) induction,
which considers the POS induction problem when parallel training data is
available [Snyder et al., 2008]. Because we use undirected models, there are
no restrictions on the structure of the graphs and we can incorporate many
overlapping features, such as sublexical features (this is in contrast to pre-
vious work which made use of directed, generative models). Although our
undirected model is quite flexible in terms of being able to add new fea-
tures, the unsupervised learning problem turns out to be quite challenging,
and analysis determines that the non-convex objective we are attempting to
optimize has many local optima which causes problems for learning. We
show that performance can be improved by using an alternative objective
based on contrastive estimation [Smith and Eisner, 2005b].
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1 Introduction

Unsupervised learning has received considerable attention in natural language pro-
cessing. It has the advantage of compensating for missing annotations, and can
also provide computational models for language understanding and learning.

While unsupervised learning holds much promise, the performance of unsu-
pervised systems lags significantly behind supervised systems. This is true with
various basic NLP tasks such as part-of-speech tagging and parsing. Recently,
the effectiveness of multilingual learning has been demonstrated for various tasks
[Snyder et al., 2008, Cohen and Smith, 2009, Berg-Kirkpatrick et al., 2010], and
has shown to narrow the gap between supervised systems and unsupervised sys-
tems.

In this paper, we look at how model parameterization affects the quality of the
learned model. We are motivated by the observation that in supervised learning,
globally normalized undirected models are widely used. These models provide a
principled way to incorporate arbitrary, possibly correlated features in the model.
This is attractive because feature engineering can be used to include knowledge
in the model. Conditional random fields [Lafferty et al., 2001] are conditionally
trained undirected graphical models that are widely used. In general, these undi-
rected models have been found to perform better than directed, locally normalized
models [Toutanova et al., 2003]. While conditional discriminative undirected mod-
els are prevailing, joint MRF models are far less widely used in NLP. In this paper,
we explore the hypothesis that undirected models will also improve unsupervised
learning, because feature engineering can be used to encode useful knowledge
about the problem space.

In this paper, we consider the problem of unsupervised part-of-speech tag-
ging in a multilingual setting. Like previous authors [Snyder et al., 2008, Das
and Petrov, 2011], we assume that multilingual parallel data is available. The
linguistic insight should be obvious. Having more languages provides additional
information. Words of similar grammatical functions tend to be aligned together.
This phenomenon is very strong in the training data.

Unlike previous approaches with a directed model, we propose an undirected
model that can incorporate correlated features. In this paper we used prefix and
suffix of words as additional features. Another advantage is that undirected models
don’t have to be acyclic.

Yet, there are significant challenges when using undirected models. For ex-
ample, one problem is that MRFs are hard to train. Exact inference is almost
impossible because our graph contains cycles. Training such MRFs requires ap-
proximate inference techniques. The behavior of a combination of unsupervised
MRFs and approximate inference is an interesting research question. In contrast
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to MRFs, directed models have a set of well-established techniques to train [Gold-
water and Griffiths, 2007, Toutanova and Johnson, 2007, Johnson, 2007, Snyder
et al., 2009]. Koller and Friedman [2009] provides a comprehensive comparison of
directed Bayesian generative graphical models and undirected graphical models.
In this paper we provide a comprehensive comparison of the difficulty of training
between directed and undirected models.

2 Related work

2.1 Bayesian Directed Model

The model most relevant to our work is the one presented by Snyder et al. [2008].
The part of speech induction model can be represented as a graphical model as in
Figure 1. The structure looks like two Hidden Markov Models (HMMs).

  

Why repeat that catastrophe ?

Pourquoi répéter la même ?catastrophe

x1/y1 X2/y2

y3 y4

x5/y6x4/y5

x3

Figure 1: Bilingual Directed POS induction model

More formally, suppose we have two sentences s = (s1, s2, ..., sNs) and t =
(t1, t2, ..., tNt) that translates to each other. Call one of them the source sentence
and the other the target sentence. Ns and Nt are the lengths of the source sentence
and the target sentence. Let x = (x1, x2, ..., xNs),y = (y1, y2, ..., yNt) be a tag-
ging of the sentence pair. xi is the POS tag for the ith word in the source sentence
and yi is the POS tag for the ith word in the target sentence. Define A as the set of
word alignment links such that (i, j) ∈ A if and only if si is aligned to tj . Given a
monotonic alignment A (alignment with no crossing edges), the graphical model is
constructed by merging the tags of aligned word pairs. In practice, it’s very com-
mon to have word alignment with crossing links. Since in a directed model, cycles
are not allowed, these crossing links have to be removed by some kind of heuris-
tic. For example, one can go through the alignment links in the order of source
side sentence and then remove any links that intersect with preceding links. The
tags are merged instead of being separate variables because all the edges have to
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be directed and it is not clear how to define directions between aligned tags. The
values in such merged nodes are, therefore, pairs of tags (xi, yj). This model is
called a merged tag model, named from the merging operation. This is a directed
model, each random variable is generated from a locally normalized distribution
conditioned on its parents. The tag sequence is generated from left to right and the
words are generated by the tags as the arrows indicates. The joint probability of
two sentences and their tagging is

