
Slick: A Framework for High Throughput Network

Applications in the Kernel

Alex Gartrell
Advised by David Andersen

May 1, 2011

Abstract

With the increasing use of the Internet and networked services, the abil-
ity to make such services perform better, specifically in terms of increasing
throughput and, by extension, the number of requests that can be handled,
is more important than ever. Despite many interface and architecture im-
provements, such services are constrained by the maintenance of the process
abstraction (i.e. the isolation of tasks from each other and the inner work-
ings of the operating system), which imposes a great cost on every network
transaction. Slick tackles this problem by providing a convenient interface
for providing these services in the kernel. In this work we explore the cre-
ation of this framework and the performance implications of its use.

Contents

1 Background 2
1.1 Introduction . 2
1.2 Prior Work . 3

2 Approach 4
2.1 Handling Socket Events with Klibevent 5
2.2 Buffering IO with BufferedSockets 9
2.3 Parsing Binary Protocols with ThriftSockets 10

3 Evaluation 12
3.1 Hardware . 12
3.2 Echo Micro-benchmark . 13
3.3 Thrift Forwarder Benchmark 15

4 Conclusions 18
4.1 Evaluating The Kernel Approach 18
4.2 Future Work . 18

1

1. Background

1.1 Introduction

With the increasing use of the Internet and Networked services, the abil-
ity to make such services perform better, specifically in terms of increasing
throughput and, by extension, the number of requests that can be han-
dled, is more important than ever. This has been shown by the changes in
architecture of such services from having many processes, to having many
threads, and finally to having a single thread with a fast event loop. Still,
such services are constrained by the maintenance of the process abstraction
(i.e. the isolation of tasks from each other and the inner workings of the
operating system), which imposes a great cost on every network transaction.

In order to avoid the overheads associated with maintaining the process
abstraction, we shift the networked service into a kernel module, where it can
be loaded directly into the kernel’s execution path. We made this movement
reasonably straight forward by providing a set of abstractions that mirror the
libevent library for event based programming in a user process. Additionally,
we provide a handful of utilities that would be otherwise unavailable in the
kernel in contrast to user processes, such as Thrift protocol parsers and
libevent-style buffered sockets.

We have shown quantitatively that the kernel approach to networked
services dominates the user process approach for small granularity sends
and receives in terms of throughput with similar latencies. Additionally, we
have provided abstractions that have made it possible to port user process
networked services without completely rearchitecting the existing code base
or being constrained by a framework that makes assumptions about the
service.

Slick differs from prior work in that its main focus is making the Linux
kernel a hospital place for which to write networked services without com-
promising on performance. This is different from other attempts which have
involved writing a kernel from scratch for the purpose of networked services
[3], or providing a more specialized caching layer for static content and re-
quests [2] which is particularly powerful for certain workloads [4] but does
not generalize to as many networked services as slick.

Our micro-benchmarks for send and recv with small buffers show that

2

there is certainly a much larger cost for user process network transactions
than their kernel counterparts, as the throughput for the kernel variant with
small payloads (32 to 128 bytes) ranged from 30 to 60 percent higher. This
was further corroborated by our larger scale bench mark that involved for-
warding messages from many clients to many servers, where the throughput
for small messages was also far better.

Providing a networked service from inside the kernel certainly has its
drawbacks: application developers must deal with a different and kernel-
specific set of primitives, crashes are fatal for the entire system, and many
assumptions may not be forward compatible with future kernel releases.
However, there are certainly advantages in terms of performance. Addition-
ally, we believe that the abstractions offered by Slick minimize the pain of
porting existing services to or writing new services for use in the Linux ker-
nel. Thus, application developers who find themselves constrained by user
process overheads with small workloads should consider slick a viable avenue
through which to increase the performance of their service without putting
forth a tremendous amount of effort.

1.2 Prior Work

The X-Kernel [3] specifies a top-to-bottom approach that allows program-
mers to specify protocols and have the kernel distribute messages to the
appropriate processes based upon their protocol. Slick differs from this in
that it rests upon a well established kernel, the Linux kernel, instead of a
brand new one.

The Adaptive Fast Path Architecture [2] [4] provides a network interpo-
sition layer within the kernel that allows for the caching of static content in
memory. This results in the ability to serve static content at a much higher
rate. Slick differs from this in that it is meant to place as much of the
application as desired in the kernel; shortly, AFPA could be reimplemented
using Slick.

Goglin, Glück, and Primet [1] provided a special Network API for faster
MPI-type message passing for use with file systems, in which they were
able to take advantage of kernel space to offer fewer copies, which improved
latencies. This paper differs from their work in that it addresses the im-
provements of using the standard API in the kernel as compared to in user
space. The work done by Gogle, Glück, and Primet could be used to further
improve Slick, which is one more argument for handling networked services
in kernel.

3

2. Approach

Today, many high performance servers are evented, which means that they
utilize an event notification mechanism to know when to execute handlers
that interact with sockets. This is best explained in contrast to forking
and threaded servers, which spawn new operating system contexts which
are dedicated to handling a single connection. The primary difference is
that threaded servers tend to use blocking socket IO (i.e. a call to recv

will suspend the thread until a message has arrived) while evented servers
tend to use non-blocking IO and instead rely upon the event notification
mechanism to “remind” them to call recv on a particular server when a
packet has arrived. Evented servers may invoke polling functions (e.g. poll,
select, kqueue, epoll) directly in their own event loop or may rely instead
upon frameworks that work better across platforms such as libevent.

Listing 2.1: Simple evented server example

void sock read (int fd , short event , void ∗ arg)
{

char buf [2 5 5] ;
int l en ;

event add ((struct event ∗) arg , NULL) ;

l en = read (fd , buf , s izeof (buf)) ;
do something (buf , l en) ;

}

int main (int argc , char ∗∗ argv)
{

struct event evsock ;
int socke t = c r e a t e s o c k e t () ;

e v e n t i n i t () ;
e v en t s e t (&evsock , socket , EV READ, sock read ,

&evsock) ;

event add(&evsock , NULL) ;
event d i spa t ch () ;
return 0 ;

}

4

The advantage of using evented servers is that they are less resource
intensive. When a connection is inactive, it uses very few resources outside
of the socket and its state, while an inactive threaded connection requires
all of the memory required to maintain all of the thread state, both within
the user process and inside of the kernel. Additionally, the scheduling of
connection handling is done directly by the process in a single or limited
number of threads, which means that more intelligent decisions can be made
about when exactly something should be run and the scheduling can take
place cheaply in a single context that need not be switched.

The primary disadvantage of using evented servers is that they can be
very difficult to engineer. A surprisingly large amount of state is stored
implicitly by threads, including obvious examples like state stored to the
stack, but also less obvious ones like the location of the instruction pointer.
Essentially, the thread’s context acts as a complex state machine, and man-
aging all of that complexity can be a challenge, especially when it comes to
particularly stateful things like parsing.

Ultimately, we made the decision to use an evented server approach for
two reasons. First, the cost of memory within the kernel is very high, as the
address space of the kernel is limited. Second, we believe that if someone is
willing to go through the pains of a kernel implementation, the additional
pain of writing evented handlers is minor, and the cost of threaded handlers
is unacceptable. We did, however, make an effort to minimize the pain
of writing an evented handler by providing both buffered IO and message
parsing.

2.1 Handling Socket Events with Klibevent

Klibevent takes advantage of the underlying structure of the Linux kernel’s
network stack as well as a particularly useful deferred work construct called
Work Queues to provide an interface to a developer that is very similar
to the interface provided by libevent. This allows developers to program
their in kernel networked applications as they would user process networked
applications, which can help to simplify both porting existing applications
and creating new ones.

In order to support a wide variety of network protocols, the Linux kernel
allows for protocols to be dynamically loaded at run time. To make this dy-
namic loading possible, the kernel defines an interface that protocols must
adhere to. Each protocol must provide a method for tasks like sending a
message, accepting a connection, closing a connection, etc. Later, when a

5

send is invoked on that socket, it will perform some generic functionality –
things that must be taken care of regardless of which protocol is being em-
ployed – and then fall through to the protocol-specific functionality specified
when the protocol is registered. In software engineering, the use of an in-
terface to specify such functionality is commonly referred to as the strategy
pattern.