P (x1, ..., xNs , y1, ..., yNt , s, t) =
∏

(i,j)∈A

P (xi, yj |xi−1, yj−1)P (si|xi)P (tj |yj)·

∏
unaligned i

P (xi|xi−1)P (si|xi) ·
∏

unaligned j

P (yj |yj−1)P (tj |yj).

Merged nodes represent the distribution of two tags of aligned words using addi-
tional coupling parameters ω(xi, yj). The transition probability is given by

P (xi, yj |xi−1, yj−1, ω) =
1
Z

(P (xi|xi−1)P (yi|yi−1)ω(xi, yj)).

Z is the normalization coefficient computed from all combinations of xi and yj .

Z =
∑
x,y

P (x|xi−1)P (y|yi−1)ω(x, y)

In order to guide the unsupervised learning process, all the transition, emission
and coupling parameters are governed by Dirichlet priors as commonly done with
Bayesian models. The inference procedure is a Gibbs sampling based approach.
To sample a word, we compute the emission probability of a word si given all other
words s\i in the training data, its tag xi and Dirichlet prior θ

P (si|xi, s\i, θ0) =
n(xi, si) + θ0

n(xi) + Wxiθ0
.

n(xi, si) is number of times tag xi co-occur with word si, n(xi) is the number of
times xi appears in the data, Wxi is the total number of word types that can be
emitted from xi. This can be seen as estimating the conditional distribution with
add θ0 smoothing. To sample a tag, a set of transition probabilities are sampled
based on the prior, and then a tag is sampled using the transition probabilities. The
hyper-parameters of the prior distributions are also inferred from data.
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Figure 2: Monolingual tag model.

2.2 Undirected Model for POS labelling

Undirected models look very much like directed models. The only difference in
terms of the graphical representation of these models is that the edges do not have
directionality. The small difference in definition leads to very different kind of
representation of probability distributions.

When the tags are observed in the supervised setting, Conditional random fields
[Lafferty et al., 2001] outperform directed models because they can incorporate
features.

In the unsupervised setting, Smith and Eisner [2005b] shows that a monolin-
gual part of speech tag induction model can be improved with spelling features
(prefixes and suffixes of words). Haghighi and Klein [2006] shows that distribu-
tional similarity features can also improve the performance. An example of such a
monolingual model is shown in Figure 2.

In the monolingual case, suppose we have a sentence s and a tagging x. For
simplicity of notation, we are only writing out formulas for one sentence. The
expression for the likelihood and gradient can be easily generalized to multiple
sentences by adding the same expression for each sentences. w are parameters
chosen to maximize the data likelihood

L(w) = log P (s|w) = log
∑
x

P (s,x|w).

The joint probability of a sentence and a particular tagging x is

P (s,x|w) =
1

Z(w)

N∏
i=1

exp(w · (f(si, xi) + f(xi, xi+1)).

f(si, xi) is a feature vector defined over edges between a tag xi and word si.
f(xi, xi+1) is a feature vector defined over edges between adjacent tags. Z(w)
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is the partition function over possible word sequences

Z(w) =
∑
s

∑
x

N∏
i=1

exp(w · (f(si, xi) + f(xi, xi+1))

=
∑
s

∑
x

score(s,x).
(1)

Undirected models are usually trained with gradient based methods both in super-
vised and unsupervised settings. The partial derivative of the likelihood function
with a particular weight wi can be derived to take the following form

∂L(w)
∂wi

= (Ex|s,w[fi]− Ex,s|w[fi]).

The first term is the expectation of features under the distribution P (x|s,w). It can
be computed with the same forward-backward algorithm used for CRF. The second
term is harder. Fortunately, it does not depend on the data at all, so that it only needs
to be computed once per iteration. Haghighi and Klein [2006] approximated the
second term by ignoring all sentences of length greater than a constant L.

Ex,s|w[fi] =
L∑

l=1

Ex,s|l,w[fi].

Each term can be computed by a slight modification of the forward-backward al-
gorithm. This is a reasonable approximation because very long sentences are very
unlikely to appear in data. Another reason for the approximation is from com-
putation concerns. It is very hard to compute the expected value of features for
all possible sentences with length ranging from 0 to infinity. Smith and Eisner
[2005b] provides many other ways to approximate the second term of the gradi-
ent. The general method for approximating the second term is named contrastive
estimation. It is an indispensable component of our training algorithm for our new
model.

3 Model

Our model is based on a Markov random field which consists of observed lexical
nodes for two languages and latent nodes representing the part-of-speech tags for
the lexical nodes. An example of this Markov random field for a pair of sentences
in French and English is given in Figure 3 in graphical model notation.

More formally, suppose we have two sentences s = (s1, s2, ..., sNs), and t =
(t1, t2, ..., tNt), with corresponding tagging sequences x = (x1, x2, ..., xNs) and
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y = (y1, y2, ..., yNt), and word alignment A as defined in Section 2.1. The joint
distribution of words and tags is given by

p(x,y, s, t | A,w) ∝
Ns∏
i=1

exp(w · f(si, xi))×
Nt∏
i=1

exp(w · f(ti, yi))

Ns−1∏
i=1

exp(w · f(xi, xi+1))×
Nt−1∏
i=1

exp(w · f(yi, yi+1))∏
(i,j)∈A

exp(w · f(xi, yj))

(2)

A lower case “p” denotes an unnormalized score of the random variables. An
upper case “P ” would denote a proper probability in the following formulas. Each
term of the form exp(w · f(•, •)) is called a factor. In theory one can define an
arbitrary way of computing the factors for each edge. Exponentiating the linear
combination of feature values is preferred because the gradient of the weights with
respect to the marginal probability of the observed words work out to have very
simple form. The marginal probability of s, t is given by

P (s, t) =

∑
x,y p(x,y, s, t)∑

s′,t′
∑

x,y p(s′, t′,x,y)
. (3)

The gradient of the log of the probability with respect to a weight wj is then

∂ log P (s, ti)
∂wj

= E[fj |s, t]−E[fj ]. (4)

The gradient for wj is the expected value of feature fj conditioned on the observed
sentence pair minus the expected value of fj over all possible configuration of
random variables.

The features we used in this model include conjunctions of a tag and a word,
conjunctions of adjacent tags, and conjunctions of a tag and another tag if the edge
represents an alignment link. These features model the information the Bayesian
HMM from Section 2.1 captures. In addition, we used conjunctions of prefixes
and suffixes of a word and its tag. The full details about these features are given in
Table 1. We also experimented with other features such as character trigrams and
indicators of numbers but the results are not much different. If we have more time
in the future , we would first try distributional similarity of words.

Using a Markov random field, as opposed to directed models has the advantage
of being able to incorporate alignments with crossing links. The intuitive reason
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Feature Name Description
Emission
Feature

word fs,x(s′, x′) = 1 if s′ = s and x′ = x.
prefix fx,p(s)(x′, s′) = 1 if x′ = x and p(s′) = p(s)

Transition Feature fx1,x2(x
′
1, x

′
2) = 1 if x′

1 = x1 and x′
2 = x2

Alignment Feature fx,y(x′, y′) = 1 if x′ = x and y′ = y

Table 1: Features used for the model. x or y denotes a tag in the source or target
language, s or t denotes a word, p(s) denotes a prefix or suffix of a word

divergences économiques

Economic discrepancies

N A

A N

Les

ART

vont

are

V

V

croissant

growing

V

V

Figure 3: Bilingual tag model.

is that in a directed model, an edge denotes a causal relation, if there is a loop
in the graph, it means something is causing itself. In an MRF, each edge denotes
some kind of relation, and therefore an MRF doesn’t care about creating cycles.
For example, Figure 3 shows a crossing link between “Economic discrepancies”
and “divergences economiques.” This crossing link is indicative about the relation
between “Economic” and “economiques.” We will show that crossing links make
a difference in the experiments section.

4 Inference and Parameter Learning

Similar to the unsupervised monolingual MRF model in Section 2.2, we find the
features weights w to maximize the log-likelihood with gradient descent. The dif-
ference between our model and previous monolingual model lies in the graphical
structure. In the bilingual case, the graph is no longer a linear chain. The graph
can contain cycles. Dynamic programming algorithms for computing the gradi-
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ent exactly are no longer applicable. We developed a new sampling scheme for
computing the gradient. We also found that the likelihood objective contains many
local optima that correspond to bad tagging. Contrastive estimation turns out to be
a very handy technique to guide the model by simplifying the objective function.
Computationally, contrastive estimation fits nicely within the sampling scheme.

4.1 MLE with Gradient Descent

Following the notations in Equation 3 in Section 3, the log-likelihood of the data
given w is

L(w) = log P (s, t)

= log
∑
x,y

p(x,y, s, t)− log
∑
s′,t′

∑
x,y

p(s′, t′,x,y)

= log
∑
x,y

exp(w · f(x,y, s, t))− log
∑
s′,t′

∑
x,y

exp(w · f(s′, t′,x,y)).