Listing 2.2: The protocol registration function in /net/core/sock.c

2356 int p r o t o r e g i s t e r (struct proto ∗prot , int a l l o c s l a b)

Listing 2.3: Initialization of the inet protocol family in /net/ipv4/af inet.c

1632 rc = p r o t o r e g i s t e r (&tcp prot , 1) ;
1633 i f (rc)
1634 goto o u t f r e e r e s e r v e d p o r t s ;
1635
1636 rc = p r o t o r e g i s t e r (&udp prot , 1) ;
1637 i f (rc)
1638 goto ou t un r e g i s t e r t c p p r o t o ;
1639
1640 rc = p r o t o r e g i s t e r (&raw prot , 1) ;
1641 i f (rc)
1642 goto ou t un r eg i s t e r udp p ro t o ;
1643
1644 /∗
1645 ∗ Te l l SOCKET tha t we are a l i v e . . .
1646 ∗/
1647
1648 (void) s o c k r e g i s t e r (& i n e t f am i l y op s) ;

The use of this pattern is very obvious in an object-oriented language
supporting polymorphism, but its use is less straightforward in the C pro-
gramming language. To get around the lack of polymorphic objects in C,
the kernel developers employ structs of function pointers. By instantiating
such a struct with pointers to the desired functions, it is possible to approx-
imate polymorphism, albeit without the implicit access to object-specific
state available in C++ and Java.

Listing 2.4: The TCP protocol function table in /net/ipv4/tcp ipv4.c

2560 struct proto t cp pro t = {
2561 . name = ”TCP” ,
2562 . owner = THIS MODULE,
2563 . c l o s e = t cp c l o s e ,
2564 . connect = tcp v4 connect ,
2565 . d i s connec t = tcp d i s connec t ,
2566 . accept = in e t c s k a c c ep t ,

6

2567 . i o c t l = t c p i o c t l ,
2568 . i n i t = t cp v4 i n i t s o c k ,
2569 . des t roy = tcp v4 de s t roy sock ,
2570 . shutdown = tcp shutdown ,
2571 . s e t sockopt = tcp se t sockopt ,
2572 . get sockopt = tcp get sockopt ,
2573 . recvmsg = tcp recvmsg ,
2574 . sendmsg = tcp sendmsg ,
2575 . sendpage = tcp sendpage ,
2576 . back log rcv = tcp v4 do rcv ,
2577 /∗ Snip ∗/
2578 } ;

Listing 2.5: Strategy for creating sockets of a particular protocol family in
/include/linux/net.h

212 struct ne t p r o t o f am i l y {
213 int f ami ly ;
214 int (∗ c r e a t e) (struct net ∗net , struct

socke t ∗ sock ,
215 int protoco l , int kern) ;
216 struct module ∗owner ;
217 } ;

The result of all of this registering is that when a user invokes the socket
system call to create a TCP IPv4 socket, the core network code creates
a blank, generic socket object, which is then passed on to inet create

along with the desired protocol – in this case, TCP. inet create then looks
up the correct proto struct and uses it to help populate the socket’s sock

substructure.

Listing 2.6: Invoking socket to create a TCP IPv4 Socket

int fd = socket (AF INET, SOCK STREAM, IPPROTO TCP) ;

Additionally, there are a handful of callbacks that are invoked by the
kernel upon specific events upon connection state changes, the creation of
write space, and the availability of new data.

Listing 2.7: Callbacks within internal socket data structure

void (∗ s k s t a t e change) (struct sock ∗ sk) ;
void (∗ sk data ready) (struct sock ∗ sk , int bytes) ;
void (∗ s k wr i t e s pa c e) (struct sock ∗ sk) ;
void (∗ s k e r r o r r e p o r t) (struct sock ∗ sk) ;
int (∗ s k back l og r cv) (struct sock ∗ sk ,

struct s k bu f f ∗ skb) ;
void (∗ s k d e s t r u c t) (struct sock ∗ sk

7

These callbacks are of special interest to us, as they provide an alert
mechanism for all of the relevant actions that should elicit a response from
our framework. Further, due to the quirks of implementing the strategy
pattern in C, these callbacks are stored in mutable data structures associated
with each socket. The net result is that we are able to overwrite these
callbacks to be alerted immediately of these events without much, if any,
additional overhead.