(5)
Using chain rule of derivatives, we can derive the partial derivative of the log-
likelihood with respect to a weight wi.

∂L(w)
∂wi

=
∂ log P (s, t)

∂wi

=
∂

∑
x,y exp(w · f(x,y, s, t))∑

x,y exp(w · f(x,y, s, t))
−

∂
∑

s′,t′
∑

x,y exp(w · f(s′, t′,x,y))∑
s′,t′

∑
x,y exp(w · f(s′, t′,x,y))

=
∂

∑
x,y exp(w · f(x,y, s, t))

Zs,t(w)
−

∂
∑

s′,t′
∑

x,y exp(w · f(s′, t′,x,y))
Z(w)

=
∑
x,y

fi(x,y, s, t)
exp(w · f(x,y, s, t))

Zs,t(w)
−

∑
s′,t′

∑
x,y

fi(s′, t′,x,y)
exp(w · f(s′, t′,x,y))

Z(w)

= EP (x,y|s,t)[fi]−EP (s,t)[fj ].
(6)

These two terms can both be approximated with Gibbs sampling. A general ex-
planation of Gibbs sampling technique is in Section 4.2. In the bilingual case,
since the graphical model is not a linear chain and contains loops, the forward-
backward algorithm cannot be used to compute expectation. This situation is dif-
ferent from previous works on linear chain structured MRF [Smith and Eisner,
2005b, Haghighi and Klein, 2006] which have used exact inference algorithm to
compute the gradient.
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The first term of the gradient in Equation 4 is the expected values of feature
functions conditioned on words. This can be computed by keeping the words fixed
and sampling tags many times. As explained in Section 4.2, Gibbs sampling works
by picking each random conditioned on all other random variables as in Equation
7. In an undirected graphical model, a random variable only depend on its direct
neighbors when all other variables are observed. The distribution of a tag xi is de-
termined by the corresponding word si, adjacent tags xi+1, xi−1 and aligned tag yj

if there is one. This means that in Equation 7, p(xi,x\i) = p(xi, xi−1, xi+1, st, yj).
A diagram of the Markov blanket of a tag is shown in Figure 4.

  

N A

divergences économiques

A N

Economic discrepancies

V

vont 

  

N A

divergences économiques

A N

Economic discrepancies

ART

Les 

V

vont 

are

V

Figure 4: Markov blankets of a tag (left) and a pair of tags and words(right).
Shaded nodes are fixed while sampling unshaded nodes. Thickened edges are rele-
vant edges in determining the distribution. To sample a tag, a random tag is picked
from the distribution of tags conditioned on its neighbours in the left figure. The
probability of swapping a pair of tags and words simultaneously is computed based
on the thickened edges in the right figure.

The second term of the gradient in Equation 4 is the expected value averaged
over all possible word sequences. This expectation is harder to compute than the
same expectations in linear chain models. In linear chain models, this term does
not depend on the data and only needs to be computed once per iteration. In the
bilingual case, the second term needs to sum over all possible alignment structures.
Since computing for each alignment structure is very time consuming, we decided
to compute this term for each sentence pair conditioned on its alignment structure.
For a Gibbs sampler, this only means that it is sampling from a much larger space,
while the complexity of sampling a new variable is asymptotically the same. It is
hard to quantify how many more examples we need now that the space is so much
larger.

In practice, we found that maximizing the likelihood didn’t work well. We used
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the idea of contrastive estimation and limited the sampler for the second term to
only sample permutations of the words in the sentence. Details of using contrastive
estimation is explained in Section 4.3.

4.2 Gibbs Sampling

Gibbs sampling is a major component of the training algorithm for our model. It is
a very simple Markov Chain Monte Carlo method and can be seen as a special case
of the Metropolis-Hastings algorithm [Bishop, 2006]. Its correctness can be shown
based on the correctness of the Metropolis-Hastings algorithm. The Metropolis-
Hastings algorithm obtains a sequence of samples from a complicated distribution
when direct sampling is hard. It can be shown that the sequence of samples ob-
tained approximates the original distribution. The proof that Gibbs sampling sam-
ples from the joint distribution of the random variables follows from the correctness
of the Metropolis-Hastings algorithm.

Gibbs sampling samples a set of mutually dependent random variables by
changing one variable at a time. Suppose we have a distribution p(x) over N
random variables. Each assignment of the random variable can be viewed as a
state and Gibbs sampling moves between these states such that the probability of
reaching at any state x is the same as the probability of that state defined by p(x).
Based on this intuition, a necessary requirement for Gibbs sampling to work is that
all states should be reachable from other states.

Gibbs sampling starts at a random point x0. The sampler then loops through
each random variable and picks a value for that random variable conditioned on all
other random variables. This procedure is repeated many times to obtain a good
estimate of probabilities. Suppose the sampler is at a state x and it wants to pick
a new value for xi. Denote x\i as the set of random variables excluding xi. The
sampler picks a value from the following distribution

p(xi|x\i) =
p(xi,x\i)∑
x′

i
p(x′

i,x\i)
. (7)

This conditional probability can be easily computed especially if xi only depends
on very few of the random variables. If we were to sample from the complete
distribution instead, where each random can take k values, then we need to com-
pute a distribution for Nk values. The main advantage of Gibbs sampling is that
it provides an approximation to the joint distribution very efficiently. Each step
only computes a distribution for k values. A sampling round through all random
variables only needs to compute distribution for Nk values.

To address the requirement that all states should be reachable as mentioned in
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the beginning of this section, it is sufficient to satisfy

p(xi|x\i) > 0,∀x.

Gibbs sampling can be viewed as a special case for Metropolis-Hastings al-
gorithm in the following way. Suppose the sampler wants to move from state
x to state x′ where xi is changed to x′

i. The remaining variables are the same,
x\i = x′

\i. Use the proposal probability q(x′|x) = p(x′
i|x\i), the acceptance prob-

ability in Metropolis-Hastings algorithm can be shown to always equal to 1 using
chain rule of probabilities.

a =
p(x′)q(x|x′)
p(x)q(x′|x)

=
p(x′

i|x′
\i)p(x′

\i)p(xi|x′
\i)

p(xi|x\i)p(x\i))p(x′
i|x\i)

= 1

(8)

Using results from Metropolis-Hastings algorithm, we know that the accept rate of
Gibbs sampling is 1. It always samples from the right distribution. However, it is
not clear how many samples it takes to get a good estimation of quantities needed
by our model.

4.3 Contrastive Estimation

We used a combination of Gibbs sampling [Casella and George, 1992] and con-
trastive estimation [Smith and Eisner, 2005a] to estimate the parameters. Con-
trastive estimation approximates the log-likelihood with an easier objective func-
tion. It limits the space of possible sentences to a much smaller subset N(x) called
the neighborhood of x. The objective function is modified slightly to

L(w) = log P (s, t)

= log
∑
x,y

p(x,y, s, t)− log
∑

s′,t′∈N(s′,t′)

∑
x,y

p(s′, t′,x,y). (9)

Same as in Section 3, a lower case “p” denotes an unnormalized score of random
variables. The likelihood is more like a supervised objective where the model
needs to discriminate positive examples from negative examples. The gradient is
then modified accordingly where the second term of the expectation only sums
over sentences in the neighborhood.

In our model, we used the Dynasearch neighborhood [Potts and van de Velde,
1995, Congram et al., 2002]. It is a subset of permutations of sentence x. A word
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can only go to its adjacent positions or stay where it is. To make sure that sen-
tences in the neighborhood are mostly negative examples, we rely on the linguistic
observation that in a language, permutations of words are probably not well-formed
sentences syntactically.

The training algorithm iterates between sampling part-of-speech tags and sam-
pling permutations of words to compute the expected value of features. At each
step, the sampler decides whether to swap a pair of adjacent tags and words or
not. The Markov blanket for computing probability of swapping a pair of tags and
words is shown in Figure 4.

By limiting the space of possible sentences, the model is driven to pay more
attention to more specific features of a language. When the space is defined as
neighborhood of permutations, the model will try to set the weights so that the
sentences are more likely to keep in the original order. The model does so by
putting more weights on transition features and word alignment features to focus
on relations between words. In contrast, when the space is all word sequence pairs
that can fit into the alignment structure, we observed that the model tends to pay
more attention to emission features and focus on the distribution of the vocabulary.

5 Experiments

We tested our model on several language pairs mainly with two settings. The two
settings differ in amount of tag dictionary we have. A tag dictionary contains a list
of words and for each word it lists possible tags that word can take. For example, in
an English tag dictionary, the word “fish” may contain two options, “N” for noun
or “V” for verb. The presence of tag dictionary makes the unsupervised problem
much less ambiguous and makes the inference procedure much faster. The first
setting uses a complete tag dictionary for each word appeared in the training data
just to verify that our model is reasonable. It is often very difficult to obtain a
tag dictionary for all words that appeared in the data. In practice, it may be much
easier to let a person with basic linguistic knowledge to write down a small tag
dictionary for frequent words. The second setting uses a tag dictionary for top 100
most frequent words.