Listing 2.8: Overwriting the event callbacks of the sock structure in
klibevent.c

83 void ov e rw r i t e c a l l b a c k s (struct sock ∗ sk , void ∗data) {
84 i f (un l i k e l y (s t a n d a r d c a l l b a c k s n o t i n i t i a l i z e d)) {
85 s t a n d a r d c a l l b a c k s n o t i n i t i a l i z e d = f a l s e ;
86 k l ibevent work queue =

cr ea t e s i ng l e th r ead workqueue (” k l i b ev en t ”) ;
87 INIT WORK(&k l i b e v en t u t i l i t y wo r k ,

k l i b e v e n t u t i l i t y c a l l b a c k) ;
88 s t anda rd sk s t a t e change = sk−>s k s t a t e change ;
89 s tandard sk data ready = sk−>sk data ready ;
90 s t anda rd sk wr i t e spa c e = sk−>s k wr i t e s pa c e ;
91 }
92 sk−>s k u s e r da ta = data ;
93 sk−>s k s t a t e change = ove r s k s t a t e change ;
94 sk−>sk data ready = ove r sk da ta r eady ;
95 sk−>s k wr i t e s pa c e = ov e r s k w r i t e s p a c e ;
96 }

These events are invoked from a softirq context, which essentially means
that any blocking operation (i.e. any operation that is not guaranteed to be
completed immediately) could result in a crash or deadlock. As many high
level socket functions are blocking, we ultimately decided that it was better
to defer the actual Klibevent callbacks until they could be run in a kernel
process context, which provides support for blocking operations at the cost
of additional context switching latency. To do this, we took advantage of the
Work Queue construct provided by the kernel, which allows you to invoke a
work callback after the preceding jobs have been completed. Coupling work
queues with the callback mechanisms allows us to present an interface to
the user that is very similar to libevent.

Listing 2.9: Klibevent interface
18 typedef void (∗ n o t i f y f u n c t) (struct socke t ∗ , void ∗ ,

int) ;
19
20 int r e g i s t e r s o c k (struct socke t ∗ , n o t i f y f un c t , void ∗) ;
21 void un r e g i s t e r s o c k (struct socke t ∗) ;

8

2.2 Buffering IO with BufferedSockets

Generally, a program interacting with the network must be written with the
expectation that network reads will result in short counts – a recv for 10
bytes can return any number of bytes between 1 and 10. This is a necessary
evil, as kernel buffers may be more limited than user process buffers, and it
is also generally better to receive the bytes that are available than it is to
wait, possibly forever, for the rest of the N bytes you have requested.

Listing 2.10: Common pattern for fetching a message from the network

char bu f f e r [expected] ;
while (r e c e i v ed < expected) {

int amt = recv (sock , bu f f e r + rece ived , expected −
r e c e i v ed) ;

i f (amt <= 0) return r e c e i v ed ;
r e c e i v ed += amt ;

}

Obviously, this will not work in a non-blocking evented environment,
where we cannot expect recv to make progress upon every call and instan-
taneously, and we must share the stack space among several connections, so
at the very least, we must relegate the buffer to its own heap space that is
somehow associated with the socket in question.

Additionally, there is the question of what to do when a non-blocking
send fails for lack of space, either due to saturating the TCP window or
the network link. One option is to reschedule the send for when there is
enough space to carry it out (i.e. after a “write space” event has occurred),
but that can lead to complications as far as buffer ownership is concerned,
as the calling party is likely eager to reclaim the space for their own use.
There is also a need to send messages atomically, as send, like recv, can
fail with a short count, having sent a fraction of what was asked of it. To
get around both of these problems, we also buffer writes. This allows us to
quickly empty the buffer upon a “write space” event, without having to do
the complicated scheduling required for the alternative solution.