We chose two datasets to evaluate the tagging accuracy of our models. The
first dataset, the Orwell novel 1984, is chosen to compare to previous state-of-art
bilingual POS tag induction. The second piece of data is a parallel corpus named
EUROPARL (Koehn [2005]). It is a much bigger dataset so that we can see how
our model scales in terms of speed and accuracy.
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Tag Part of speech
A Adjectives
C Conjunctions
D Determiners
M English word for numbers and arabic numbers
N All nouns
P Pronouns
PUN Punctuations in the middle of a sentence
R Adverbs
S Prepositions
V All verbs (action, modal, auxiliary)
X Unknown
Y Not used
. Punctuations at the end of a sentence

Table 2: List of part of speech tags for English.

5.1 Training and test data

The first data set includes parallel text of the 1984 novel in English, Bulgarian,
Slovene and Serbian [Erjavec, 2004]. The data set is manually annotated with
part-of-speech tags. We use automatically induced words alignments from Giza++
[Och and Ney, 2003] following Snyder et al. [2008]. The data shows very regular
patterns of tags that are aligned together: words with the same tag in two languages
tend to be aligned with each other.

The 1984 data set includes fourteen part-of-speech tags, two of which denote
punctuations. The tag set for English is listed in Table 2. Tag sets for other lan-
guages have minor differences in determiners and particles.

We ran our model on this dataset with both complete and partial tag dictionary.
The tag dictionary for languages other than English are produced using the train-
ing data. When a complete tag dictionary is present, each word has only a small
number of tags it can possibly use. The baseline of choosing random tags for each
word gives an accuracy of around 85%. English has an extended tag dictionary
obtained from the Wall Street Journal. English tag dictionary is much more am-
biguous because it is obtained from a much larger dataset. The random baseline
gives an accuracy of around 55%.

The second set of experiments uses more massive parallel data. We used more
data to see how our model scales in accuracy and speed. More specifically, we use
the news-commentary corpus EUROPARL released by the ACL 2010 Workshop on
Statistical Machine Translation [Koehn, 2005]. We used manually annotated test
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Language Random HMM MRF
Bulgarian 82.7 88.9 93.5
English 56.2 90.7 87.0
Serbian 83.4 85.1 89.3
Slovene 84.7 87.4 94.5

Table 3: Unsupervised monolingual results with complete tag dictionary on 1984
data.

data from the French treebank [Abeillé et al., 2003], the Penn treebank [Marcus
et al., 1994] and data provided as part of the 2006 CoNLL shared task [Buchholz
and Marsi, 2006].

5.2 Supervised Verification

As a very primitive comparison, we trained a supervised MRF model to compare
to the results of supervised HMMs. In supervised mode, tags, words and word
alignments are all given. The training objective maximizes the probability of the
given tagging conditioned on the words and the word alignments. This supervised
MRF is also called conditional random fields(CRF). The training procedure is also
sampling based. The only difference is that there is no need to sample the words
because the tags are the only random variables. The CRF and HMM give very
close performance with difference in accuracy less than 0.1%. This shows that the
CRF is capable of representing an equivalent model represented by the HMM. It
also shows that gradient descent with sampling approximation is capable of finding
a good model with the weights initialized to all 0s.

5.3 Monolingual POS induction

We trained our model under monolingual setting as a sanity check for our approx-
imate training algorithm. Our model under monolingual mode is exactly the same
as the models introduced in Section 2.2. We ran our model on the 1984 data with
complete tag dictionary. A comparison between our result and monolingual di-
rected model is shown in Table 3. “Random” is obtained by choosing a random tag
for each word according to the tag dictionary. “HMM” is a Bayesian HMM im-
plemented by Snyder et al. [2008]. We also implemented a basic (non-Bayesian)
HMM. We trained the HMM with EM and obtained similar results as the Bayesian
HMM.
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pair HMM MRF1 MRF 2
Bulgarian 94.5 93.3 90.5
English 92.0 91.6 91.3
Serbian 91.8 88.1 91.8
Slovene 95.1 87.7 95.0
English 92.0 91.9 92.7
Slovene 88.5 87.8 95.0

Bulgarian 92.0 93.4 90.7
Serbian 86.6 88.7 85.0
English 91.0 89.0 91.6
Serbian 90.1 92.1 89.2

Bulgarian 90.9 90.4 90.2
Slovene 88.2 88.1 88.0

Table 4: Unsupervised bilingual results with complete tag dictionary on 1984 data.

5.4 Bilingual POS induction (1984)

A comparison of unsupervised results between Bayesian HMM and MRF is shown
in Table 4. Bayesian HMM is the model built by Snyder et al. [2008]. MRF1 and
MRF2 are two runs of our model initialized randomly. Even though the level of
ambiguity is low, we can still see oscillations in the range of about 5% in both
my model and the Bayesian HMM. The reason as we concluded is that there are
a few very common words in the data such as “the,” “is” and equivalent words
in the other languages. These words are almost always aligned to each other and
therefore word alignments are not indicative of the tagging. Labeling these words
completely right or completely wrong are both local optima to the model.

By adjusting the weights of a few features, the MRF model can easily switch
between these local optima. Flipping the values of those weights during initial-
ization would lead to completely different solutions. The model will be stuck at
whatever local optimum it started at. The difference in initialization would even-
tually lead to significant difference in accuracy. Such effects of initialization for
unsupervised models are well known phenomena. For an example, refer to [John-
son, 2007].

The training procedure of the model is tricky to tune. The model is originally
trained with stochastic gradient descent with on-line update and a Metropolis Hast-
ings step for sampling the words. It turns out that on-line updates almost always
guide the model to a local optimum with low accuracy. The effect of on-line up-
date is very hard to study and is not well-understood. Then we switched to gradient
descent with batch updates and the behavior is more regular. We control the step
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language
pair

Bilingual
HMM

Bilingual
MRF

English 71.3 72.3
Bulgarian 62.6 62.8
Serbian 54.1 56.2
Slovene 59.7 62.0
English 66.5 73.0
Slovene 53.8 55.5±2.6
Bulgarian 54.2 56.0±1.6
Serbian 56.9 57.0
English 68.2 71.77
Serbian 54.7 57.20
Bulgarian 55.9 59.1±1.1
Slovene 58.5 62.9

Table 5: Unsupervised bilingual results with tag dictionary only for the top 100
frequent words. The standard deviation of a few languages are shown because
the differences between each iteration are noticable. The variances exist probably
because the step sizes in our gradient descent algorithm are too large.

size by limiting the maximum absolute value of partial derivatives. In this task,
regularization seems to only hurt the performance. The magnitude of the weights
are already limited by the sampling step.

We also compared the results when only a small portion of the tag dictionary is
available. This set of result is more interesting because manually creating a small
tag dictionary is more realistic than having a complete tag dictionary. Another
reason for using a small tag dictionary is that there is much more for the models to
learn compared to the case with complete tag dictionaries. The tag dictionaries only
contain the top 100 most frequent words for each language. In English, frequent
words include “a,” “the,” etc. The results are shown in Table 5.

The results are not satisfactory even though they are still comparable to the
HMM baseline. The model was much worse when trained with the likelihood
objective. To see whether the bad behavior is caused by the training algorithm
or the objective function, we tried using exact inference instead of sampling to
optimize the same objective. We found that the likelihood objective has lots of bad
local optima. The model easily gets stuck in those local optima regardless of the
training algorithm. The bad solutions make the model use less tags when more tags
are available. In English for example, most of the words are tagged as verbs and
nouns. This behavior is the opposite of that of a directed model. A directed model
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language
pair

Basic Fea-
ture

Prefix suffix
feature

English 72.1 72.3
Bulgarian 56.2 62.8
Serbian 47.2 56.2
Slovene 52.7 62.0

Table 6: Effect of prefix and suffix features.

tends to use more tags whenever it can.
To make the objective function easier to optimize, we switched to contrastive

estimation. The intuition is that word ordering is more important than picking
words from the vocabulary for learning syntax of a language. The contrastive ob-
jective works well compared to the full objective. The weights learned by the
model show that the model is focusing much more on transition features and align-
ment features rather than emission features. The transition features and alignment
features are very powerful for modeling word ordering.

One potential advantage of an undirected model is that it allows arbitrary fea-
tures. In the case with complete tag dictionaries, we experimented with prefix and
suffix but only got worse performance. With more features, the model is more
likely to over-fit. Since every word already has a small list of possible tags, prefix
and suffix features is not going to help at all. When we switched to using a small
portion of the tag dictionary, the performance is very different. A comparison is
show in Table 6.

5.5 Crossing Links

Another potential advantage of MRFs is that they allow crossing links. However, in
this particular task, crossing links don’t make a significant difference. The reason is
that these languages are all very similar and there are very few crossing links. They
are too few to make a difference. I’m hoping to see a more significant effect with
language pairs that have more crossing links. French and English is a promising
language pair to look at. There are 87k out of 673k crossing links in our dataset. A
comparison of the effect of crossing links is shown in Table 5.5.