With these considerations and implementation decisions in mind, we
decided to fully encapsulate the socket within a BufferedSocket object. This
gives us more tasteful primitives for atomic sends and peeking reads, which
allow us to hide some of the stateful nastiness from the actual application
handlers. These handlers can now simply “peek” at the socket to see if the
entire message has arrived, while the recv and store to the buffer happens
in the background, and can write all without worrying that only part of
the message will be sent.

9

Listing 2.11: API of BufferedSocket abstraction

20 int Buf fe redSocket peek (Buf fe redSocket ∗bs , char ∗∗ bu f f e r) ;
21 int Buf f e r edSocke t d i s ca rd (Buf fe redSocket ∗bs , int l en) ;
22 int Buf f e r edSocket r ead (Buf fe redSocket ∗bs , char ∗buf f ,

int max len) ;
23 int Buf f e r edSocke t wr i t e (Buf f e redSocket ∗bs , char ∗buf f ,

int max len) ;
24 int Bu f f e r e dSo c k e t w r i t e a l l (Buf f e redSocket ∗bs , char

∗buf f , int l en) ;

2.3 Parsing Binary Protocols with ThriftSockets

One of the biggest problems with placing networked services in the kernel is
the increased danger to system crashes and serious security vulnerabilities.
Further, one of the biggest sources of vulnerabilities appears in protocol
parsing. For these reasons, we decided to provide a convenient mechanism
for protocol parsing to allow the application developer to work with higher
level primitives.

The protocol we chose to serve as an example was Apache Thrift’s binary
protocol. Having been initially developed at Facebook and then adopted by
the Apache foundation, we decided that the Thrift protocol was sufficiently
popular to be representative of actual workloads. We went with the binary
variant, because we assumed that it was more likely to be used when high
performance is absolutely necessary. We also considered Google Protocol
Buffers, but Thrift happened to be more convenient, and the protocols are
similar enough in this context that they are more or less interchangeable for
the purposes of performance evaluation.

We provided an interface very similar to that of BufferedSockets, allowing
the user to peek and later discard a single message. Additionally, writes and
forwards happen with full-message granularity. This eliminates most of the
nastiness caused by interacting with the network.

Listing 2.12: API of ThriftSocket abstraction

75 int Thr i f tSocke t nex t (Thr i f tSocke t ∗ ts , Thr i f tMessage ∗tm) ;
76 int Thr i f t So ck e t d i s c a rd (Thr i f tSocke t ∗ t s) ;
77 int Thr i f t So ck e t wr i t e (Thr i f tSocke t ∗ ts , Thr i f tMessage

∗tm) ;
78 int Thr i f tSocke t f o rward (Thr i f tSocke t ∗ from , Thr i f tSocke t

∗ to) ;

This interface is actually much different from the traditional Thrift inter-
face, which relies upon autogenerated code that encapsulates the data and

10

makes the function calls directly. We decided to go with our stripped down
interface because we believed it would be non-trivial to implement the code
generation for the kernel module environment. Additionally, we wanted to
retain some flexibility, and the traditional Thrift interfaces requires you to
act immediately when provided a message, while our interface allows the
application to leave it in the queue as long as it would like. Finally, our
interface requires far fewer copies, which provides a performance benefit.

11

3. Evaluation

Here, we have evaluated Slick using both an echo module, a micro-benchmark
designed to test send and recv throughput at various buffer granularities,
and a forwarder module, a more complete benchmark involving a toy proto-
col that allowed us to test Slick under more realistic loads involving many-to-
many communication. In both instances, we tried to minimize the amount
of work done that would be similar in cost in both environments (e.g. string
parsing).

3.1 Hardware

We used three machines in our experiments: fawn-desktop2, fawn-desktop3,
and slick0.