5.6 Large-scale corpora

To see how our model scales to larger data sets, we ran our model on the EU-
ROPARL data [Koehn, 2005]. There are about 50, 000 sentences in each language
pair. We trained our model with the first 10, 000 sentences for speed consider-
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Language With Cross-
ing links

Without
Crossing
Link

French 73.8 70.3
English 56.0 59.2

Table 7: Effect of removing crossing links for French and English.

language
pair

Random Basic Fea-
ture

Prefix suf-
fix feature

French 63.6 89.8 93.2
English 72.0 90.4 88.7
German 80.4 93.2 93.4
English 72.0 90.8 90.2
Czech 83.3 91.7 93.8
English 72.0 90.1 90.1

Table 8: Tagging accuracies on EUROPARL dataset with complete tag dictionar-
ies.

ations. We experimented both with a complete tag dictionary and with a partial
dictionary. The tagging accuracy on 1000 test sentences are shown in Table 8 and
9.

language
pair

Random Basic Fea-
ture

Prefix suf-
fix feature

French 44.6 71.8 73.8
English 42.8 57.8 56.0
German 47.3 59.2 59.3
English 42.8 59.8 63.4
Czech 50.7 64.0 63.6
English 43.0 60.0 63.8

Table 9: Tagging accuracies on EUROPARL dataset with reduced tag dictionaries.
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6 Error and/or Model analysis

6.1 Why Contrastive

When we first developed the model, we estimated the parameters by maximizing
the joint likelihood in Equation 5. In practice, we found that it is very hard to
optimize against this objective both in small synthetic cases and in the real data.

In the real data, the model with likelihood objective performed at least 10%
worse than with contrastive objective. The tagging it finds is very bad because it
uses very few tags. Many less common tags disappeared. The model uses frequent
tags for almost all words. It is not learning a useful tagging.

6.2 Synthetic Example

In the synthetic example, we used exact inference to find out that a tagging that
uses more tags does correspond to a high likelihood. However, there are many
other local optima that correspond to bad taggings. In a bad tagging, some tags just
disappear and never get used. This would almost never happen in an HMM because
in an HMM, each tag has to distribute its probability mass to some words. The only
way to make a tag disappear in an HMM is to make all transition probabilities to
this tag very small. But in an MRF, since the parameters are globally optimized, a
tag can have tiny probability for all the words in the vocabulary and then not get
used.

Contrastive objective gets around this problem by focusing more on transition
probabilities than emission probabilities. We compared contrastive objective and
length neighborhood objective on synthetic example with exact inference to get rid
of any effect due to sampling. Our first synthetic example consists of five sentences
where each word is a number. {(0 1 2 3) , (1 2 3 0) , (2 3 0 1) , (3 0 1 2) , (0 1 2 3)}
. The MRF model is allowed to use 4 tags. To maximize the data likelihood, the
model only has to allocate one tag for each word. There are 4! = 24 equally good
taggings that achieve global optima. As a side note, HMM always uses as many
tags as possible with random starts and it is the global optimum for the objective
function of HMM. MRF doesn’t have such tendency on this synthetic example.
Since w = 0 is a local optima, we start our MRF models by randomizing the
weights in the range of [−0.5, 0.5]. A comparison of histograms of local optima
for these two objectives is shown in Figure 5.

When the length of sentences, number of word types and tags are increased to
6 and 7, MRF finds the tagging that uses all tags much less frequently. The global
maximum of the contrastive objective does not correspond to the tagging that uses
all available tags. Histograms of local optima found by the two models are also
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shown in Figure 5. The contrast is more obvious in this case. Contrastive objective
is much easier to optimize although its global optimum is to not use all available
tags.
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Figure 5: Histograms of local optima found by optimizing the length neighborhood
objective (left) and by the contrastive objective (right) on a synthetic dataset with 5
sentences of length 4 (upper row) and 7 (lower row). The axes are frequency versus
negation of log-likelihood. A lower value on the horizontal axis corresponds to a
better solution.
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7 Conclusion

Through a series of experiments, we explored the capabilities of unsupervised
MRFs that are not a simple linear chains. The model is more challenging be-
cause exact inference with dynamic programming is not applicable. We are forced
to experiment with approximate inference technique. In this task, we used Gibbs
sampling for simplicity. We obtained comparable results to directed version of the
models on the bilingual POS tag induction task [Snyder et al., 2008]. From the re-
sults, we believe that there is still room for improvement by picking features more
carefully.

MRFs are very flexible models that are tricky to train. We found that con-
trastive estimation is a useful tool for guiding our model. We experimented with
the DynaSearch neighborhood and gained improvement over our original model
trained with maximum likelihood objective. By looking at the weights learned by
our model, we believe that contrastive estimation drives our model to focus on
more general patterns such as transition features and word alignment features. Our
experiment with synthetic example shows that it is easier to find the global optima
of the contrastive objective with DynaSearch neighborhood on our examples. We
still don’t fully understand what makes an unsupervised undirected model harder to
optimize than a directed model. Looking at histograms is one way of studying this
problem. In the future, we may look at this problem from different perspectives
and come up with a more concrete answer.
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