Table 3.1: Configuration of test machines

Machine CPU Memory Network

fawn-desktop2 Intel Core i7 @ 4 x 2.80 GHz 8 GB @ 1066 MHz 1 Gbps

fawn-desktop3 Intel Core i7 @ 4 x 2.80 GHz 8 GB @ 1066 MHz 1 Gbps

slick0 Intel Atom @ 1 x 1.67 GHz 2 GB @ 667 MHz 1 Gbps

All three machines were running the 64-bit server edition of Ubuntu
Linux version 10.10. The linux kernel run by each was version 2.6.35-22.
They were connected to each other on the same gigabit network switch,
which was otherwise idle during our experiments.

Load generation was done by fawn-desktop3, performance measurement
were done by fawn-desktop2, while the actual services were provided by
slick0.

12

3.2 Echo Micro-benchmark

3.2.1 Application

We first had to show that Slick actually performed better than the user
process equivalent under ideal conditions. To do that, we created a simple
benchmark that was purely an echo. The client connects to the server and
every byte sent to the server is then echoed back to the client. We varied the
test across various buffer granularities to see how the payload size affected
the throughput. This allowed us to measure throughput and also verify that
the latencies were roughly the same.

3.2.2 Implementation

The user process reference implementation of the echo server is pretty straight-
forward. It simply accepts connections, receives a buffer size, and receives
and sends as long as the connection stays alive. It is single process.

Listing 3.1: User process implementation of echo server

while ((fd = accept (l i s t e n e r , NULL, NULL)) >= 0) {
recv (fd , &bu f f s i z e , s izeof (b u f f s i z e) , 0) ;
b u f f s i z e = ntoh l (b u f f s i z e) ;

while ((amt = r e c v a l l (fd , buf f , b u f f s i z e , 0)) > 0)
s e n d a l l (fd , buf f , amt , 0) ;

c l o s e (fd) ; fd = −1;
}

The kernel implementation does exactly the same thing. Upon a socket
listen event, it opens the connection and does blocking IO on it in the same
fashion until the socket closes. For the most part, it does not rely upon the
facilities provided by Klibevent for handling the sends and receives.

13

3.2.3 Results

Figure 3.1: Throughput comparison of echo services

Table 3.2: Throughput and latency of echo services

Buffer Size
User Process Kernel Module

Throughput Latency Throughput Latency

32 bytes 65.57 mbps 37 ms 103.66 mbps 31 ms
64 bytes 120.37 mbps 32 ms 166.24 mbps 28 ms
128 bytes 183.59 mbps 28 ms 239.50 mbps 27 ms
256 bytes 258.51 mbps 31 ms 319.28 mbps 37 ms
512 bytes 334.72 mbps 36 ms 431.90 mbps 37 ms
1024 bytes 536.86 mbps 33 ms 751.85 mbps 15 ms
2048 bytes 759.93 mbps 13 ms 757.17 mbps 15 ms
4096 bytes 784.33 mbps 17 ms 734.33 mbps 21 ms
8192 bytes 747.26 mbps 16 ms 741.97 mbps 17 ms
16384 bytes 746.63 mbps 17 ms 772.09 mbps 12 ms

14

3.2.4 Discussion

The echo service tests show that the kernel approach dominates the user
process approach when the granularity of sends and receives are small. This
is almost certainly due to the additional overheads of invoking send and
recv from a process as compared to from inside of the kernel. The results
above show that there is at least some merit to moving some networked
services into the kernel.

3.3 Thrift Forwarder Benchmark

3.3.1 Application

Our forwarder benchmark uses Apache Thrift to describe a simple, easily
forwarded protocol. Every message has two fields, an integer field repre-
senting the intended destination server, and a string field that can be sized
to represent different payload sizes. Though that was the only aspect we
tested, we also used the Thrift protocol to initialize the tests (connecting
the forwarder to backends) and to finalize the tests (closing down those
connections).

Listing 3.2: Forwarder protocol used for benchmarking

s e r v i c e Forwarder {
oneway void msg (1 : i 32 key , 2 : s t r i n g payload)

}

To generate load for the tests, we ran eight processes which connected
to the forwarded and sent prerecorded Thrift messages evenly distributed
among all of the destinations. On the destination server, we ran 20 instances
of ttcp, and aggregated the throughput data after the test.

3.3.2 User Process Implementation

The user process reference implementation of the forwarder server was slightly
more involved than that of the user process echo server. Due to the require-
ment that the forwarder support multiple clients, we implemented it using
libevent, which provided an interface similar to that of klibevent and is a
widely used mechanism for implementing evented servers. We reused the
parsing and buffering code as much as possible, though we placed less of
an emphasis on making it robust. Otherwise, we attempted to keep the
architectures as similar as possible to provide a fair comparison between the
two.

15

3.3.3 Results

Figure 3.2: Throughput comparison of kernel and user process forwarders

Table 3.3: Throughput of kernel and user process forwarders across two runs

Payload Size Kernel (slick) User Process (libevent)

32 bytes 15.40 mbps 15.20 mbps 6.79 mbps 6.22 mbps
64 bytes 22.88 mbps 22.80 mbps 7.21 mbps 7.21 mbps
128 byes 37.00 mbps 37.00 mbps 11.47 mbps 9.04 mbps
256 bytes 63.54 mbps 63.20 mbps 36.91 mbps 36.31 mbps
512 bytes 132.60 mbps 168.60 mbps 71.45 mbps 70.32 mbps
1024 bytes 201.20 mbps 199.60 mbps 153.17 mbps 197.94 mbps
2048 bytes 275.73 mbps 414.00 mbps 341.63 mbps 296.78 mbps
4096 bytes 423.23 mbps 418.15 mbps 441.10 mbps 367.87 mbps

16

3.3.4 Discussion

The forwarder service tests show that the Slick implementation again shines
when payload sizes are relatively small. Beyond payloads of 512 bytes,
the throughput numbers become more erratic between runs and it becomes
harder to make a compelling case for Slick. Still, we believe that the smaller
payloads represent a meaningful set of workloads and that our results are
therefor beneficial. Additionally, we believe that more work on Slick would
likely result in better numbers, as there are surely a slew of performance
issues that can be beaten out of the system over time.

17

4. Conclusions

4.1 Evaluating The Kernel Approach

There are obvious benefits to using slick from a performance perspective.
Our experiments have shown that placing the service in the kernel can pro-
vide a real benefit in terms of throughput. The simple recv and send

benchmark as well as the more complicated and representative Thrift for-
warding benchmark show that such applications benefit from avoiding user
process overheads.

However, this must be weighed against the constraints unique to kernel
space, which include more severe failure modes, the potential to tightly
couple code to specific kernel versions, and the lack of support for many user
process libraries. Some of these issues can be overcome, both by enforcing
modular design and solid engineering practices, but much of the traditional
library code would simply need to be written. Ultimately, the Slick approach
should only be taken when performance is of paramount importance and all
other avenues have been explored. Under such circumstances though, our
experiments have shown that this approach is beneficial.

4.2 Future Work

In the future, it would be useful to evaluate Slick with a wider variety of
workloads, including different protocols and different traffic patterns. Specif-
ically, it would be interested to create a reverse HTTP proxy with Slick and
see if it can outperform industry standards like Apache and Nginx. It would
also be interesting to test Slick in the context of a larger system across a
longer period of time to investigate its impact on failures. Finally, it would
be interesting to investigate its use by others to see what type of impact it
actually has on the development process.

18

Bibliography

[1] B. Goglin, O. Gluck, and P. Vicat-Blanc Primet. An efficient network
api for in-kernel applications in clusters. In Cluster Computing, 2005.
IEEE International, pages 1 –10, 2005.

[2] E. C. Hu, P. A. Joubert, R. B. King, J. D. LaVoie, and J. M. Tracey.
Adaptive fast path architecture. IBM Journal of Research and Develop-
ment, 45(2):191 –206, 2001.

[3] N.C. Hutchinson and L.L. Peterson. The x-kernel: an architecture for
implementing network protocols. Software Engineering, IEEE Transac-
tions on, 17(1):64 –76, January 1991.

[4] Philippe Joubert, Robert B. King, Rich Neves, Mark Russinovich,
John M. Tracey, Robert B. King , Mark Russinovich , and John
M. Tracey . High-performance memory-based web servers: Kernel and
user-space performance.

19

